Constraining modifications of gravity with synergies between radio and optical surveys

Santiago Casas,

Isabella Carucci, Valeria Pettorino,

Stefano Camera, Matteo Martinelli

arXiv:2210.05705 published in Phys. Dark Univ.

Cosmic Microwave Background

Large Scale Structure

The Standard ΛCDM model

- ΛCDM is still best fit to observations.
- Predictive model with few free parameters.

 $G_{\mu
u}+\Lambda g_{\mu
u}=8\pi GT_{\mu
u}$

Concordance Cosmology:

- Lensing
- CMB
- Clustering
- Supernovae
- Clusters

The Standard ΛCDM model

$$G_{\mu
u}+\Lambda g_{\mu
u}=8\pi G T_{\mu
u}$$

- ΛCDM is still best fit to observations.
- Some questions remain:
- Λ and CDM.
- Cosmological Constant Problem:

O(100) orders of magnitude wrong (Zeldovich 1967, Weinberg 1989, Martin 2012). Composed of naturalness and coincidence sub-problems, among others.

Tensions in the ΛCDM model

- ΛCDM is still best fit to observations.
- Some questions remain:
- H0 tension, now ~5 σ

Planck, Clusters and Lensing tension on clustering amplitude σ_8

L.Verde, et al 2019. arXiv:1907.10625

KiDS 1000 Cosmology, arXiv:2010:16416

Alternatives to ΛCDM

Ezquiaga, Zumalacárregui, Front. Astron. Space Sci., 2018

Parametrized modified gravity

In Λ CDM the two linear gravitational potentials Ψ and Φ are equal to each other

$$\mathrm{d}\mathrm{s}^2 = -(1+2\Psi)\mathrm{d}\mathrm{t}^2 + \mathrm{a}^2(1-2\Phi)\mathrm{d}\mathrm{x}^2$$

We can describe general modifications of gravity (of the metric) at the linear level with 2 functions of scale (*k*) and time (*a*)

$$\begin{split} &-k^2(\Phi(a,k)+\Psi(a,k))\equiv 8\pi Ga^2\Sigma(a,k)\rho(a)\delta(a,k)\\ &-k^2\Psi(a,k)\equiv 4\pi Ga^2\mu(a,k)\rho(a)\Delta(a,k)\\ &\eta(a,k)\equiv \Phi(a,k)/\Psi(a,k) \quad . \end{split}$$

$$\Sigma(a,k) = rac{1}{2} \mu(a,k) (1+\eta(a,k))$$

Only two independent functions

Late-time parametrization: Planck constraints

- Using Planck satellite data in 2015 and 2018, constraints were obtained on these two functions μ and η.
- Late-time parametrization: dependent on Dark Energy fraction

Planck

 $0.10\substack{+0.30 \\ -0.42}$

 $0.22^{+0.55}_{-1.0}$

 0.100 ± 0.093

Parameter

 $\mu_0 - 1$

 $\eta_0 - 1$

 $\Sigma_0 - 1 \ldots \ldots \ldots \ldots$

$$\mu(a,k) \equiv 1 + E_{11}\Omega_{\rm DE}(a)$$

$$\eta(a,k) \equiv 1 + E_{22}\Omega_{\rm DE}(a)$$

Planck 2015 results XIV, arXiv:1502.01590

Forecasts for Stage-IV surveys in:

Planck 2018 results VI, arXiv:1807.06209

With CMB lensing

Planck

+SNe+BAO

 $0.05^{+0.26}_{-0.39}$

 $0.32^{+0.63}_{-0.89}$

 0.106 ± 0.086

Casas et al (2017), arXiv:1703.01271

 $0.32^{+0.63}$

 $8^{+0.059}$

-0.048

The Evolution of the Universe and the Dark Ages

Complementarity of probes

Image credit: Sunayana Bhargava

The Square Kilometer Array Obs. (SKAO)

- SKA Phase 1: SKA1-Low and SKA1-Mid
- SKA1-Low: 130,000 dipole antennas, 65km max. baseline (Australia)
- SKA1-Mid: ~200 dishes of ~15m diameter, max. baseline 150km (South Africa)
- Precursors: ASKAP, MEERKAT, HERA...

SKAO Probes

- Continuum emission: Allows detection of position and shapes of galaxies.
- Line emission of neutral Hydrogen (HI, 21cm):
- Using redshifted HI line -> spectroscopic galaxy survey

 Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution, good probe of structures

Image credit: Isabella Carucci

SKAO Probes

- Continuum emission: Allows detection of position and shapes of galaxies.
- Line emission of neutral Hydrogen (HI, 21cm):
- Using redshifted HI line -> spectroscopic galaxy survey

 Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution, good probe of structures

SKAO GC Surveys

SKA1 Medium Deep Band 2: 5000 deg^2

- **1.** GCsp: HI galaxy spec. redshift
 - survey: 0.0 < z < 0.5
 - probes 3D matter power spectrum
 - in Fourier space.

HI galaxies spectroscopic survey

z_{\min}	<i>z</i> _{max}	$n(z) [{ m Mpc}^{-3}]$	b(z)	$S_{\rm rms}$ [μ Jy]
0.0	0.1	2.73×10^{-2}	0.657	117.9
0.1	0.2	4.93×10^{-3}	0.714	109.6
0.2	0.3	$9.49 imes 10^{-4}$	0.789	102.9
0.3	0.4	2.23×10^{-4}	0.876	97.5
0.4	0.5	$6.44 imes 10^{-5}$	0.966	93.1

SKA1 Redbook 2018, arXiv:1811.02743

SKAO Angular Surveys

SKA1 Medium Deep Band 2: 5000 deg^2

- **1.** GCsp: HI galaxy spec. redshift
 - survey: 0.0 < z < 0.5

probes 3D matter power spectrum

in Fourier space

2. GCco + WL + XCco (Continuum):

0.0 < z < 3.0

probes angular clustering of

galaxies, Weak Lensing (Weyl

potential) and galaxy-galaxy-lensing.

Angular number density:

 $npprox 3.2 {
m arcmin}^{-2}$

Continuum galaxy survey

D'			M7/106	1:					
Bin	z_{\min}	$z_{\rm max}$	$N/10^{\circ}$	$\mathbf{D}\mathbf{a}\mathbf{s}$	$\alpha_{ m mag}$				
M	Medium-Deep Band 2 Survey								
1	0.0	0.3	4.14	0.86	0.76				
2	0.3	0.6	6.25	0.86	1.04				
3	0.6	0.9	8.06	0.90	1.05				
4	0.9	1.2	7.78	1.21	1.19				
5	1.2	1.5	7.85	1.52	1.30				
6	1.5	1.8	5.77	1.58	1.22				
7	1.8	2.1	4.54	2.09	1.46				
8	2.1	3.0	7.90	2.39	1.25				
9	3.0	6.0	6.12	2.85	1.25				
Tota	al		58.41						

SKA1 Redbook 2018, arXiv:1811.02743

SKAO Angular Surveys

SKA1 Medium Deep Band 2: 5000 deg^2

- **1.** GCsp: HI galaxy spec. redshift
 - survey: 0.0 < z < 0.5

probes 3D matter power spectrum in Fourier space

2. GCco + WL + XCco (Continuum):

0.0 < z < 3.0

probes angular clustering of galaxies, Weak Lensing (Weyl potential) and galaxy-galaxy-lensing. Angular number density:

 $npprox 3.2 {
m arcmin}^{-2}$

3. For comparison: Stage-IV:

 $npprox 30 {
m arcmin}^{-2}$

Continuum galaxy survey

*kindly provided by Stefano Camera

Galaxy Clustering Recipe

Euclid Collaboration, IST:Forecasts, arXiv: 1910.09273

3x2pt recipe

Shear-Shear, Galaxy-Galaxy, Galaxy-Lensing correlations

Directly constrains MG function Σ through Weyl potential $-k^2(\Phi(a,k)+\Psi(a,k))\equiv 8\pi Ga^2\Sigma(a,k)
ho(a)\delta(a,k)$ $P_{\delta\delta} o\Sigma^2 P_m$

Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273

Santiago Casas, 17.01.23

SKAO IM Surveys

SKA1 Medium Deep Band 1: 20000 deg^2

- IM: Intensity mapping survey 0.4 < z < 2.5
- Very good redshift resolution: $\Delta z pprox \mathcal{O}(10^{-3})$
- We use: 11 redshift bins
- Single dish mode:

 $N_d = 197$

 $t_{obs} = 10000\,{
m hr}$

We limit to the scales

 $0.001 < k < 0.25 \, [h/{
m Mpc}]$

Intensity Mapping

- IM probes the underlying matter power spectrum.
- Density bias given by the HI mass contained in dark matter halos.
- 21cm brightness temperature depends on cosmological background & the energy fraction of neutral Hydrogen in the Universe Ω_{HI}.
- $P_{\delta\delta,zs}(z,k)$ is the redshift space matter power spectrum

$$egin{aligned} P^{ ext{IM}}(z,k) &= ar{T}_{IM}(z)^2 ext{AP}(ext{z}) ext{K}_{ ext{rsd}}^2(ext{z},\mu; ext{b}_{ ext{HI}}) \ & FoG(z,k,\mu_ heta) \ & imes P_{\delta\delta,dw}(z,k) \end{aligned}$$

$$K_{
m rsd}(z,\mu;b_{
m HI})=[b_{
m HI}(z)^2+f(z)\mu^2]$$

$$b_{
m HI}(z) = 0.3(1+z) + 0.6$$

$$ar{T}_{
m IM}(z) = 189 h rac{(1+z)^2 H_0}{H(z)} \Omega_{HI}(z) \,\, {
m mK}$$

$$\Omega_{HI}~=4(1+z)^{0.6} imes 10^{-4}$$

Carucci et al (2020) arXiv:2006.05996 Jolicoeur et al (2020) arXiv:2009.06197

25

Intensity Mapping x GCsp

- Cross correlation combines one term of brightness T with one K term for each "redshift sample".
- Same underlying matter power spectrum for both probes.
- A combined z-error

 (damping along the line of sight), where "sp" dominates, since the IM resolution is 1-2 orders of magnitude better.

$$egin{aligned} P^{\mathrm{IM} imes \mathrm{g}}(z,k) = \ ar{T}_{\mathrm{IM}}(z) \mathrm{AP}(z) r_{\mathrm{IM,opt}} \; K_{\mathrm{rsd}}(z,\mu;b_{\mathrm{HI}}) \ XK_{\mathrm{rsd}}(z,\mu;b_{\mathrm{g}}) FoG(z,k,\mu_{ heta}) P_{\delta\delta,dw}(z,k) \ imes \exp[-rac{1}{2}k^2\mu^2(\sigma_{\mathrm{IM}}(z)^2+\sigma_{\mathrm{sp}}(z)^2)] \end{aligned}$$

$$\sigma_i(z) = rac{c}{H(z)}(1+z)\delta_z$$

 $b_{
m g}(z)=$ fit to simulations for given galaxy sample

Wolz et al (2021) arXiv:2102.04946 Jolicoeur et al (2020) arXiv:2009.06197

Intensity Mapping

- *P_{gg}* underlying galaxy power spectrum.
- P_{IM}/T_b^2 : IM power spectrum.
- $P_{IM,g}/T_b^2$ cross-spectrum.
- Angle-dependent beam effect is in the signal*, damps accross the l.o.s.
- Along the l.o.s. damping due to FoG, but higher amplitude due to Kaiser.

Stage-IV surveys

Euclid space satellite, now waiting in Cannes

DESI telescope

Specialized in Galaxy Clustering

- 14 000 square degrees in the sky
- 30 million accurate galaxy spectra
- Redshifts: 0 < z < 2
- Quasars up to z~3.5
- 5 years of observation

Vera Rubin Observatory

Specialized in Photometric Angular Probes: Lensing and Clustering

- Located in Chile, 8.4m telescope
- 20 billion galaxies
- Redshifts: 0 < z ~< 3
- 18,000 square degrees
- 11 years of observation

Galaxy Clustering - IM Synergies

- GCsp-IM Crosscorrelation in overlapping bins
- Addition in disjoint bins
- No GCsp-GCsp cross-correlation

Fisher Matrix forecasts

Given a likelihood function L, representing the probability of the data d, given the model parameters Θ , the Fisher matrix is defined as the Hessian of the L:

$$\left.F_{lphaeta}=-rac{\partial^2\ln L(oldsymbol{ heta})}{\partial\Theta_lpha\,\partial\Theta_eta}
ight|_{
m fic}$$

Assuming that L is a multivariate Gaussian distribution with a covariance matrix C independent of Θ :

$$F_{lphaeta} = rac{\partial oldsymbol{t}^{\mathsf{T}}}{\partial \Theta_{lpha}} \, \mathsf{C}^{-1} \; rac{\partial oldsymbol{t}}{\partial \Theta_{eta}}$$

The explicit form of F, depends on the given observational probe and the physical model assumption, for example for GCsp:

$$F^{AB}_{lphaeta} = \sum_{m,n=1}^{N_{
m b}} \sum_{a,b,c,d,n} rac{\partial P_{AB}(ar{z}_m,k_a,\mu_b)}{\partial \Theta_lpha} imes rac{\partial P_{AB}(ar{z}_n,k_c,\mu_d)}{\partial \Theta_eta} \, \left[\mathsf{C}^{AB}(ar{z}_m,ar{z}_n)
ight]_{abcd}^{-1}$$

Fisher Matrix forecasts

What do we expect from the forecasts before doing them, just by looking at the formulas and the specs?

- SKAO (Phase1) has more independent probes but less statistical power (n(z) and area) -> less constraining power than Stage-IV
- WL and 3x2pt better at constraining Σ
- GCsp and IM better at constraining μ
- GCsp x IM cross-corr. improves constraints on parameters?

Let's see the results !

SKAO Results

• GC-IM probes measure μ at small z, where μ becomes important.

• Continuum probes measure better Σ ; Weyl potential is important.

SKAO Results

- Blue: Combined GCsp+IM (3D)
- Yellow: Combined continuum probes (2D: angular)
- Purple: Combination of 3D and angular probes
- Constraints on μ are good in angular, due to the XC contribution from GCco clustering.

SKAO Results

- Combining all SKAO probes (optimistic), 2-3% errors on μ and Σ .
- Minor improvement from Planck, mainly through ISW and CMB lensing.

SKAO	$\Omega_{\mathrm{m,0}}$	$arOmega_{\mathrm{b},0}$	h	$n_{\rm s}$	μ	Σ
Fiducial	0.32	0.05	0.67	0.96	1.07	1.37
GCsp	9.2%	15.5%	1.4%	7.9%	31.0%	224%
IM	3.9%	8.1%	0.3%	2.2%	29%	141%
GCsp+IM	3.0%	6.7%	0.2%	1.9%	14%	111%
WLco	69.4%	194%	144%	22%	63%	59%
GCsp+IM+WLco	2.4%	5.9%	0.2%	1.5%	10%	5.2%
WLco+GCco+XCco	3.7%	12.2%	8.0%	1.7%	3.2%	3.6%
SKAO _{all}	1.4%	4.0%	0.1%	0.9%	2.7%	1.8%
$SKAO_{all}+Planck15$	0.5%	0.7%	0.1%	0.3%	2.6%	1.3%

SKAO x DESI cross-correlation

• GCxIM probes do not improve constraints on MG parameters, but improvement on h and σ_8

DESI_E : high-z Emission Line Galaxies DESI_B: low-z Bright Galaxy Sample SKAO GCsp: low-z HI Galaxies

SKAO x DESI cross-correlation

• However, when combined with angular probes, there is a larger gain.

35

SKAO + optical

- SKAO + one Stage-IV survey is as competitive as two Stage-IV surveys together
- SKAO(all) better than DESI at constraining μ and especially Σ
- SKAO(all) better than VRO at constraining *h*
- SKAO(spectro) + VRO, as good as DESI+VRO
- SKAO(spectro) x DESI + VRO has the maximum constraining power

SKAO + optical

• SKAO + one Stage-IV survey is as competitive as two Stage-IV surveys

	$\varOmega_{\mathrm{m},0}$	$\Omega_{\mathrm{b},0}$	h	$n_{\rm s}$	μ	Σ	
	0.32	0.05	0.67	0.96	1.07	1.37	
$\mathrm{DESI}_{\mathrm{E+B}}\ (\mathrm{GCsp})$	0.64%	1.69%	0.11%	0.23%	0.84%	0.59%	
+ VRO (angular)	0.0470	1.0570	0.1170	0.2070	0.0470	0.0570	
SKAO(angular)							
+ SKAO (GCsp)	0.87%	1.91%	0.09%	0.57%	2.55%	1.2%	
+ SKAO x DESI_E							
SKAO (GCsp+IM)							
+ VRO (angular)	0.6%	1.51%	0.07%	0.23%	0.83%	0.55%	
+ SKAO x DESI _E							

SKAO	$\Omega_{\mathrm{m,0}}$	$arOmega_{\mathrm{b},0}$	h	$n_{\rm s}$	μ	Σ
Fiducial	0.32	0.05	0.67	0.96	1.07	1.37
SKAO _{all}	1.4%	4.0%	0.1%	0.9%	2.7%	1.8%
$DESI_{E+B} (GCsp) + SKAO (angular)$	1.1%	2.2%	0.2%	0.7%	2.6%	1.6%
SKAO (GCsp+IM) + VRO (angular)	0.8%	2.2%	0.1%	0.2%	0.9%	0.7%
$DESI_{E+B}$ (GCsp) + VRO (angular)	0.6%	1.7%	0.1%	0.2%	0.8%	0.6%

35

Conclusions

- ΛCDM is still the best fit to observations, however certain theoretical uncertainties and tensions in data are still of concern.
- Constraining modifications of gravity at the level of perturbations -> hints for alternative models.
- SKAO will be able to probe weak lensing and matter density perturbations in novel and independent ways compared to optical surveys.
- This will place constraints on deviations of standard gravity at yet unexplored redshifts.
- Synergies with optical surveys, like Euclid, DESI and Rubin, including cross-correlations are promising to remove systematics and break degeneracies.
- Using the good z-resolution of SKAO HI IM could place tight constraints on redshift-binned parametrizations.

SKA1 vs Euclid

SKA1:

GC+WL+XC (Continuum) + IM (HI 21cm) + GCsp(HI) VS Euclid (Gcsp+GCph+WL+XCph) VS Euclid (Gcsp+GCph+WL+XCph) +SKA1 Pk-probes. Unfortunately, the μ constraints

from Euclid alone dominate over the improvement that SKA1 "Pkprobes" add

Testing at higher H0 value

Late-time: Old SKA1, Euclid forecasts

- Old SKA1 forecasts contain only WL continuum and GCsp from HI galaxies
- Linear GCsp formalism and no IA params in WL

	Ω_c	Ω_b	n_s	$\ell \mathcal{A}_s$	h	μ	η	Σ	MG FoM
Fiducial	0.254	0.048	0.969	3.060	0.682	1.042	1.719	1.416	relative
GC(nl-HS)									
Euclid	0.9%	2.5%	1.3%	0.8%	1.7%	1.7%	475%	291%	2.9
SKA1-SUR	5%	15.3%	8.7%	3.8%	10.8%	18.1%	165%	108%	1.7
SKA2	0.5%	1.3%	0.4%	0.4%	0.8%	0.7%	86.8%	53.2%	5.5
DESI-ELG	1.6%	4.1%	2.3%	1.3%	2.9%	3.3%	899%	552%	1.8
WL(nl-HS)									
Euclid	6.3%	20.7%	4.6%	5.8%	13.8%	23.3%	40.9%	4.6%	4.5
SKA1	30.8%	109%	35%	36.5%	77.6%	220%	405%	36.8%	0.5
SKA2	6%	22.5%	5.9%	6.8%	15.9%	19%	33.2%	3.7%	4.9
GC+WL(lin)									
Euclid	1.8%	5.9%	2.8%	2.3%	4.2%	7.1%	10.6%	2%	6.6
SKA1	10.1%	47.6%	25.4%	21.7%	40.4%	26.4%	28.8%	13.6%	3.7
SKA2	1.2%	4.5%	2.2%	1.9%	3.3%	4.1%	5.5%	1.6%	7.5

Casas et al (2017), arXiv:1703.01271

Late-time: Old SKA1, Euclid forecasts

- However, we do roughly recover the same contour orientations and constraints with the new WL SKA1 forecasts.
- Deeply nonlinear Pk recipe is the same, using an interpolation to recover GR at small scales.

Casas et al (2017), arXiv:1703.01271

The Square Kilometer Array Obs. (SKAO)

 Next-generation Radioastronomy observatory

- Largest radiotelescope in the world: eventually 1km² area.
- 15 countries + partners
- Australia + South Africa installations
- ~2 billion Euros up to 2030.
- 5Tbps data rate and 250 Pflops needed for computation

The Square Kilometer Array Obs. (SKAO)

- 15,000-20,000 square degrees in the sky
- Precursors: 10^7, SKA-phase1: 10^8, SKA-phase2: 10^9 galaxies
- SKA1-MID: 0 < z < 3
- SKA1-Low: 3 < z < ~ 20
- Cosmology is just one small area, Exoplanets, Craddle of Life, Reionization, Cosmic Magnetism....

Intensity Mapping Noise Terms


```
## Parameter bounds
****
SKA1 (GCsp)
                                sigma8
Omegam
          Omegab
                     h
                                                 Sigma
                          ns
                                           mu
0.3200
          0.0500
                     0.6700
                               0.9600
                                          0.8222
                                                    1.0685
                                                               1.3697
0.0265
          0.0069
                     0.0090
                               0.0720
                                          0.0469
                                                    0.3173
                                                               3.2427
8.2829%
                                               5.7076%
           13.8606%
                        1.3448%
                                   7.5051%
                                                           29.6927%
                                                                        236.7406%
****
****
SKA1 (IM)
Omegam
          Omegab
                     h
                          ns
                                siama8
                                           mu
                                                 Sigma
0.3200
          0.0500
                     0.6700
                               0.9600
                                          0.8222
                                                    1.0685
                                                               1.3697
0.0170
          0.0057
                     0.0216
                               0.0565
                                          0.0214
                                                    0.2498
                                                               1.9288
5.3020%
           11.3062%
                                   5.8894%
                                                           23.3790%
                        3.2188%
                                               2.6055%
                                                                       140.8123%
****
****
SKA1 (WL)
Omegam
          Omegab
                     h
                                sigma8
                                                 Sigma
                          ns
                                           mu
0.3200
          0.0500
                     0.6700
                               0.9600
                                          0.8222
                                                    1.0685
                                                               1.3697
0.2221
          0.0975
                     0.9668
                               0.2110
                                          0.0788
                                                    0.6818
                                                               0.8108
            194.9278%
                          144.2922%
69.4198%
                                        21.9805%
                                                    9.5874%
                                                                63.8066%
                                                                             59.1968%
****
****
SKA1 (GCco+WL)
Omegam
          Omegab
                                sigma8
                                                 Sigma
                     h
                          ns
                                           mu
0.3200
          0.0500
                     0.6700
                               0.9600
                                          0.8222
                                                    1.0685
                                                               1.3697
0.0121
          0.0061
                               0.0186
                                          0.0095
                                                    0.0351
                                                               0.0544
                     0.0549
3.7726%
           12.2405%
                        8.1985%
                                   1.9403%
                                               1.1535%
                                                           3.2890%
                                                                       3.9708%
****
****
SKA1 (GCco+WL+XCco)
          Omegab
Omegam
                    h
                          ns
                                sigma8
                                                 Sigma
                                           mu
0.3200
          0.0500
                     0.6700
                               0.9600
                                          0.8222
                                                    1.0685
                                                               1.3697
0.0119
          0.0061
                     0.0539
                               0.0164
                                          0.0074
                                                    0.0337
                                                               0.0493
3.7129%
           12.1608%
                        8.0383%
                                   1.7040%
                                               0.9005%
                                                           3.1501%
                                                                       3.6000%
****
****
SKA1 (GCsp+GCco+WL+XCco+IM)
Omegam
          Omegab
                    h
                                sigma8
                          ns
                                           mu
                                                 Sigma
0.3200
          0.0500
                     0.6700
                               0.9600
                                          0.8222
                                                    1.0685
                                                               1.3697
0.0056
          0.0024
                     0.0031
                               0.0100
                                          0.0056
                                                    0.0314
                                                               0.0289
1.7506%
           4.7395%
                       0.4583%
                                  1.0451%
                                              0.6844%
                                                          2.9344%
                                                                     2.1134%
****
```