Probabilistic models
iIn ML for HEP

Dr. Davide Valsecchi
(Prof. Wallny - CMS group)

21/03/2023

Outline

Part 1: Normalizing Flows

- when you need one
- how they work
- how to train them

Part 2: Examples of applications for HEP

- flows for importance sampling — fast MC integration
- Unfolding detector level information

- MEM method computation with flows

Example

Your data is described by a complex multidimensional p.d.f

- very often multimodal

- not factorizable as product of
@ gaussians for each dimension

- We need both sampling and density
estimation

- almost always conditional p.d.f. p(x|y)

How to work with ML and probability
densities?

arxiv1908.09257
arxiv1912.02762

Normalizing flows

Goal: model a complex high-dimensional p.d.f
Requirements: we want to be able to:

- draw samples from the p.d.f

Strategy:
- Model the p.d.f as a series of bijective transformation from a base distribution

- Expressiveness: parametrize the transformations with neural networks

https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/1912.02762.pdf

arxiv1908.09257
arxiv1912.02762

Normalizing flows

p(x)

Goal: model a complex high-dimensional p.d.f /

Requirements: we want to be able to: +

- get the probability density at a particular point X

Strategy:
Model the p.d.f as a series of bijective transformation from a base distribution

Expressiveness: parametrize the transformations with neural networks

https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/1912.02762.pdf

arxiv1908.09257
arxiv1912.02762

Normalizing flows
not factorizable as

Goal: model a complex high-dimensional p.d.f
product of
gaussians

Requirements: we want to be able to:

—

X

model highly non-gaussian, multi-modal distributions

Probability

Strategy:
Model the p.d.f as a series of bijective transformation from a base distribution

Expressiveness: parametrize the transformations with neural networks

https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/1912.02762.pdf

Normalizing flows

Goal: model a complex high-dimensional p.d.f

Requirements: we want to be able to:

- create conditional p.df p(x/y)

Strategy:

P!

arxiv1908.09257
arxiv1912.02762

family of (marginal) p.d.f. depending on a
condition

P(Y | X=0) P(Y|X=1) P(Y | X=2)
1.5+
1.0-
" (L L
0.0-

P(Y | X =3) P(Y|X=4) P(Y | X=5)

Enpe e

2 3 4 5 0 1 1

- Model the p.d.f as a series of bijective transformation from a base distribution

- Expressiveness: parametrize the transformations with neural networks

https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/1912.02762.pdf

arxiv1908.09257
arxiv1912.02762

Normalizing flows

Goal: model a complex high-dimensional p.d.f

Requirements: we want to be able to:

P!

- computationally efficient Accelerate it on GPU!
~10k samples in ~ms

Strategy:
- Model the p.d.f as a series of bijective transformation from a base distribution

- Expressiveness: parametrize the transformations with neural networks

https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/1912.02762.pdf

Normalizing Flow

Normalizing direction — density estimation

Sampling direction

Normalizing flows : More formally

From the rules of change of integration variables

log (px (x)) = log (pz(f (w))) + log <‘det (

px (@) = pz (f()) ‘det (

oxT

of (iB)) '

0f(x)

oxT

)

where f(x) goes in the “normalizing” direction to
the z latent space.

We can both sample and evaluate the density

’
’
1

fl (ZO) @ fz (Ziil)
// \\
N 7’
\ ’
\] \
1 I 1
1 v 1
! \ !
/
7’

If the p.d.f in the latent space is tractable

(multidim gaussian, uniform)
if the transformation is invertible

@fi+1 (ZZ)
/” \\\
Y
\

Data space X Latent space Z
Inference :“ ; 5 f(x) :
T~ px & 3 B = e —
2=§() =
Generation e f'l(z)
zZ~ Pz P
z=f"(2)

Requirement: the jacobian of the transformation must
be computed in an efficient way
— this defines the possible implementation of the flows

@ o Expressiveness: transformations are

composable!

(

: —f = =,
&lk = (poTh) =T ol

Rt det Jr,o, (0) = det Jp, (T1(u)) - det J7, (u). 10

Zg ~ pK(ZK)

How to build a flow

We need to model non-factorizable p.d.f:
dimensions depend non linearly on each other

DNNs are not invertible: use DNN as conditioners

which parametrize invertible transformations | 7
for which we have analytical inversion

Choose a structure with an efficient jacobian.

! ! ! / !/
2| 25| - |zl | 2| - |2, output space
A
hi
C, - T
A
zy| 22| -+ |zi-1| Zi | -+ |zp| latent space

(a) Forward

The transformation| T [can be:

affine: u, a parameters from the DNN
conditioner

z |= (a |- pi) exp(—as)

arxiv1906.04032
arxiv1912.02762

arxivl1705.07057

or spline based: model N knots with the DNN conditioner,
which creates a spline to transform differently each
dimension — very expressive

—— RQ Spline
B Inverse

e Knots

go(x)
9p(T)

https://arxiv.org/pdf/1705.07057.pdf
https://arxiv.org/pdf/1906.04032.pdf
https://arxiv.org/pdf/1912.02762.pdf

arxiv1912.02762

Conditioners

To model complex relations in the p.d.f. phase-space, the dimensions must interact
between each other. zZ1| 2, Zi_1| % Zp
A
Two strategies to build easily computable Jacobians h.
Ci T
- coupling transformations: split the space in two and make one group) ;
depends on the other (then rotate)
- autoregressive transformation: dimension X; is conditioned only by X,__, S . . e
(a) Forward
In both cases you get a lower-triangular Jacobian The logdet is just the sum of the diagonal terms
& (z1; 1) 0 D
J1,(2) = . log|det Jf¢(z)| =log H O zL, Zlog zz,
L(z) 2= (2p; hp) =19

12

arxiv1705.07057

https://arxiv.org/pdf/1705.07057.pdf
https://arxiv.org/pdf/1912.02762.pdf

Coupling structure

- Split the input space in half and make one
group depends on the other

- Shuffle the grouping (permute or rotate)

- Stack many layers to model all the
correlations

Pros:

- Fully parallelizable over dimensions in both
directions: 1 pass computation, super fast
on GPU

- Fastto use in both sampling and density
estimations

Cons:

- Many layers are needed to fully model the

correlations in the input space D dimensions.

(at least D layers usually)

Coupling layers

2
Ci T
X,

direct

inverse

-1

13

Autoregressive structure

- dimension X _ is conditioned only by X,_._,

Autoregressive
- Implemented with Masked Autoencoders (MADE):

. I Y1 Yo Y1
- Fully connected neural networks with masked
applied at each layer to create the autoregressive L2 Y2 L2 / Y2
structure T3 Y3 T3 Y3
Pro:
- More powerful than coupling strategy: direct inverse
- using few stacked layers all the dimensions talks to
each other
Cons: How to create an autoregressive function with a feed-forward

neural network (MADE)
- Parallel in one direction, D steps in the version (D =

dimension of the input space) e O s

- Need to choose the direction of the implementation if we b .)
need faster sampling (IAF arxiv1606.04934) or faster
density estimation (MAF arxiv1705.07057) & —= Q — 6°(a,b)

14

https://arxiv.org/pdf/1606.04934.pdf
https://arxiv.org/abs/1705.07057

How to train a flow

It depends if you the target p.d.f is:

1.
2.

1. Training by maximum likelihood

Take samples X, get their density from the flow, maximize
the total likelihood, optimize flow parameters by gradient
descent

Dxr [px(x) [px(x:6)] = —Eps(x) [10g px(x: 0)] + const

N .
. _% 3" 0g px(n; 8) + const KL divergence

n=1
1 XN
=5 > log pu(T ™ (Xn; ¢);) + log | Jr-1(Xn;)| + const.

n=1

Data space X' Latent space Z

easy to sample, difficult to evaluate: p.d.f. of MC or Data in a control region — we have events
difficult to sample, easy to evaluate: multidimensional integrand — we have the function

2. Training by sampling

Sample Z samples from the latent space,

Pass through the flow to get X samples and their density p(x)
Evaluate the function — compute a divergence between p(x) and
target p*(x) — optimize flow parameters by gradient descent

L(0) = DxL [p«<(x;0) || px(x)]
= Ep, (x;0) [108 px(x; 0) — log px(x)]
= Ep.(up) [10g pu(u; %) — log [det Jr(u; @)| — log pi(T'(u; ¢)) | .

reverse KL divergence

Data space X’ Latent space Z

f(z)

15

Flows conditioning

A flow can be conditioned by external information to model p(x |y):

- include the dependence in the conditioner DNNs

- N.B. the conditioning dimensions y are not part of the flow

Example:

- Model parton distribution given jet observable

conditional Y

\
\

f1(zo) fi(zi-1) fir1(2i)
//’ \\\ //’ \\\ //’ \\\
7’ \ 7’ L 7’ \
’ 1’ \ 7 \
1 1 \ 1 \
I }] 1]
\ i : 1 \ z ! _\. 1 \ { 'J _‘ _\. 1
\ 1 \ Y \ 4
\ ’ \ ’ \ ’
N d N ’ N v
\\~__—’/ ‘____/’ ‘____/’

2z ~ po(2zo) z; ~ pi(z;) zx ~ Pk (2K)

/ / !/ !/ !/
‘ - ‘ “ Zi—1 = Zp
A
hi
Ci > T
A A
Z1| 22 Zi-1| Zi Zp

Applications in HEP

- Simple example: initial gluon momenta from reconstructed objects

- Importance sampling (MC integration, MCMC processes,

- Conditional unfolding

- Matrix Element methods

- Data/MC morphing/reweighting — see first talk tomorrow from Massimiliano

17

Example: gluon momenta from reco-level boost

- Get the initial gluons from the final state total boost
- Easy task given the good pileup rejection of the CMS reconstruction

- Strong correlation between the conditioning variables (reconstruction level
boost) and the target variables (incoming gluon momenta)

§ I 812f| AR L R A BN
< 4000 s .
g B (7] l .l. o -.'-
= 10 ogscale” =™ . .
g I 8‘: | .
S 2000 €t .
9 * S 8 i
[$] = L
2 T |
N I [o] +
D- Oll e/ 6]
8 |
o |
B . w 4 |
-2000 I
2 -
4000 =": I
. 0]
"
i log scale
L | | . | | |

L . . M M Lo 1
-2000 0 2000 4000 6000 12
PZ target E target (scaled)

gen-level gen-level 18

Example: gluon momenta from reco-level boost

Built a simple autoregressive spline-based conditional flow:
- modelling p(gluon | reco boost)
- 2D conditional space (pz, E), 2D feature space (pz, E)

Train it using the gluon and reco level boost from MC by maximum likelihood

MC truth

« 1.0
X

conditionally
generated

1.0

X1 /4

generated one point for each MC events

1.0
X1

2

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1E

we get conditional generation!

Pz =6 GeV

Ecm™c =4 GeV

Publish the LHC likelihood function

EFT parameters likelihood from arxiv.1903.09632

el
lmﬁ 1

7| % | tedo
s =¥ ALk 1cyy
- \
g | | i | e

n

S I

Z IR
& = H HI\J

> o0 4 5o "’;f’@ ,{;/«,hve ,»‘f)/Q"LQ‘B

- Goal: publishing likelihoods as full
functions efficiently.

- Models POls and nuisance
parameters

Talk at IML

-
x\ train

Flow | N bij | N knots | Range | Hidden layers = L1 factor | N epochs | N iters.

10°
5.10°
10°

A-RQS 2 16 [-6,6] 1024 x 3 107 1200 12

Theorist can use the flow to generate toys with
complete uncertainty description

20

https://arxiv.org/abs/1903.09632
https://indico.cern.ch/event/1207717/contributions/5094811/attachments/2565941/4423689/NormalizingFlowsHD.pdf

Importance Sampling 201200105486

arxiv2011.13445

Flows for integration by importance sampling are gaining a lot of momentum in the theory community:
- general algorithm described as i-flow arxiv2001.05486

Large interest to optimize the phase-sampling for cross-section calculations

Very recent nice paper about multi-channel integration via normalizing flows to be integrated with MadGraph:

- MadNIS — Neural Multi-Channel Importance Sampling arxiv2212.06172

) (
Phase space] Unit hypercube
¥ Gix19) " e The integrand function is approximated by normalizing flows,

Channel H H . . .
@ Mapping % (for different integration channels like in Madgraph)

x ~ g(x|@) G(ylo) y ~ uniform
-
®
:[Target fi(x) J— o
The flow is optimized by — @
i i — G(xl9) —

sampling and evaluating the e | Density g(xl0) e

M . oint anhe i Y &i
target density (hard-scattering ’ Shumil 55

X Mapping Evaluation
ili & — Sampley (1) e Backpropagation
probability) riw { K:)
|

A

21

https://arxiv.org/pdf/2001.05486.pdf
https://arxiv.org/abs/2001.05486
https://arxiv.org/pdf/2212.06172.pdf
https://arxiv.org/pdf/2011.13445.pdf

M a d N iS Parameter Value

|Parameter Value i o= i o
Loss function variance Coupling blocks rational-quadratic splines
Learning rate 0.001 Permutations exchange p /Z 7
. . LR schedule inverse time decay|Blocks 6

Goi ng to be 'ntegrated Decay rate 0.01 Subnet hidden nodes 16

in Madgraph Generator Batch size 10000 Subnet layers 2
Epochs 60 CWnet layers 2
Batches per epoch 50 CWnet hidden nodes 16 u et u et

Activation function leaky ReLU

Normalized

107!

=
o
&

Normalized
—_
o
&

(x)
1=, J dly o)L |
il 8i(x19) |x=5,(v1p)
10_:‘ —— Learned B Prior

Learned a sampling distribution for each
channel and also channel mapping
weights (starting from Madgraph prior)

400
Me-)-e— [GeV]

Figure 12: Learned py and M.+, distributions for the Z’-extended Drell-Yan process. In the
lower panels we show the learned channel weights.

22

Unfolding

cINN for unfolding
arxiv2006.06685

Given an reconstructed event in the detector — distribution of possible parton-level particles

N xr [O,’]]D 102
. % 10-2
single event
3.51 3 jet excl.
304 Y aJ T Parton Truth
Rec.onstructed conditioning UnfOl.C“ng T o5] —— Parton cINN
JetS and > S R Detector Truth
Fl.OW o 2.0
leptons o =
S ; 1.51
/\ ~ie 1.0
0.5
prob. density of Nsets of = and St T e
each the parton partons X
set] =T e 1| il [T
0 20 40 60 80 100 120
Dr.g [GGV]

the conditioning network can be not
trivial, and needs to be trained
along the flow 23

https://arxiv.org/pdf/2006.06685.pdf

Matrix Element Method

Compose unfolding and density estimation to

compute the Matrix Element Method integral

single event arxiv2210.00019
Reconstructed

jets and

leptons N xr &[0

conditioning

(Unfolding

/L Flow
N sets of
partons X

|

probability by

rob. density of each
event to P Y

the parton set

&
P(Y|6) = /d)?.w(>?|§)|2.Pdf-W(?\
¢

conditioning

Transfer
Flow

24

https://arxiv.org/pdf/2210.00019.pdf

Conclusions

- Described new ML techniques to model probability densities and their
sampling: normalizing flows
- how they work

- how to train them
- why they can be useful for HEP

- Many common points with other Particle Physics applications: let’s discuss
tomorrow possible contact points

25

Bibliography

- Normalizing Flows for Probabilistic Modeling and Inference 1912.02762

- Normalizing Flows: An Introduction and Review of Current Methods 1908.09257

- Phase Space Sampling and Inference from Weighted Events with Autoregressive Flows 2011.13445
- i-flow: High-dimensional Integration and Sampling with Normalizing Flows 2001.05486

- MadNIS — Neural Multi-Channel Importance Sampling 2212.06172

- Matrix Element Method in HEP: Transfer Functions, Efficiencies, and Likelihood Normalization 1101.2259

- Normalizing Flows for LHC Theory link
- Masked Autoregressive Flow for Density Estimation 1705.07057
- Invertible Networks or Partons to Detector and Back Again 2006.06685

- Two Invertible Networks for the Matrix Element Method 2210.00019

26

https://arxiv.org/pdf/1912.02762.pdf
https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/2011.13445.pdf
https://arxiv.org/pdf/2001.05486.pdf
https://arxiv.org/pdf/2212.06172.pdf
https://arxiv.org/abs/1101.2259
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012004
https://arxiv.org/pdf/1705.07057.pdf
https://arxiv.org/pdf/2006.06685.pdf
https://arxiv.org/pdf/2210.00019.pdf

Backup

27

Conditioning on reco events

The unfolding flow must be properly conditioned on the reconstructed event:

the conditioning network is trained alongside the unfolding flow
Fixed dimension latent space

. Conditionin
ParticleTransformer 9
latent space
Tagging
network it handles variable
number of objects
N u €[01]°
pre-trained tagging network to l
assign probability of parton . W conditioning
matching to jets. It will help to Unfolding
reduce the impact of additional Flow
radiation

set of {Y, X} from MC samples

partons space X 28

. . . arxiv2210.00019
Density estimation - xiv 2006 06685

- A similar architecture can be used to model the

transfer function. Reconstructed
jets and N jets fixed

- We need a different flow for each jet Jleptons :

multiplicity.
- It can be modeled with Bayesian network to

return a probability + uncertainty

- It wouFd be an additional nuisance for the partons TarEiar
analysis samples X Flow

- Again trained from MC samples of partons and
reconstructed objects

W(\7’)?) +uncertainty

29

https://arxiv.org/pdf/2210.00019.pdf
https://arxiv.org/pdf/2006.06685.pdf

