Probabilistic models in ML for HEP

Dr. Davide Valsecchi (Prof. Wallny - CMS group) 1st IPA ML Workshop

21/03/2023

Outline

Part 1: Normalizing Flows

- when you need one
- how they work
- how to train them

Part 2: Examples of applications for HEP

- flows for importance sampling \rightarrow fast MC integration
- Unfolding detector level information
- MEM method computation with flows

Example

Your data is described by a complex multidimensional p.d.f

- very often multimodal
 - not factorizable as product of gaussians for each dimension
- We need both **sampling** and **density** estimation
- almost always **conditional** p.d.f. p(x|y)

How to work with ML and probability densities?

Normalizing flows

Goal: model a complex high-dimensional p.d.f

Requirements: we want to be able to:

- draw **samples** from the p.d.f

Strategy:

- Model the p.d.f as a series of bijective transformation from a base distribution
- Expressiveness: parametrize the transformations with neural networks

arxiv1908.09257 arxiv1912.02762

Normalizing flows

Goal: model a complex high-dimensional p.d.f

Requirements: we want to be able to:

- draw **samples** from the p.d.f
- get the **probability density** at a particular point \vec{X}

- Model the p.d.f as a series of bijective transformation from a base distribution
- Expressiveness: parametrize the transformations with neural networks

arxiv1908.09257 arxiv1912.02762

Normalizing flows

Goal: model a complex high-dimensional p.d.f

Requirements: we want to be able to:

- draw **samples** from the p.d.f
- get the **probability density** at a particular point $ec{\chi}$
- model highly non-gaussian, multi-modal distributions

- Model the p.d.f as a series of bijective transformation from a base distribution
- Expressiveness: parametrize the transformations with neural networks

arxiv1908.09257 arxiv1912.02762

Normalizing flows

Goal: model a complex high-dimensional p.d.f

Requirements: we want to be able to:

- draw **samples** from the p.d.f
- get the **probability density** at a particular point $ec{\chi}$
- model highly non-gaussian, multi-modal distributions
- create conditional p.d.f p(x | y)

family of (marginal) p.d.f. depending on a condition

- Model the p.d.f as a series of bijective transformation from a base distribution
- Expressiveness: parametrize the transformations with neural networks

Normalizing flows

Goal: model a complex high-dimensional p.d.f

Requirements: we want to be able to:

- draw **samples** from the p.d.f
- get the **probability density** at a particular point $ec{\chi}$
- model highly non-gaussian, multi-modal distributions
- create conditional p.d.f p(x | y)
- computationally efficient

Accelerate it on GPU! ~10k samples in ~ms

- Model the p.d.f as a series of bijective transformation from a base distribution
- Expressiveness: parametrize the transformations with neural networks

Normalizing Flow

Normalizing direction \rightarrow density estimation

Sampling direction

Normalizing flows : More formally

From the rules of change of integration variables

 $p_X(x) = p_Z(f(x)) \left| \det\left(\frac{\partial f(x)}{\partial x^T}\right) \right|$ $\log\left(p_X(x)\right) = \log\left(p_Z(f(x))\right) + \log\left(\left|\det\left(\frac{\partial f(x)}{\partial x^T}\right)\right|\right),$

where f(x) goes in the "normalizing" direction to the z latent space.

We can both **sample** and evaluate the **density**

- If the p.d.f in the l**atent space is tractable** (multidim gaussian, uniform)
- if the transformation is invertible

 $\mathbf{z}_{0} \qquad \mathbf{z}_{1} \qquad \mathbf{z}_{i-1} \qquad \mathbf{z}_{i-1} \qquad \mathbf{z}_{i} \qquad \mathbf{z}_{i} \qquad \mathbf{z}_{K} = \mathbf{x}$ $\mathbf{z}_{K} = \mathbf{x}$

Requirement: the jacobian of the transformation must be computed in an efficient way \rightarrow this defines the possible implementation of the flows

Expressiveness: transformations are composable!

$$(T_2 \circ T_1)^{-1} = T_1^{-1} \circ T_2^{-1}$$

det $J_{T_2 \circ T_1}(\mathbf{u}) = \det J_{T_2}(T_1(\mathbf{u})) \cdot \det J_{T_1}(\mathbf{u}).$ 10

How to build a flow

We need to model **non-factorizable p.d.f:** dimensions depend non linearly on each other

DNNs are not invertible: use DNN as **conditioners**

 c_i

which parametrize invertible transformations au for which we have analytical inversion

Choose a structure with an efficient jacobian.

The transformation τ c

can be:

affine: μ , α parameters from the DNN conditioner

$$\mathbf{z}'_i = (\mathbf{z}_i - \mu_i) \exp(-\alpha_i)$$

arxiv1906.04032 arxiv1912.02762 arxiv1705.07057 or **spline** based: model N knots with the DNN conditioner, which creates a spline to transform differently each dimension \rightarrow very expressive

11

Conditioners

To model complex relations in the p.d.f. phase-space, the dimensions must *interact* between each other.

Two strategies to build easily computable Jacobians

- **coupling** transformations: split the space in two and make one group depends on the other (then rotate)
- **autoregressive** transformation: dimension X_i is conditioned only by $X_{0 \le i \le i}$

In both cases you get a lower-triangular Jacobian

$$J_{f_{\phi}}(\mathbf{z}) = \begin{bmatrix} \frac{\partial \tau}{\partial z_1}(z_1; \boldsymbol{h}_1) & \mathbf{0} \\ & \ddots & \\ \mathbf{L}(\mathbf{z}) & & \frac{\partial \tau}{\partial z_D}(z_D; \boldsymbol{h}_D) \end{bmatrix}.$$

The logdet is just the sum of the diagonal terms

$$\log\left|\det J_{f_{\boldsymbol{\phi}}}(\mathbf{z})\right| = \log\left|\prod_{i=1}^{D} \frac{\partial \tau}{\partial z_{i}}(z_{i};\boldsymbol{h}_{i})\right| = \sum_{i=1}^{D} \log\left|\frac{\partial \tau}{\partial z_{i}}(z_{i};\boldsymbol{h}_{i})\right|.$$

Coupling structure

- Split the **input space in half** and make one group depends on the other
- Shuffle the grouping (permute or rotate)
- Stack many layers to model all the correlations

Coupling layers

direct

inverse

Pros:

- Fully parallelizable over dimensions in both directions: 1 pass computation, super fast on GPU
- Fast to use in both sampling and density estimations

Cons:

 Many layers are needed to fully model the correlations in the input space D dimensions. (at least D layers usually)

Autoregressive structure

- dimension X_k is conditioned only by $X_{0 \le i \le k}$
- Implemented with Masked Autoencoders (MADE):
 - Fully connected neural networks with masked applied at each layer to create the autoregressive structure

Autoregressive

direct

inverse

Pro:

-

- More powerful than coupling strategy:
 - using few stacked layers all the dimensions talks to each other

Cons:

- Parallel in one direction, D steps in the version (D = dimension of the input space)
- Need to choose the direction of the implementation if we need faster sampling (IAF <u>arxiv1606.04934</u>) or faster density estimation (MAF <u>arxiv1705.07057</u>)

How to create an autoregressive function with a feed-forward neural network (MADE)

How to train a flow

It depends if you **the target p.d.f** is:

- 1. easy to **sample**, difficult to evaluate: p.d.f. of MC or Data in a control region \rightarrow we have events
- 2. difficult to sample, easy to evaluate: multidimensional integrand \rightarrow we have the function
 - 1. Training by maximum likelihood

Take samples X, get their density from the flow, maximize the total likelihood, optimize flow parameters by gradient descent

2. Training by **sampling**

Sample Z samples from the latent space, Pass through the flow to get X samples and their density p(x)Evaluate the function \rightarrow compute a divergence between p(x) and target $p^*(x) \rightarrow$ optimize flow parameters by gradient descent

Latent space \mathcal{Z}

Flows conditioning

A flow can be conditioned by external information to model p(x | y):

- include the dependence in the conditioner DNNs
- N.B. the conditioning dimensions **y** are not part of the flow

Example:

- Model parton distribution given jet observable

Applications in HEP

- Simple example: initial gluon momenta from reconstructed objects
- Importance sampling (MC integration, MCMC processes,
- Conditional unfolding
- Matrix Element methods
- Data/MC morphing/reweighting \rightarrow see first talk tomorrow from Massimiliano

Example: gluon momenta from reco-level boost

- Get the **initial gluons** from the **final state total boost**
- Easy task given the good pileup rejection of the CMS reconstruction
 - Strong correlation between the conditioning variables (reconstruction level boost) and the target variables (incoming gluon momenta)

Example: gluon momenta from reco-level boost

- Built a simple autoregressive spline-based conditional flow:
 - modelling *p(gluon | reco boost)*
 - 2D conditional space (pz, E), 2D feature space (pz, E)
- Train it using the gluon and reco level boost from MC by maximum likelihood

Publish the LHC likelihood function

EFT parameters likelihood from arxiv.1903.09632

- Goal: publishing likelihoods as full functions efficiently.
- Models POIs and nuisance parameters

N _{train}	Flow	N bij	N knots	Range	Hidden layers	L1 factor	N epochs	N iters.
$\begin{array}{c} 10^5 \\ 5\cdot 10^5 \\ 10^6 \end{array}$	A-RQS	2	16	[-6, 6]	1024×3	10^{-4}	1200	12

Theorist can use the flow to generate toys with complete uncertainty description

Talk at IML

Importance Sampling

Flows for integration by importance sampling are gaining a lot of momentum in the theory community:

general algorithm described as *i-flow* <u>arxiv2001.05486</u>

Large interest to **optimize the phase-sampling for cross-section** calculations

Very recent nice paper about multi-channel integration via normalizing flows to be integrated with MadGraph:

arxiv2001.05486

arxiv2011.13445

- MadNIS – Neural Multi-Channel Importance Sampling arxiv2212.06172

MadNis

Going to be integrated in Madgraph Generator

Parameter	Value	Parameter	Value
Loss function	variance	Coupling blocks	rational-quadratic splines
Learning rate	0.001	Permutations	exchange
LR schedule	inverse time decay	Blocks	6
Decay rate	0.01	Subnet hidden nodes	16
Batch size	10000	Subnet layers	2
Epochs	60	CWnet layers	2
Batches per epoch	50	CWnet hidden nodes	16
		Activation function	leaky ReLU

$$I[f] = \sum_{i} \int_{U_{i}} d^{d} y \, \alpha_{i}(x) \frac{f(x)}{g_{i}(x|\varphi)} \bigg|_{x = \overline{G}_{i}(y|\varphi)}$$

Learned a sampling distribution for each channel and also channel mapping weights (starting from Madgraph prior)

Figure 12: Learned p_T and $M_{e^+e^-}$ distributions for the Z'-extended Drell-Yan process. In the lower panels we show the learned channel weights.

Unfolding

Given an reconstructed event in the detector \rightarrow distribution of possible parton-level particles

the conditioning network can be not trivial, and needs to be trained along the flow

arxiv2210.00019 single event Reconstructed jets and leptons $N x r \in [0,1]^{D}$ conditioning conditioning Unfolding Transfer Flow Flow probability by prob. density of each $\mathcal{W}(\vec{Y}|\vec{X})$ N sets of event to the parton set partons X $\mathcal{P}(\vec{Y}|\vec{\theta}) = \int_{A} d\vec{X} \cdot |\mathcal{M}(\vec{X}|\vec{\theta})|^2 \cdot Pdf \cdot \mathcal{W}(\vec{Y}|\vec{X})$

Matrix Element Method

Compose unfolding and density estimation to compute the Matrix Element Method integral arxiv2210.00019

Conclusions

- Described new ML techniques to model probability densities and their sampling: **normalizing flows**
 - how they work
 - how to train them
 - why they can be useful for HEP
- Many common points with other Particle Physics applications: let's discuss tomorrow possible contact points

Bibliography

- Normalizing Flows for Probabilistic Modeling and Inference <u>1912.02762</u>
- Normalizing Flows: An Introduction and Review of Current Methods <u>1908.09257</u>
- Phase Space Sampling and Inference from Weighted Events with Autoregressive Flows 2011.13445
- i-flow: High-dimensional Integration and Sampling with Normalizing Flows 2001.05486
- MadNIS Neural Multi-Channel Importance Sampling 2212.06172
- Matrix Element Method in HEP: Transfer Functions, Efficiencies, and Likelihood Normalization <u>1101.2259</u>
- Normalizing Flows for LHC Theory <u>link</u>
- Masked Autoregressive Flow for Density Estimation <u>1705.07057</u>
- Invertible Networks or Partons to Detector and Back Again 2006.06685
- Two Invertible Networks for the Matrix Element Method 2210.00019

Backup

Conditioning on reco events

The unfolding flow must be properly conditioned on the reconstructed event: the conditioning network is trained alongside the unfolding flow

Fixed dimension latent space

Density estimation

- A similar architecture can be used to model the transfer function.
- We need a different flow for **each jet multiplicity**.
- It can be modeled with Bayesian network to return a **probability + uncertainty**
 - It would be an additional nuisance for the analysis
- Again trained from MC samples of partons and reconstructed objects

