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Outline

Part 1: Normalizing Flows 

- when you need one
- how they work
- how to train them

Part 2: Examples of applications for HEP

- flows for importance sampling → fast MC integration

- Unfolding detector level information

- MEM method computation with flows
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Example
Your data is described by a complex multidimensional p.d.f
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- very often multimodal

- not factorizable as product of 
gaussians for each dimension

- We need both sampling and density 
estimation

- almost always conditional p.d.f. p(x|y) 

How to work with ML and probability 
densities?



Normalizing flows
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Goal:  model a complex high-dimensional p.d.f

Requirements:   we want to be able to:

- draw samples from the p.d.f

- get the probability density at a particular point 

- computationally efficient

- model highly non-gaussian, multi-modal distributions

- create conditional p.d.f   p(x | y )

Strategy:

- Model the p.d.f as a series of bijective transformation from a base distribution

- Expressiveness: parametrize the transformations with neural networks

arxiv1908.09257  
arxiv1912.02762

https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/1912.02762.pdf
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family of (marginal) p.d.f. depending on a 
condition

https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/1912.02762.pdf
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Goal:  model a complex high-dimensional p.d.f

Requirements:   we want to be able to:

- draw samples from the p.d.f

- get the probability density at a particular point 

- model highly non-gaussian, multi-modal distributions

- create conditional p.d.f   p(x | y )

- computationally efficient

Strategy:

- Model the p.d.f as a series of bijective transformation from a base distribution

- Expressiveness: parametrize the transformations with neural networks

arxiv1908.09257  
arxiv1912.02762

Accelerate it on GPU!
~10k samples in ~ms

https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/1912.02762.pdf


Normalizing Flow
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Normalizing direction → density estimation

Sampling direction



where f(x) goes in the “normalizing” direction to 
the z latent space.

We can both sample and evaluate the density

- If the p.d.f in the latent space is tractable 
(multidim gaussian, uniform) 

- if the transformation is invertible
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Expressiveness: transformations are 
composable!

From the rules of change of integration variables

Requirement:  the jacobian of the transformation must 
be computed in an efficient way                        
→ this defines the possible implementation of the flows 

Normalizing flows : More formally

f(x)

f-1(z)



We need to model non-factorizable p.d.f: 
dimensions depend non linearly on each other

DNNs are not invertible:  use DNN as conditioners            

which parametrize invertible transformations
for which we have analytical inversion

Choose a structure with an efficient jacobian.

The transformation         can be: 

How to build a flow
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affine: μ, α parameters from the DNN 
conditioner

or spline based:  model N knots with the DNN conditioner,  
which creates a spline to transform differently each 
dimension → very expressive 

arxiv1705.07057 

arxiv1906.04032 

arxiv1912.02762

latent space

output space

https://arxiv.org/pdf/1705.07057.pdf
https://arxiv.org/pdf/1906.04032.pdf
https://arxiv.org/pdf/1912.02762.pdf


Conditioners
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arxiv1705.07057 

To model complex relations in the p.d.f. phase-space, the dimensions must interact 
between each other.

Two strategies to build easily computable Jacobians 

- coupling transformations:  split the space in two and  make one group 
depends on the other (then rotate)

- autoregressive transformation:   dimension Xj  is conditioned only by X0<i<j

In both cases you get a lower-triangular Jacobian The logdet is just the sum of the diagonal terms

arxiv1912.02762

https://arxiv.org/pdf/1705.07057.pdf
https://arxiv.org/pdf/1912.02762.pdf


Coupling structure
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Coupling layers

Z1 Z2

x1 x2

Z1 Z2

x1 x2

-1

direct inverse

- Split the input space in half and  make one 
group depends on the other

- Shuffle the grouping (permute or rotate)

- Stack many layers to model all the 
correlations

Pros:

- Fully parallelizable over dimensions in both 
directions:   1 pass computation, super fast 
on GPU

- Fast to use in both sampling and density 
estimations

Cons: 

- Many layers are needed to fully model the 
correlations in the input space D dimensions. 
(at least D layers usually)



Autoregressive structure 
- dimension Xk  is conditioned only by X0<i<k

- Implemented with Masked Autoencoders (MADE): 

- Fully connected neural networks with masked 
applied at each layer to create the autoregressive 
structure

Pro:

- More powerful than coupling strategy:
- using few stacked layers all the dimensions talks to 

each other

Cons:

- Parallel in one direction, D steps in the version (D = 
dimension of the input space)

- Need to choose  the direction of the implementation if we 
need faster sampling (IAF arxiv1606.04934) or faster 
density estimation (MAF arxiv1705.07057)
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How to create an autoregressive function with a feed-forward 
neural network (MADE)

Autoregressive

direct inverse

https://arxiv.org/pdf/1606.04934.pdf
https://arxiv.org/abs/1705.07057


How to train a flow
It depends if you the target p.d.f is:

1. easy to sample, difficult to evaluate:   p.d.f. of MC or Data in a control region → we have events  
2. difficult to sample, easy to evaluate:   multidimensional integrand  → we have the function

15

1. Training by maximum likelihood

Take samples X, get their density from the flow,  maximize 
the total likelihood, optimize flow parameters by gradient 
descent

2.        Training by sampling

Sample Z samples from the latent space, 
Pass through the flow to get X samples and their density p(x)
Evaluate the function → compute a divergence between p(x) and 
target p*(x) → optimize flow parameters by gradient descent

reverse KL divergenceKL divergence



Flows conditioning
A flow can be conditioned by external information to model  p( x | y ):

- include the dependence in the conditioner DNNs
- N.B. the conditioning dimensions y are not part of the flow

Example: 

- Model parton distribution given jet observable 
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conditional Y



Applications in HEP

- Simple example: initial gluon momenta from reconstructed objects
- Importance sampling (MC integration, MCMC processes,
- Conditional unfolding
- Matrix Element methods
- Data/MC morphing/reweighting → see first talk tomorrow from Massimiliano
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Example:  gluon momenta from reco-level boost
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- Get the initial gluons from the final state total boost

- Easy task given the good pileup rejection of the CMS reconstruction

- Strong correlation between the conditioning variables (reconstruction level 
boost) and the target variables (incoming gluon momenta)

log scale

log scale

gen-level gen-level



Example:  gluon momenta from reco-level boost
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- Built a simple autoregressive spline-based conditional flow: 
- modelling p(gluon | reco boost) 
- 2D conditional space (pz, E), 2D feature space (pz, E)

- Train it using the gluon and reco level boost from MC by maximum likelihood

conditionally 
generated 
gluons

MC truth 

we get conditional generation!

Pzreco = 6 GeV
Ecmreco = 4 GeV

x1

x2

generated one point for each MC events



Publish the LHC likelihood function
EFT parameters likelihood from arxiv.1903.09632 
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Talk at IML 

- Goal: publishing likelihoods as full 
functions efficiently.

- Models POIs and nuisance 
parameters

Theorist can use the flow to generate toys with 
complete uncertainty description

https://arxiv.org/abs/1903.09632
https://indico.cern.ch/event/1207717/contributions/5094811/attachments/2565941/4423689/NormalizingFlowsHD.pdf


Importance Sampling arxiv2001.05486 
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Flows for integration by importance sampling are gaining a lot of momentum in the theory community: 
- general algorithm described as i-flow arxiv2001.05486 

Large interest to optimize the phase-sampling for cross-section calculations

Very recent nice paper about multi-channel integration via normalizing flows to be integrated with MadGraph: 

- MadNIS – Neural Multi-Channel Importance Sampling  arxiv2212.06172 

The integrand function is approximated by normalizing flows, 
(for different integration channels like in Madgraph)

The flow is optimized by 
sampling and evaluating the 
target density (hard-scattering 
probability)

arxiv2011.13445 

https://arxiv.org/pdf/2001.05486.pdf
https://arxiv.org/abs/2001.05486
https://arxiv.org/pdf/2212.06172.pdf
https://arxiv.org/pdf/2011.13445.pdf


MadNis
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Learned a sampling distribution for each 
channel and also channel mapping 
weights (starting from Madgraph prior)

Going to be integrated 
in Madgraph Generator



Unfolding
Given an reconstructed event in the detector → distribution of possible parton-level particles
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Reconstructed 
jets and 
leptons

Unfolding 
Flow

N  x r ∈ [0,1]D

N sets of  
partons X

single event

prob. density of 
each the parton 
set

conditioning

cINN for unfolding 
arxiv2006.06685 

the conditioning network can be not 
trivial, and needs to be trained 
along the flow

https://arxiv.org/pdf/2006.06685.pdf


Matrix Element Method
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Reconstructed 
jets and 
leptons

Unfolding 
Flow

Transfer 
Flow

N  x r ∈ [0,1]D

N sets of  
partons X

conditioning
conditioning

single event

Compose unfolding and density estimation to 
compute the Matrix Element Method integral
arxiv2210.00019 

prob. density of each 
the parton set

probability by 
event to 

https://arxiv.org/pdf/2210.00019.pdf


Conclusions

- Described new ML techniques to model probability densities and their 
sampling: normalizing flows

- how they work
- how to train them
- why they can be useful for HEP

- Many common points with other Particle Physics applications: let’s discuss 
tomorrow possible contact points
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Backup
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Conditioning on reco events
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Tagging 
network

ParticleTransformer Conditioning 
latent space

Unfolding 
Flow

conditioning

N  u ∈ [0,1]D

partons space X

The unfolding flow must be properly conditioned on the reconstructed event:  
the conditioning network is trained alongside the unfolding flow

pre-trained tagging network to 
assign probability of parton 
matching to jets. It will help to 
reduce the impact of additional 
radiation

it handles variable 
number of objects

Fixed dimension latent space

Trained by maximum likelihood over a 
set of {Y, X} from MC samples

Jets, 
MET    = Y
Leptons



Density estimation

- A similar architecture can be used to model the 
transfer function. 

- We need a different flow for each jet 
multiplicity.

- It can be modeled with Bayesian network to 
return a probability + uncertainty

- It would be an additional nuisance for the 
analysis

- Again trained from MC samples of partons and 
reconstructed objects                   
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Reconstructed 
jets and 
leptons

Transfer 
Flow

N jets fixed

partons 
samples X

+uncertainty

arxiv2210.00019 
arxiv2006.06685 

https://arxiv.org/pdf/2210.00019.pdf
https://arxiv.org/pdf/2006.06685.pdf

