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Analysis techniques in High Energy Physics (HEP) i

o Very wide topic!
o Will focus on some common HEP problems
o Will discuss how ML can help us solve them

o Hopefully, the problems discussed in this talk are general enough and
applicable to other disciplines!
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@ Introducing inductive bias
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Inductive bias Pt

o The universal approximation theorem states every continuous function can be
approximated by a neural network (NN)

e However, designing architectures exploiting specificities of a problem is often a necessity
for a successful learning!

= Introducing inductive bias in NN

o E.g. Convolutional Neural Network (CNN) architectures make use of translational
invariance of images by implementing dedicated convolutional layer
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Lund plane representation of a jet

@ Because of color confinement, final state quarks
and gluons fragment until forming bound states,
forming a collimated spray of particles called jets

o The Lund plane! is 2-dimensional

e ‘
representation of gluon/quark
emission in hadronic showers [
0 Detection
o e . Hadronization
=~ hadrons GDE® ...

e Natural description of the radiation Fragmentation

pattern inside of a jet partons OO @ ...
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https://arxiv.org/pdf/1807.04758

Ink,

o At each splitting, compute a
tuple of kinematic features
T = (k¢, A, ...), used as node
features in the graph

o EdgeConv operation as a fully
connected NN using features of
connected nodes

o Stack EdgeConv layers to build
up the LundNet!

- State-of-the-art jet tagger with
small computational cost (fixed
graph via Lund decomposition)

1See arXiv:2012.08526
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https://arxiv.org/pdf/2012.08526
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o Background estimation in HEP
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Background estimation in HEP i

o General problem in HEP: estimate the expected number of background events in
signal-enriched region of the phase-space

e E.g. searches for WIMPs by looking for an excess of event at high £ (Missing
Transverse Energy)

- Need to know expected number of Standard Model events in the signal region!

o Example of arXiv:1712.02345, backgrounds estimated from simulation:

Example diagrams: Searching for high Fp:

35.91b™ (13 Tev)

P AN AR R A ANRARE AR
O, ¢f cms o ]
2 — 29 i
a monojet - abvecto,m__=20Tev
s 10| [ E
e [0 woopiers

10° I wwwzzz 3

I rop e
10° = v v E

o

Monojet event selection:

Variable Selection Target background

Muon (electron) veto pr > 10GeV, [y] < 2.4(25) Z(l0)+jets, W(Llv)+jets g

T lepton veto pr > 18GeV, |y| <23 Z(06)+jets, W(Llv)+jets 3

Photon veto pr > 15GeV, |y| < 2.5 yHets 8

Bottom jet veto CSVv2 < 0.8484, pr > 15GeV, || < 2.4 Top quark £

pss >250GeV QCD, top quark, Z(£()+jets ]

Ap(EY P >0.5 radians QCb N 400 600 800 1000 1200 1400
Leading AK4 jet pr and i >100GeV and || < 2.4 All

vamss [GeV]



https://arxiv.org/abs/1712.02345

ABCD method %}:A-ML%

e Sometimes backgrounds cannot be estimated from simulation, e.g. cross-section of
processes with large number of hadronic jets is difficult to calculate

o Need to use signal-free regions (control regions) to predict background in the signal
region

o The ABCD method is one of the methods for this task

e Let V1 and V2 be 2 independent |
variables for the background VZ |
distribution |

C I
e Signal region A: Vi > ¢; and Vo > c2 ' A

o Number of events in each region:
Na, Np, No, Np B-ackground
Signal

|
|
|
|
. L |
e Background estimation in signal D I
region: |
C

N,
NRE = ZE N
Np
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Distance correlation (DisCo) i

o One requirement for the ABCD method is to have 2 independent variables

o This can be checked using Distance Correlation (DisCo) [1] [2] [3]

o Pearson correlation only evaluates
linear correlations:

Cov2(X,Y)
2 X,Y) = :
PPearson ( ) Cov(X, X)Cov(Y,Y)

o Distance correlation (DisCo) defined Pearson correlation coefficient
using the probability distributions of X and
Y, and their joint probability distribution

-> Makes use of all information of the random / ?ﬂé w @ £ % \
variables!

03 01 01 03 02 o.

z
X o

dCov?(X,Y)
dCov(X, X)dCov(Y,Y)

DisCo?(X,Y) =

Distance correlation coefficient
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Distance correlation for ABCD method

If no two clear discriminative and independent variables can be found:

e Can train one NN and use DisCo regularization to force its output to be independent of
a discriminative physics observable V'
For a batch of examples X:

L(X) = Lyn(X) + X - DisCo(NN(X), V(X)) (1)
e Can train two NNs and use DisCo regularization to force them to be independent of
each other!
For a batch of examples X:
L(X) = Lan1(X) + Lanz2(X) + A - DisCo(NN1(X), NN2(X)) (2

Where Lny, LnN1, Inne are the NNs usual loss, e.g. for a supervised binary classifier,
binary cross-entropy.

1o A . Di_sc°=0‘0°2 o And then perform ABCD background
0.8 . o e, .. estimation in the (NN, V') plane or
< (NN1,NN2) plane
0.6 S
2 oy Cer et - ML provides a systematic way of
Z 04 Tt 0 addressing this issue!
LR AN o, '2
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Background estimation - Learning transfer factors i

o Search for Lepton Flavour Violation by

B (Bj — J/yprt (—> /‘+’7MVT) 1/7->

measuring R(J/1) branching ratio R(J/) =

o Define signal region requiring muon B (BC+ — J/zp;ﬁ‘l/u)
identification (“ID”) and its isolation
(“ISO”)

e Main challenge: PRGNS } - < *
estimate J/¢¥ 4+ misidentified muon background! T s :f M
Very hard to simulate! ‘ W+ v " \};4

o R N
J/l//,bt background: dominant y/ h
MC based; normalisation

B(~ background:  data-driven ) Ly ¢ —>—>c } 3y < *

MC based; negligible % i € Pe

normalisation data- c cesretas - - My

driven DiMuon "

o Feeddowns: excited
cC states to J/y

e Other J/y+charmed
hadron, mostly
B, - DOJly

Data-driven

Pairs of unrelated muons
with m(up) close to that
of the J/W

Muon fakes

Data-driven anti-
isolated u sideband

J/V + misidentified
hadron

‘ Signals:
S/gnalu:B(. = Jlypy,
Signal 7: B, — Jlytv,
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Background estimation - Learning transfer factor

o Learn transfer factor 7 from signal-free control region
D to C for N physics variables V;

a—Lf-y __ Datac _ MC¢ MCp D

- , = ) - ) =
1—v Datap MCp K Datap

e Train 3 NNs to learn the mappings «, 3, v between the
N-dimensional distributions of the different “regions” c * D

e Apply T from signal-free region B to signal region A: £
Fake4 = T (Datapg) - Datag — T(MCp) - MCp

NN Reweighted
Muon Fail Iso Region  puon Fail Iso Region Signal Region

SMS_rrinemy uaten CMS _promnay e
§2} 180

events

B fom B pou  Weos
Apply th
pp y. he st “|  Use the fakes
NN w_elg ts' Fakes = data-MC| J shape in the SR

g T
¢ (GeV?)

obs/exp
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o Training decorrelated models
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Training feature decorrelated classifier i

o Distance correlation regularization can also be used to train a classifier
decorrelated from a feature F

o Particularly interesting when this feature F is then used in the next step of the analysis,
for instance fitted to extract signal

- Example: Mass decorrelated classifier for resonant search (bump hunt in a mass variable)
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FIG. 1: Invariant mass distribution for the inclusive W and FIG. 4: QCD mass distribution before and after a cut on
QCD samples. CNN plus DisCo (W-tagging) with signal efficiency of 50%
and JSD ~ 1072,

[arXiv:2001.05310]



https://arxiv.org/abs/2001.05310
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o What if the signal is unknown? pNN used at ETH in search for long-lived
E.g. searching for resonance at Heavy Neutral Leptons:
unknown mass
to = e (= nfe
o Can use parametric neural network
(PNN)

e Train a NN on a mixture of signals with
an additional input feature: the true
value of the signal parameter p

o For background examples:

o If p not meaningful for background,
use random value, following signal
distribution

o Else, e.g. p directly translates as a
physics observable A, use p = A

- pNNs achieve same performance on
hypothesis po as a single NN trained
only on signal hypothesis pg

- pNNs better interpolate between the K
different signal hypotheses than a plain 05E " |Xx Rework et on o masses

) %X Network trained on all masses

NN trained on a mixture Of Signals » % Network trained at mass=1000 only
500 750 1000 1250 1500
Mass of signal
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https://arxiv.org/abs/1601.07913
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o What if the model parameters JC\
to decorrelate against are not e ] N
directly related to a physics O A% T
i i SIG
observable?
e E.g. varying anomalous T
coupling of the Higgs boson
- impacts many observables in /
a non-trivial way and signal *n Y
shape for template fit! o ouspit 1

o Can use adversarial neural network

e Train both a classifier C' and an adversary A:
e C classifies signal vs background
o A takes the latent representation from the last
hidden layer of C' and tries to find from which
process it comes:

L=Lc—aly

input layer
= output 1

where L4 is the categorical cross-entropy |
« is an hyper-parameter A

o If the adversary A cannot figure out from which
process the event is, then the output of C is
model-independent!

[Eur. Phys. J. C 82, 921 (2022)]
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@ Searching for new physics
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Searching for new physics with autoencoders i
An autoencoder (AE) is composed
of: Input features Reconstructed features

e an encoder NN f Latent space
. Encoded features
o a “symmetric” decoder NN g

The AE network is trained to
learn to reconstruct the input
examples it is given.

Loss for an example x:

L(z) = [lg(f () — =l

where [|-]| is a distance

Encoder Bottleneck Decoder

The aim of an AE for anomaly detection is to reconstruct with low error only
the examples it is trained on but not others!

Search for new physics in HEP with AE is based on learning SM physics and
flag new physics as anomalous!
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The problem of outlier reconstruction i

Full phase space

Outlier reconstruction happens when the
network assigns low reconstruction error
to out-of-distribution (OOD) examples

~ @ OOD reconstruction not suppressed
\ during training in plain AE
Training data support

Low reconstruction loss o Sometimes phrased as “OOD examples
need to be more ‘complex’ to not be
reconstructed”

Half 4

MNIST FMNIST Blank Omniglot Half 5 Half 0

- Normalized autoencoder! (NAE)
features a mechanism to suppress
OOD reconstruction!

Outlier reconstruction example: AE and NAE
trained on MNIST, other inputs are outliers.

INAE first introduced in arXiv:2105.05735 and used in HEP in arXiv:2206.14225
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https://arxiv.org/abs/2105.05735
https://arxiv.org/abs/2206.14225

Working principle of the Normalized Autoencoder (NAE) %':"'V‘f

Pe(X) p(x)

e Ensure that low reconstruction error V)
phase-space matches that of training data tt 1 1 ¢

VEg (X)T 1 t

Figure 2. An illustration of the energy gradients in Eq. (7). The
red and blue shades represent the model and the data density,

e i.e. OOD examples are constrained to have high
reconstruction error

BH B respectively. The gradient update following Eq. (7) increases the
o The model .probablhty bo 18 defined from the energy of samples from py(x) (the red dots) and decreases the
reconstruction error Fy via the Boltzmann energy of training data (the blue crosses).
distribution:
1 .
po(z) = o oxp (—Ey(z)) - Low energy examples have high
o probability

o The loss is designed to learn py = pgata:

Eznpaaa [L6(2)] = Eonpgaa [Bo ()] = B, [Fo(2)]
positive energy E negative energy F_

o Positive energy is the reconstruction error of the training examples

@ Need to sample from the model to get the “negative samples” z’ and compute F_
- Monte Carlo Markov Chain (MCMC) employed
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NAE for semi-visible jet search i

e Semi-visible jets (SVJ) are new physics signatures
arising from theories where dark matter is made of
dark quarks and a dark QCD force, very similar its
SM counterpart

e Dark quarks hadronize to form dark hadrons, a
fraction of which promptly decays to SM quarks

which hadronize in the SM sector

o SVJs are jets made of visible SM hadrons with
different substructure than SM QCD jets

o Currently developing NAE using substructure
variables and a fully connected NN

@ Loss function:
L =log(cosh (B4 — E_)) + A+ E3

- First term to suppress OOD reconstruction

Second term to learn training examples

reconstruction
SM hadrons

Stable dark hadrons
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Understanding NAE dynamics i

Visualizing positive and negative samples:
o Energy Mover’s Distance (EMD) o

o t-distributed Stochastic Neighbor Embedding
(t-SNE) plots

AUC

= Check suppression of OOD reco, e.g. “that the reco
loss is high outside the training manifold”

- Good anomaly detection: low reco error of training g E
examples (SM physics) AND suppression of OOD 2 3
(BSM physics) reco (low EMD, overlap in t-SNE plots) g 3
S E

Epoch 500 Epoch 10000 & E

labels 04 t
® Positive samples

0 2000 4000 6000 8000 10000

® Negative samples




Decorrelated autoencoders to search for new physics i

The idea is!:
e to train 2 autoencoders, decorrelated from each other using DisCo regularization

e such that the new physics enriched region is the high loss region of the AEs
e to perform ABCD background estimation using the losses of the two AEs

Autoencoder 1

P T TendiE
. Background
Signal

LarXivi2111.06417
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https://arxiv.org/abs/2111.06417

: &3
Conclusions Pt

ML provides tools to address several HEP problems:

o Background estimation

o Building decorrelated classifiers with respect to signal hypotheses or a physics observable

o ... not mentioning building classifiers for jet tagging, searches or precision
measurement!

Many exiting developments to search for new physics with unsupervised
learning!

Still ongoing developments to incorporate physics knowledge into new ML
models and improve interpretability
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Distance correlation (DisCo) i

The Pearson correlation only evaluates
linear correlations:

e/

Cov?(X,Y)
2 5
X,Y) = 3
pPearson( ) ) COV(X,X)COV(Y, Y) ( )
The Distance correlation (DisCo) makes use Pearson correlation coefficient
of all information of the random variables:
dCov?(X,Y) = T .

* N\

0.2 0
w“ﬂ% A

St

[ sttty 0 = Fx )y (O wis.0)

where fx (resp. Y) is the characteristic
function of X (resp. Y'), fx,y is the joint
characteristic function of X and Y.

fx,y == fxfy iff X and Y are independent.

Distance correlation coefficient

dCov?(X,Y)

DisCo?(X,Y) =
8Co™(X,Y) = GE0v(X, X)dCov (Y, V)

(4)
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Energy-based models Pt

Energy-based models (EMBs)
o EBMs are models where the probability is defined through the Boltzmann distribution

o Let 6 denote the model parameters

o The model probability pgy is defined from the energy Fjy

po(z) = Qie exp (= Ey(z)/T) )

where the normalization constant €y is

= [ exp (~Eo(a)/T) do (©)
o The EBM loss for a training example z is the negative log-likelihood:
Lo(z) = —logpy(z) = Eo(z)/T + log Qg (7
o The gradient of the EBM loss is thus:
VoLg(z) = VgEo(x) —Eyrrp, [VoFo(z)] (8)
o The expectation value over the training dataset, with probability pqata is:

Eznpaata [VoLo(z)] = Eznpaata [VoEg(x)] — Ex’~p9 [VeEG(zl)] 9)
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%
Working principle of the Normalized Autoencoder (NAE) i

Loss

EiBdiata [L9(x)] = EﬂcNPdata [E9($)] - E,,/Np() [EQ(I,)] =Ey —-E-

positive energy negative energy

Positive energy
e Simply the reconstruction error over the training dataset

o Take SM jets and compute the reconstruction error!

Negative energy
@ Reconstruction error of the “negative samples” z’ from the probability distribution pg
o Need to sample from the model to get the “negative samples”
- Monte Carlo Markov Chain (MCMC) employed

MCMC
o Start from an initial point x,

e Run n Langevin MCMC steps:

wiy =a; — A VaEg(x)) + oe e~N(0,1) (10)
drift diffusion

/( ()

o Repeat with several points xoj), the negative samples are the z

an Eble
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Improvements compared to plain AE

Table 1. MNIST hold-out class detection AUC scores. The values in parentheses denote the standard error of mean after 10 training runs.
4 5 6 7 8 9 AVG

HoLD-ouT: 0 1 2 3
NAE-OMI .989002) .919013) .992(001) .949(.004) .949(.005) .978.003) .938.004) .975(.024) .929(.004) .934(.005) .955
819 131 .843 134 661 155 .844 542 902 537 677

AE
Signal NAL | gut Ll out 4 out_7_Out:9

AUC €;'(e5=0.2) :_::i Z_ / 2_ q 2__ 7 Z_ C}J
N M2 1242729
och tAp) | 089 350 2 29292

AUC score for top tagging (2 first Reconstruction examples in MNIST hold-out class de-
rows) and QCD tagging (2 last tection for AE (middle row) and NAE (bottom row).
rows) for AE and NAE. The AE is Each pair of column is a different training for a dif-
a pre-training phase of the NAE. ferent hold-out class.

o The NAE brings huge improvement compared to the plain AE on image classification
task
o NAE achieves symmetric tagging, not only tagging of more complex objects!

o State-of-the-art anomaly detection on images

hniques in HEP
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