

The (baryonic) Tully-Fisher relation status update ...

Anastasia Ponomareva

anastasia.ponomareva@physics.ox.ac.uk

The Tully-Fisher at z = 0

Smallest vertical scatter $IR - W_{50}$ suits for distance measurements Total Sample 10¹² 10¹¹ Baryonic Mass (M $_{\odot})$ 10¹⁰ 10^{9} 10^{8} $=3.71\pm0.08$, $\log(A)=2.27\pm0.18$ $s = 3.95 \pm 0.34$, $\log(A) = 1.86 \pm 0.60$ 107 10² $V_{f} (km s^{-1})$

Lelli+ 2016

Distances

Cosmicflows 1,2,3,4 & to be continued... (Tully+ 2008, 2013, 2016; Kourkchi+ 2020)

$H_0 = 75.1$

The Catalog of ~10000 Tully-Fisher Distances up to 15000 km/s

Calibration on 14 clusters in 7 photometrical bands

Kourkchi+ 2020a

Distances ASKAP

WALLABY (ASKAP): the Tully Fisher Relation in Eridanus, Hydra, Norma and NGC4636 fields

Courtois+ 2022

The Tully-Fisher at z = 0: Largest Sample

Automated ALFALFA Baryonic Tully-Fisher Relation

Full sample 31500+ Calibration sample 4500+

The Tully-Fisher at z = 0: Outliers

RA (J2000)

The Tully-Fisher at z = 0: Golden Standard

Lelli+ 2016,18

What about the TFr @ z > 0?

CO TFr @ *z*=0.05-0.3 : No evolution

Optical TFr @ z=1.3: Evolution

Lorenzo+ 2018

What about the TFr @ z > 0?

Optical TFr @ z=0.9 & z= 2.3: Evolution of the ZP only

The HI TFr @ z > 0

MIGHTEE-HI bTFr up to z = 0.083

No evolution up to $z \sim 0.2$

Ponomareva+ 2021

Gogate+ 2022

HI TFr beyond z = 0: Challenges

Ponomareva+ 2021

3D kinematic modelling: Inclinations

Need to provide initial estimate of inclination to 3DBarolo to get accurate resolved kinematics