An introduction to

the Tully-Fisher relation

Federico Lelli INAF - Arcetri Astrophysical Observatory Florence, Italy

DSSERVATORIO ASTROFISICO DI ARCETRI

© Robert Gendler

- 1. Empirical tool to measure galaxy distances
- \rightarrow Measure H₀ and peculiar velocities (galaxy flows)
- <u>Need</u>: Large galaxy samples (low-resolution HI surveys)

- 1. Empirical tool to measure galaxy distances
- \rightarrow Measure H₀ and peculiar velocities (galaxy flows)
- <u>Need</u>: Large galaxy samples (low-resolution HI surveys)
- 2. Empirical baryon-DM coupling in galaxies
 → Test galaxy formation models in ΛCDM & alternatives
 <u>Need:</u> High-resolution HI surveys (small galaxy samples)

- 1. Empirical tool to measure galaxy distances
- \rightarrow Measure H₀ and peculiar velocities (galaxy flows)
- <u>Need</u>: Large galaxy samples (low-resolution HI surveys)
- 2. Empirical baryon-DM coupling in galaxies
 → Test galaxy formation models in ΛCDM & alternatives
 <u>Need:</u> High-resolution HI surveys (small galaxy samples)

- HI Line-Width: W_{20} (20% of peak flux) $\approx 2 \langle V_{rot} \rangle \sin(i)$

- HI Line-Width: W_{20} (20% of peak flux) $\simeq 2 \langle V_{rot} \rangle \sin(i)$
- Systemic Velocity / Redshift: $z \simeq V_{sys}/c$ for low z

- HI Line-Width: W_{20} (20% of peak flux) $\simeq 2 \langle V_{rot} \rangle sin(i)$
- Systemic Velocity / Redshift: $z \simeq V_{sys}/c$ for low z
- Total HI flux / HI mass: $M_{HI} = 236 d_{L}^{2} [Mpc] S_{HI} [mJy km/s]$

HI Line-Width (Distance Independent)

Federico Lelli (INAF)

STEP 1: Calibrate TF relation using galaxies with known distance (from Cepheids, TRGB, etc.)

HI Line-Width (Distance Independent)

Federico Lelli (INAF)

HI Line-Width (Distance Independent)

Federico Lelli (INAF)

Classic Applications of the TF relation

1 - Hubble constant

 $V_{sys} \simeq H_0 d_L + V_{pec}$ at low z

 $H_0 = 75.0 + -2.0 \text{ km/s/Mpc} \text{ (Tully+16)}$

 $H_0 = 75.1 + -2.3 \text{ km/s/Mpc}$ (Schombert+19)

 $H_0 = 75.5 + -2.5 \text{ km/s/Mpc}$ (Kourkchi+22)

Federico Lelli (INAF)

Classic Applications of the TF relation

1 - Hubble constant

 $V_{sys} \simeq H_0 d_L + V_{pec}$ at low z

 $H_0 = 75.0 + -2.0 \text{ km/s/Mpc} \text{ (Tully+16)}$

 $H_0 = 75.1 + -2.3 \text{ km/s/Mpc}$ (Schombert+19)

 $H_0 = 75.5 + - 2.5 \text{ km/s/Mpc}$ (Kourkchi+22)

2 - Galaxy Flows $V_{pec} = c [z_{obs} - z_{cos}(d_L)] / [1 + z_{cos}(d_L)]$ $z_{cos} = f (d_L; H_0, \Omega_m, \Omega_\Lambda)$ (Tully+16, Graziani+19, Kourkchi+20)

Federico Lelli (INAF)

- 1. Empirical tool to measure galaxy distances
- \rightarrow Measure H₀ and peculiar velocities (galaxy flows)
- <u>Need</u>: Large galaxy samples (low-resolution HI surveys)

2. Empirical baryon-DM coupling in galaxies

 \rightarrow Test galaxy formation models in LCDM & alternatives <u>Need:</u> High-resolution HI surveys (small galaxy samples) Luminosity and HI linewidth are proxies for more fundamental physical quantities!

Objective: find the quantities that give the tighter relation

Optical/Near-IR Luminosity → Stellar Mass

Stellar-Mass TF Relation

The Tully-Fisher Relation

Federico Lelli (INAF)

Optical/Near-IR Luminosity → Stellar Mass

Stellar-Mass TF Relation

The Tully-Fisher Relation

Federico Lelli (INAF)

Baryonic Mass (stars+gas) is the key!

Stellar-Mass TF Relation

Baryonic TF Relation

Federico Lelli (INAF)

What's the HI line-width really measuring?

Line-of-Sight Velocity (km/s)

The HI line profile depends on $\Sigma_{\text{HI}}(R)$, $V_{\text{rot}}(R)$, inclination!

Need to spatially resolve HI distribution and kinematics!

Rotation Curves for Different Galaxies

Rotation Curve: V_{rot} vs Radius

Velocity Field: $V_{l.o.s.} \propto V_{rot} \sin(i) \cos(\theta)$

Major-Axis PVD: V_{rot} sin(i) vs Radius

Global HI profile:

Cimatti, Fraternali, Nipoti (2019)

Federico Lelli (INAF)

BTFR for different velocity definitions

Federico Lelli (INAF)

BTFR for different velocity definitions

The mean rotation velocity along flat part (V_f) gives the <u>tightest</u> and <u>steepest</u> BTFR!

(Verheijen 2001; Noordermeer & Verheijen 2007; McGaugh 2005; Ponomareva+2017; Lelli+2019)

Counter intuitive: Baryons important near the center but $M_{\rm b}$ best correlate with $V_{\rm f}$ (mostly set by the dark matter halo)!

Federico Lelli (INAF)

The Tully-Fisher Relation

Lelli+2019

Baryonic TF relation in a ACDM context

From basic arguments (McGaugh 2012):

$$M_{b} = \sqrt{\frac{2}{\Delta}} \frac{1}{GH_{0}} f_{b} f_{v}^{-3} V_{f}^{3}$$
$$f_{b} = \frac{M_{b}}{M_{\Delta}} f_{v} = \frac{V_{f}}{V_{\Delta}}$$

Federico Lelli (INAF)

The Tully-Fisher Relation

Baryonic TF relation in a ACDM context

From basic arguments (McGaugh 2012):

$$M_{b} = \sqrt{\frac{2}{\Delta}} \frac{1}{GH_{0}} f_{b} f_{V}^{-3} V_{f}^{3}$$
$$f_{b} = \frac{M_{b}}{M_{\Delta}} f_{V} = \frac{V_{f}}{V_{\Delta}}$$

Simplest working hypotheses:

$$f_b = f_{cosmic} = \Omega_b / \Omega_m$$
 From CMB
 $f_V = O(1)$ OK for most halo profiles

Federico Lelli (INAF)

Baryonic TF relation in a ACDM context

From basic arguments (McGaugh 2012):

$$M_{b} = \sqrt{\frac{2}{\Delta}} \frac{1}{GH_{0}} f_{b} f_{v}^{-3} V_{f}^{3}$$
$$f_{b} = \frac{M_{b}}{M_{\Delta}} f_{v} = \frac{V_{f}}{V_{\Delta}}$$

Simplest working hypotheses:

 $f_b = f_{cosmic} = \Omega_b / \Omega_m$ From CMB $f_V = O(1)$ OK for most halo profiles

To get lower normalization:

 $f_{\rm b} {<} f_{\rm CMB} {\rightarrow}$ missing baryons problem

To get slope of about 4:

 $f_{
m b}\,{
m must}\,{
m systematically}\,{
m vary}\,{
m with}\,V_{
m f}$

 \rightarrow fine-tuning problem for $\Lambda CDM!$

Federico Lelli (INAF)

BTFR from semi-empirical ACDM models

Federico Lelli (INAF)

Slope~4 → Acceleration Scale

Federico Lelli (INAF)

Slope~4 → Acceleration Scale

On dimensional grounds: $g_{+} = V_{f}^{4} / (G_{N}M_{b})$

Federico Lelli (INAF)

Take-home points on the TF relation

- 1. Empirical tool to measure galaxy distances
- \rightarrow H₀ \simeq 75 ± 2 km/s/Mpc (Tully+16, Schombert+19, Kourkchi+22)
- \rightarrow Galaxy flows: mass distribution within 200 Mpc (Graziani+19, Kourkchi+20)

Take-home points on the TF relation

- 1. Empirical tool to measure galaxy distances
- \rightarrow H₀ \simeq 75 ± 2 km/s/Mpc (Tully+16, Schombert+19, Kourkchi+22)
- \rightarrow Galaxy flows: mass distribution within 200 Mpc (Graziani+19, Kourkchi+20)
- 2. Baryonic TF relation $(M_{\rm b} \text{ vs } V_{\rm f})$ is most fundamental
 - \rightarrow Link between baryons and DM in galaxies (McGaugh+2000, Verheijen+2001)
 - \rightarrow Small intrinsic scatter (25%): fine-tuning problem in ACDM (Lelli+2016)
 - \rightarrow Slope \simeq 4: Acceleration scale of ~10⁻¹⁰ m/s² (McGaugh+2018, Lelli 2022)
 - \rightarrow Consistent with a-priori predictions of MOND (Milgrom 1983a,b,c)

More Slides

Peculiar Velocities & Hubble Constant $V_{pec} = (V_{mod} - H_0 d_L) / (1 + H_0 d_L/c)$ $V_{mod} = f(z, d_L, \Omega_m, \Omega_\Lambda)$

Fix $\Omega_{\rm m}$ and Ω_{Λ} (or equivalently q_0), vary H_0 and get different $V_{\rm pec}$

Federico Lelli (INAF)

The Tully-Fisher Relation

HI distribution and kinematics

How to derive a rotation curve:

- Divide galaxy into a set of concentric rings
- Deprojection from sky plane to galaxy plane
 - $V_{l.o.s.} = V_{sys} + V_{rot} sin(i) cos(\theta)$

 $cos(\theta) = fnc(center, position angle)$

Federico Lelli (INAF)

 $i = disk inclination angle \\ \theta = azimuthal angle \\ V_{sys} = systemic velocity$

BTFR for different velocity definitions

Why M_b - V_{flat} relation is steeper? Rotation curve shapes! At high M_b : declining RCs $\rightarrow V_{in} > V_{flat}$ At low M_b : rising RCs $\rightarrow V_{in} < V_{flat}$

Inner velocities give shallower BTFR

Federico Lelli (INAF)

The Tully-Fisher Relation

Lelli+2019

The Stellar Mass Function Problem

Federico Lelli (INAF)

The Tully-Fisher Relation

BTFR from hydrodynamical simulations

If we could measure hot gas...

What we can actually measure!

NIHAO zoom-in cosmological simulations of galaxy formation (Dutton+2017) BTFR curvature has almost disappeared and the scatter is small.

Federico Lelli (INAF)