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Analysis techniques in High Energy Physics (HEP)

Very wide topic!

Will focus on some common HEP problems

Will discuss how ML can help us solve them

Hopefully, the problems discussed in this talk are general enough and
applicable to other disciplines!
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HEP problems

Incorporating physics
inductive bias in ML
models

Background estimation

Training decorrelated
models

Searching for new
physics via anomaly
detection

Figure 1. The Lund plane representation of a jet (left) where each emission is positioned according

to its ∆ and kt coordinates, and the corresponding mapping to a binary Lund tree of tuples (right).

The thick blue line represents the primary sequence of tuples Lprimary.

senting the angle and transverse momentum of a given emission with respect to its emitter,

and which is often used in discussions of resummations of large logarithms in perturbation

theory or of Monte Carlo parton showers. Each emission then creates an additional trian-

gular leaf corresponding to the phase space for further emissions. It was shown in recent

work that the Lund plane provides a useful basis to achieve an efficient description of the

clustering sequence of a jet, containing a rich set of information about its substructure,

with notable potential for jet tagging [33]. The Lund jet plane allows for a visual repre-

sentation of the clustering history of a jet. This systematic encoding of a jet’s radiation

patterns can be measured experimentally [34], allowing for comparisons between theoretical

predictions and experimental data [35] and with potential for constraining general purpose

Monte Carlo event generators [36].

The Lund plane is obtained by first reclustering a jet’s constituents with the Cam-

bridge/Aachen (CA) algorithm [37, 38], which sequentially identifies and combines the

pair of particles a and b closest in rapidity y, a measure of relativistic velocity along the

beam axis, and azimuthal angle φ around the same axis, i.e. minimising ∆2 = (ya− yb)2 +

(φa − φb)2. We then iterate over this clustering sequence, starting from the full jet and

proceeding by:

1. Declustering the current (pseudo)jet into two transverse momentum ordered pseudo-

jets a and b such that pt,a > pt,b, and where we consider b to be the emission of the

(a+ b) emitter.

2. Determining a number of kinematic variables associated with the declustering step i,
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Figure 3. (a) Illustration of the EdgeConv operation on a node of the Lund tree. (b) Architecture

of the EdgeConv block used in the LundNet model. (c) Architecture of the LundNet model.

the distribution of the number of Lund declusterings per jet for several choices of kt cut

in 2 TeV QCD jets simulated using Pythia 8.223 [40]. The mean of each distribution is

indicated as a dashed line. An additional benefit of a kt threshold is that even for small cut

values the number of nodes per jet is significantly reduced, and therefore correspondingly

so the computational cost of training a machine learning model on these inputs. The right-

hand side of figure 2 shows the average number of nodes per jet as a function of the kt cut,

which decreases quadratically as the cut is increased.

3 LundNet Models

The Lund plane encodes a rich set of information of the substructure and radiation patterns

of a jet, therefore serving as a natural input to machine learning models for jet physics. The

use of Lund planes for jet tagging was first proposed in Ref. [33] where log-likelihood and
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2 Background estimation in HEP

3 Training decorrelated models

4 Searching for new physics
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Inductive bias

The universal approximation theorem states every continuous function can be
approximated by a neural network (NN)

However, designing architectures exploiting specificities of a problem is often a necessity
for a successful learning!

Ô Introducing inductive bias in NN

E.g. Convolutional Neural Network (CNN) architectures make use of translational
invariance of images by implementing dedicated convolutional layer

Same
output!
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Lund plane representation of a jet

Because of color confinement, final state quarks
and gluons fragment until forming bound states,
forming a collimated spray of particles called jets

The Lund plane1 is 2-dimensional
representation of gluon/quark
emission in hadronic showers

Natural description of the radiation
pattern inside of a jet

Lund diagrams

I Lund diagrams in the (ln I�, ln�)
plane are a very useful way of
representing emissions.

I Different kinematic regimes are
clearly separated, used to illustrate
branching phase space in parton
shower Monte Carlo simulations and
in perturbative QCD resummations.

I Soft-collinear emissions are emitted
uniformly in the Lund plane

3F2 ∝ 
B
3I

I

3�
�

[Andersson et al, Z.Phys. C43 (1989) 625]
[FD, Salam, Soyez, JHEP 1812 (2018) 064]
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Figure 2: (a) The average primary Lund plane density, ρ, for jets clustered with the C/A

algorithm and R = 1 having pt > 2 TeV and |y| < 2.5, in a simulated QCD dijet sample.

(b) Schematic representation of the different regions of the Lund plane.

factor in ρ is equal to 2 and so the density of primary Lund emissions is just proportional

to the strong coupling,

ρ ' 2αs(kt)CF
π

, (∆� 1, z̄ � 1) , (2.6)

The upper diagonal edge in the figure is a consequence of the kinematic limit, kt <
1
2pt,jet∆.

At low scales αs(kt) gets large, which accounts for the bright red band around kt = 1 GeV.

In this region the Lund plane density is not amenable to perturbative calculation. Equiv-

alently Eq. (2.5) receives large corrections from non-perturbative terms proportional to

powers of kt/ΛQCD. At values of ∆ ∼ 1, initial state radiation (ISR) and multi-parton

interactions (MPI/UE) contribute to increasing the density, which is reflected in the con-

tours of constant colour bending upwards to the left. The different regions are outlined

schematically in Fig. 2b.

Beyond leading perturbative order, several further physical effects contribute to the

structure of the Lund plane. The upper boundary gets smeared out because of degradation

of the leading subjet energy as one declusters the jet.3 The leading subjet can also change

3This smearing does not occur if one examines ρ̄(∆, κ), from Eq. (2.4), since κ is defined in terms of

the local z fraction of the emission, which does not depend on earlier splittings at larger angles (while kt
does). However, instead the non-perturbative boundary gets smeared, as does the relation between a given

location on the plane and the invariant mass of the pair being declustered.
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b

a

∆
pt
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∆ =
√

(ya − yb)2 + (φa − φb)2 opening angle of the splitting

kt = pt∆

1See arXiv:1807.04758
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LundNet: graph NN in the Lund plane

Figure 1. The Lund plane representation of a jet (left) where each emission is positioned according

to its ∆ and kt coordinates, and the corresponding mapping to a binary Lund tree of tuples (right).

The thick blue line represents the primary sequence of tuples Lprimary.
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gular leaf corresponding to the phase space for further emissions. It was shown in recent

work that the Lund plane provides a useful basis to achieve an efficient description of the

clustering sequence of a jet, containing a rich set of information about its substructure,

with notable potential for jet tagging [33]. The Lund jet plane allows for a visual repre-

sentation of the clustering history of a jet. This systematic encoding of a jet’s radiation

patterns can be measured experimentally [34], allowing for comparisons between theoretical

predictions and experimental data [35] and with potential for constraining general purpose

Monte Carlo event generators [36].

The Lund plane is obtained by first reclustering a jet’s constituents with the Cam-
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pair of particles a and b closest in rapidity y, a measure of relativistic velocity along the

beam axis, and azimuthal angle φ around the same axis, i.e. minimising ∆2 = (ya− yb)2 +

(φa − φb)2. We then iterate over this clustering sequence, starting from the full jet and

proceeding by:
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Figure 3. (a) Illustration of the EdgeConv operation on a node of the Lund tree. (b) Architecture

of the EdgeConv block used in the LundNet model. (c) Architecture of the LundNet model.

the distribution of the number of Lund declusterings per jet for several choices of kt cut

in 2 TeV QCD jets simulated using Pythia 8.223 [40]. The mean of each distribution is

indicated as a dashed line. An additional benefit of a kt threshold is that even for small cut

values the number of nodes per jet is significantly reduced, and therefore correspondingly

so the computational cost of training a machine learning model on these inputs. The right-

hand side of figure 2 shows the average number of nodes per jet as a function of the kt cut,

which decreases quadratically as the cut is increased.

3 LundNet Models

The Lund plane encodes a rich set of information of the substructure and radiation patterns

of a jet, therefore serving as a natural input to machine learning models for jet physics. The

use of Lund planes for jet tagging was first proposed in Ref. [33] where log-likelihood and
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⇔ ⇔

At each splitting, compute a
tuple of kinematic features
T = (kt,∆, ...), used as node
features in the graph

EdgeConv operation as a fully
connected NN using features of
connected nodes

Stack EdgeConv layers to build
up the LundNet1

Ô State-of-the-art jet tagger with
small computational cost (fixed
graph via Lund decomposition)

LundNet models

Tuple of kinematic variables as input for each node
{

LundNet-5 : (ln :C , lnΔ, ln I, ln<,#)
LundNet-3 : (ln :C , lnΔ, ln I)
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[FD, Qu, JHEP 03 (2021) 052]

T ′ (8) =�3
:=0 h� (T (8) ,T (9: ) )
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1See arXiv:2012.08526
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Background estimation in HEP

General problem in HEP: estimate the expected number of background events in
signal-enriched region of the phase-space

E.g. searches for WIMPs by looking for an excess of event at high 6ET (Missing
Transverse Energy)

Ô Need to know expected number of Standard Model events in the signal region!

Example of arXiv:1712.02345, backgrounds estimated from simulation:

Example diagrams:
2
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Figure 1: Examples of Feynman diagrams of the main production mechanisms at the LHC
of DM particles in association with a quark or gluon in the fermion portal model providing
multijet (left) and monojet (middle, right) signatures.

mediator (X1) with a coupling strength parameter λ2. This new colored mediator also inter-
acts with the down-type quarks with a coupling strength parameter λ1. Baryon number is not
conserved in interactions of such mediators, and therefore the nonthermal DM model could
explain both the baryon abundance and the DM content of the universe. The DM particle mass
in this model must be nearly degenerate with the proton mass to ensure the stability of both
the proton and the DM particle. Thus, the latter can be singly produced at the LHC, as shown
in Fig. 2. This leads to a final state that includes large pT imbalance and an energetic jet, whose
pT distribution is a Jacobian peak at half the X1 mass.

X1

d0

d

nDM

ū

�1 �2

Figure 2: Example of Feynman diagram of the main production mechanism at the LHC of DM
particles in the nonthermal model resulting in the monojet final state. In this diagram, d and d

′

represent different down-type quark generations.

The ADD model of EDs offers an explanation of the large difference between the electroweak
unification scale and the Planck scale (MPl), at which gravity becomes as strong as the SM
interactions. In the simplest ADD model, a number (n) of EDs are introduced and are com-
pactified on an n-dimensional torus of common radius R. In this framework, the SM particles
and their interactions are confined to the ordinary 3+1 space-time dimensions, while gravity
is free to propagate through the entire multidimensional space. The strength of the gravita-
tional force in 3+1 dimensions is effectively diluted. The fundamental Planck scale MD of this
4+n-dimensional theory is related to the apparent four-dimensional Planck scale according to
MPl

2 ≈ MD
n+2Rn. The production of gravitons (G) is expected to be greatly enhanced by the

increased phase space available in the EDs. Once produced in proton-proton collisions, the
graviton escapes undetected into the EDs and its presence must be inferred from an overall pT
imbalance in the collision event, again leading to a monojet signature, as shown in Fig. 3.

For all models, the signal extraction is performed using the distribution of the pT imbalance
in each event category. In the context of simplified DM models, the results of the search are
reported in terms of excluded values of the masses of the mediator and of the DM particles.
In the context of the FP and nonthermal DM models, the results of the search are reported in
terms of excluded values of the mass of the mediator particle, and either the DM particle mass
or the strength of the coupling between the mediator and the DM or SM particles. The case of

Monojet event selection:

7

To select an event in the mono-V category, a leading AK8 jet is identified as a jet arising from
hadronic decays of Lorentz-boosted W or Z bosons. Such jets typically have an invariant mass,
computed from the momenta of jet’s constituents, between 65 and 105 GeV [73]. The mass of
the leading AK8 jet is computed after pruning based on the technique [74, 75] involving reclus-
tering the constituents of the jet using the Cambridge–Aachen algorithm [76] and removing the
soft and wide-angle contributions to jets in every recombination step. The pruning algorithm
is controlled by a soft threshold parameter zcut = 0.1 and an angular separation threshold of
∆R > mjet/pjet

T . This technique yields improved jet mass resolution owing to reduced effects
coming from the underlying event and pileup. The N-subjettiness variable τN [77] is also em-
ployed to further isolate jets arising from hadronic decays of W or Z bosons. This observable
measures the distribution of jet constituents relative to candidate subjet axes in order to quan-
tify how well the jet can be divided into N subjets. Therefore, the ratio of the ‘2-subjettiness’
to the ‘1-subjettiness’ (τ2/τ1) has excellent capability for distinguishing jets originating from
boosted vector bosons from jets originating from light quarks and gluons. The pruned jet mass
and N-subjettiness requirements, whose use if referred to as V tagging, result in a 70% effi-
ciency for tagging jets originating from V bosons and a 5% probability of misidentifying a jet
as a V jet. Events that do not qualify for the mono-V category are assigned to the monojet cate-
gory. The common selection requirements for both signal categories are summarized in Table 1,
while the category-specific selection requirements are reported in Table 2.

Table 1: Summary of the common selection requirements for mono-V and monojet categories.

Variable Selection Target background
Muon (electron) veto pT > 10 GeV, |η| < 2.4(2.5) Z(``)+jets, W(`ν)+jets
τ lepton veto pT > 18 GeV, |η| < 2.3 Z(``)+jets, W(`ν)+jets
Photon veto pT > 15 GeV, |η| < 2.5 γ+jets
Bottom jet veto CSVv2 < 0.8484, pT > 15 GeV, |η| < 2.4 Top quark
pmiss

T >250 GeV QCD, top quark, Z(``)+jets
∆φ(~p jet

T ,~pmiss
T ) >0.5 radians QCD

Leading AK4 jet pT and η >100 GeV and |η| < 2.4 All

Table 2: Summary of the selection requirements for the mono-V category. Events that fail the
mono-V selection are assigned to the monojet category.

Leading AK8 jet Mono-V selection
pT and η >250 GeV and |η| < 2.4
τ2/τ1 <0.6
Mass (mjet) 65 < mjet < 105 GeV

5 Background estimation
The largest background contributions, from Z(νν)+jets and W(`ν)+jets processes, are esti-
mated using data from five mutually exclusive control samples selected from dimuon, dielec-
tron, single-muon, single-electron, and γ+jets final states as explained below. The hadronic
recoil pT is used as a proxy for pmiss

T in these control samples, and is defined by excluding
identified leptons or photons from the pmiss

T calculation.

Searching for high 6ET:

16

6 Results and interpretation
The search is performed by extracting the signal through a combined fit of the signal and con-
trol regions. Figure 8 shows the comparison between data and the post-fit background pre-
dictions in the signal region in the monojet and mono-V categories, where the background
prediction is obtained from a combined fit performed in all control regions, excluding the sig-
nal region. Expected signal distributions for the 125 GeV Higgs boson decaying exclusively
to invisible particles, and a 2 TeV axial-vector mediator decaying to 1 GeV DM particles, are
overlaid. Data are found to be in agreement with the SM prediction.

E
ve

nt
s 

/ G
eV

2−10

1−10

1

10

210

310

410

510

610

 (13 TeV)-135.9 fb

CMS
monojet

Data

 inv.→H(125) 

 = 2.0 TeV
med

Axial-vector, m

)+jetsννZ(

)+jetsνW(l

WW/WZ/ZZ

Top quark

+jetsγ(ll), γZ/

QCD

D
at

a 
/ P

re
d.

0.8
0.9

1
1.1
1.2

 [GeV]miss
T

p
400 600 800 1000 1200 1400

U
nc

.
(D

at
a-

P
re

d.
)

2−
0

2

E
ve

nt
s 

/ G
eV

2−10

1−10

1

10

210

310

410

 (13 TeV)-135.9 fb

CMS
mono-V

Data

 inv.→H(125) 

 = 2.0 TeV
med

Axial-vector, m

)+jetsννZ(

)+jetsνW(l

WW/WZ/ZZ

Top quark

+jetsγ(ll), γZ/

QCD

D
at

a 
/ P

re
d.

0.8

1

1.2

 [GeV]miss
T

p
300 400 500 600 700 800 900 1000

U
nc

.
(D

at
a-

P
re

d.
)

2−
0

2

Figure 8: Observed pmiss
T distribution in the monojet (left) and mono-V (right) signal regions

compared with the post-fit background expectations for various SM processes. The last bin in-
cludes all events with pmiss

T > 1250 (750)GeV for the monojet (mono-V) category. The expected
background distributions are evaluated after performing a combined fit to the data in all the
control samples, not including the signal region. Expected signal distributions for the 125 GeV
Higgs boson decaying exclusively to invisible particles, and a 2 TeV axial-vector mediator de-
caying to 1 GeV DM particles, are overlaid. The description of the lower panels is the same as
in Fig. 5.

The expected yields in each bin of pmiss
T for all SM backgrounds, after the fit to the data in

the control regions, are given in Tables 4 and 5 for the monojet and mono-V signal regions,
respectively. The correlations between the predicted background yields across all the pmiss

T bins
in the two signal regions are shown in Figs. 20 and 21 in Section A. The expected yields together
with the correlations can be used with the simplified likelihood approach detailed in Ref. [92]
to reinterpret the results for models not studied in this paper.

Figure 9 shows a comparison between data and the post-fit background predictions in the
signal region in the monojet and mono-V categories, where the fit is performed under the
background-only hypothesis including signal region events in the likelihood. The limits on
the production cross section of the various models described below is set after comparing this
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ABCD method

Sometimes backgrounds cannot be estimated from simulation, e.g. cross-section of
processes with large number of hadronic jets is difficult to calculate

Need to use signal-free regions (control regions) to predict background in the signal
region

The ABCD method is one of the methods for this task

Let V1 and V2 be 2 independent
variables for the background
distribution

Signal region A: V1 > c1 and V2 > c2

Number of events in each region:
NA, NB , NC , ND

Background estimation in signal
region:

Nbkg
A =

NB

ND
NC

V2

V1

Background
Signal

AC

BD
c1

c2

Florian Eble Anaysis techniques in HEP 22/03/2023 10 / 26



Distance correlation (DisCo)

One requirement for the ABCD method is to have 2 independent variables

This can be checked using Distance Correlation (DisCo) [1] [2] [3]

Pearson correlation only evaluates
linear correlations:

ρ2
Pearson(X,Y ) =

Cov2(X,Y )

Cov(X,X)Cov(Y, Y )

Distance correlation (DisCo) defined
using the probability distributions of X and
Y , and their joint probability distribution

Ô Makes use of all information of the random
variables!

DisCo2(X,Y ) =
dCov2(X,Y )

dCov(X,X)dCov(Y, Y )

Pearson correlation coefficient

Distance correlation coefficient
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Distance correlation for ABCD method

If no two clear discriminative and independent variables can be found:

Can train one NN and use DisCo regularization to force its output to be independent of
a discriminative physics observable V
For a batch of examples X:

L(X) = LNN(X) + λ ·DisCo(NN(X), V(X)) (1)

Can train two NNs and use DisCo regularization to force them to be independent of
each other!
For a batch of examples X:

L(X) = LNN1(X) + LNN2(X) + λ ·DisCo(NN1(X), NN2(X)) (2)

Where LNN, LNN1, LNN2 are the NNs usual loss, e.g. for a supervised binary classifier,
binary cross-entropy.
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Figure 4. Scatter plots showing the relationship between the three random variables X0,

X1, X2 and the two Double DisCo neural networks fDD and gDD using only the background.

The distance correlation between the two plotted observables is indicated in the legend.

– 13 –

NN1

N
N

2

And then perform ABCD background
estimation in the (NN, V ) plane or
(NN1,NN2) plane

Ô ML provides a systematic way of
addressing this issue!

References:
arXiv:2001.05310
arXiv:2007.14400
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Background estimation - Learning transfer factors

Search for Lepton Flavour Violation by
measuring R(J/ψ) branching ratio

Define signal region requiring muon
identification (“ID”) and its isolation
(“ISO”)

R(J/ψ) =
B
(
B+
c → J/ψτ+

(
→ µ+ν̄µντ

)
ντ
)

B
(
B+
c → J/ψµ+νµ

)

6 7 8 9 10

)2 (GeV2q
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c0
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µ
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χ→cB cHΨJ/→cB

µch→cB µ(2S)Ψ→cB τ(2S)Ψ→cB
XµΨJ/→0B XµΨJ/→+B XµΨJ/→s

0B
XµΨJ/→b

0/-Σ XµΨJ/→b
0Λ XµΨJ/→b

0/-Ξ
Ψcomb J/ fakes nn stat. unc.

 (13 TeV)-1L = 59.7 fbCMS  Work in Progress

) = 1.00ΨR(J/
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)2 (GeV2q

0.5
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s/
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p

Bc → J/ψμνμ
Bc → J/ψτντ

Signals:

 background: 
MC based; normalisation 
data-driven 

J/ψμ dominant

negligible
 background: 

MC based; 
normalisation data-
driven

Bc

• Feeddowns: excited 
 states to  

• Other +charmed 
hadron, mostly 

cc̄ J/ψ
J/ψ

Bc → D(*)
s J/ψ Muon fakes 

Data-driven anti-
isolated  sidebandμ
J/Ψ + misidentified 
hadron

DiMuon 
Data-driven 
Pairs of unrelated muons 
with m(μμ) close to that 
of the J/Ψ

Signal :τ
Signal :μ

Signal Contributions and Background Sources

F.Riti R(J/ψ) Leptonic 10/02/2023 17 / 56

Main challenge:

estimate J/ψ + misidentified muon background!

Very hard to simulate!

Leptonic Channel

R(J/ψ) =
B(B+

c → J/ψτ+(→ µ+ν̄µντ )ντ )

B(B+
c → J/ψµ+νµ)

Num: B+
c → J/ψτ+ντ Den: B+

c → J/ψµ+νµ

• Similar final state (3µ + νs), → same reconstruction and

simultaneously fit

F.Riti R(J/ψ) Leptonic 10/02/2023 5 / 56

Leptonic Channel

R(J/ψ) =
B(B+

c → J/ψτ+(→ µ+ν̄µντ )ντ )

B(B+
c → J/ψµ+νµ)

Num: B+
c → J/ψτ+ντ Den: B+

c → J/ψµ+νµ

• Similar final state (3µ + νs), → same reconstruction and

simultaneously fit

F.Riti R(J/ψ) Leptonic 10/02/2023 5 / 56
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Background estimation - Learning transfer factor

Learn transfer factor T from signal-free control region
D to C for N physics variables Vi

T =
α− β · γ

1− γ
, α =

DataC

DataD
, β =

MCC

MCD
, γ =

MCD

DataD

Train 3 NNs to learn the mappings α, β, γ between the
N -dimensional distributions of the different “regions”

Apply T from signal-free region B to signal region A:

FakeA = T (DataB) ·DataB − T (MCB) ·MCB

In-situ Fakes µ Estimate

• Four regions are defined on µ3 features;

• The fakes bkg derivation is done in the !ID region:

softMvaIdµ3
= 0 (developed for Bmm BPH-21-006)

• Fail and pass regions are defined with a pile up corrected isolation

variable (∆βcorr isoµ3
< 0.2)

• After doing the measurement in the !ID region, the application is

done in the ID region.

ISO ! ISO

ID

! ID

A B

C D

SR

Fakes 
Measurement 

Region

F.Riti R(J/ψ) Leptonic 10/02/2023 19 / 56

T
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1 Introducing inductive bias

2 Background estimation in HEP

3 Training decorrelated models

4 Searching for new physics
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Training feature decorrelated classifier

Distance correlation regularization can also be used to train a classifier
decorrelated from a feature F

Particularly interesting when this feature F is then used in the next step of the analysis,
for instance fitted to extract signal

Ô Example: Mass decorrelated classifier for resonant search (bump hunt in a mass variable)

3

as

dCov2(X,Y ) = 〈|X −X ′||Y − Y ′|〉
+ 〈|X −X ′|〉〈|Y − Y ′|〉
− 2〈|X −X ′||Y − Y ′′|〉

(3)

where | · | refers to the Euclidean vector norm3 and
(X,Y ), (X ′, Y ′), (X ′′, Y ′′) are iid from the joint distri-
bution of (X,Y ) (X ′′ is not used in (3)). Using this al-
ternative form of dCov2 it is straightforward to compute
a sampling estimate of dCov2 from a dataset of (xi, yi).

4

Finally, we normalize the distance covariance by the
individual distance variances to obtain distance correla-
tion:

dCorr2(X,Y ) =
dCov2(X,Y )

dCov(X,X)dCov(Y, Y )
(4)

The distance correlation is bounded between 0 and 1.
Normalizing ensures equally strong decorrelation inde-
pendent of the overall scale.

We will add dCorr2 as a regularizer term to the usual
classifier loss function in the following.5 In detail:

L = Lclassifier(~y, ~ytrue) + λ dCorr2ytrue=0(~m, ~y) (5)

where λ is a single hyperparameter that controls the
tradeoff between classifier performance and decorrela-
tion, ~y is the output of the NN on a single minibatch, and
~ytrue and ~m are the true labels and masses respectively.6

The subscript ytrue = 0 indicates that the distance cor-
relation is only calculated for the subset of the minibatch
that is background; this is the appropriate mode for W -
tagging. Of course, for other applications it may be more
appropriate to apply the decorrelation to all events, or
even to signal events only.

Samples
As discussed in the Introduction, we will focus in this

paper on W tagging, for which there is a detailed study
of existing decorrelation methods by the ATLAS collabo-
ration [41]. (See the Appendix for a brief demonstration
of DisCo decorrelation for top tagging.) By recasting the
ATLAS study as closely as possible, we will be able to

3 In fact there is a family of distance covariance measures param-
eterized by 0 < α < 2 where one uses |X − X′|α instead of
|X − X′|. These relax the requirement of strict equivariance
under rescalings. In this paper we will focus on α = 1 but in
principle this would be another hyperparameter to explore.

4 In the following we will be reweighting by pT . So we actually
need a weighted form of distance correlation. That follows easily
from the sample definition (3).

5 In principle another hyperparameter is the exact power of dCorr
that one adds to the loss function. We have not explored this in
much detail.

6 Our implementation of DisCo is available at
https://github.com/gkasieczka/DisCo.
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FIG. 1: Invariant mass distribution for the inclusive W and
QCD samples.

validate our methods and rigorously demonstrate that
our method of distance correlation is state-of-the-art.

Following the ATLAS study, we generate the SM pro-
cesses pp → WW and pp → jj in Pythia 8.219 [51] at√
s = 13 TeV with a generator level cut of pT >250 GeV

on the initial particles. We use Delphes 3.4.1 with the
default detector card for detector simulation [52]. We
also use the built-in functionality of Delphes to simu-
late pileup with 〈NPU 〉 = 24 as per the ATLAS study
[41].

Jets are reconstructed using FastJet 3.0.1 [53] and
the anti-kT algorithm [54] with R = 1 distance parame-
ter. Jets are required to have |η| < 2 and to be within
∆R < 0.75 or the original parton. The daughters of
the W are also required to be within ∆R < 0.75 of the
original W . Finally jets are trimmed [55] with param-
eters Rsub = 0.2 and fcut = 5%. For the final sam-
ple, jets are required to have m ∈ [50, 300] GeV and
pT ∈ [300, 400] GeV; the mass distributions for signal
and background are shown in fig. 1. Apart from the very
last requirement on pT , these are all following the AT-
LAS study. Here we choose to focus on a more narrow
range in pT for simplicity.

From this sample of jets, we compute the complete
list of high-level kinematic variables shown in table 1 of
the ATLAS study, see [41] for more details and original
references. These form the inputs for all the methods in
the ATLAS study. We will also use them as inputs for
the DNN plus distance correlation.

Since we will also study the decorrelation of CNN clas-
sifiers (see below), we will also form jet images in the
same way as [56]. We form images with ∆η = ∆φ = 2
and 40 × 40 pixel resolution. For simplicity we stick to
grayscale images (with pixel intensity equal to pT ) for
this study. Fig. 2 shows the average of 100,000 W and
QCD jet images.

For all methods we reweight the training samples so
that the pT distributions of signal and background are
flat, following the ATLAS study. We use 50 evenly-
spaced pT bins between 300 and 400 GeV. For evaluation
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FIG. 3: Decorrelation against background rejection for differ-
ent approaches.
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FIG. 4: QCD mass distribution before and after a cut on
CNN plus DisCo (W -tagging) with signal efficiency of 50%
and JSD ∼ 10−3.

adds exactly one hyperparameter and no additional neu-
ral network parameters to the DNN, the adversary more
than doubles the number of hyperparameters and adds
an entire second NN to the story. See the Appendix for
a complete list of hyperparameters for the adversarial
training. These were found through manual tuning and
their sheer complexity nicely illustrates the need for a
simpler method of decorrelation.

We see that DisCo regularization is equally capa-
ble of decorrelating the more powerful CNN classi-
fier, and again achieves comparable performance to
CNN+adversary. One concern could have been that a
more powerful deep learning method such as the CNN
could overpower the DisCo regularizer, but our result

demonstrates that this is not the case. At the highest
levels of decorrelation, we note that both DNN and CNN
performances are comparable.

In fig. 4, we indicate more directly the level of decorre-
lation in the background mass distribution for the pure
CNN case (no decorrelation), and for the CNN+DisCo
method at a working point that achieves 1/JSD50 ∼ 103.
We see that DisCo is quite effective at stabilizing the
background mass distribution against a cut on the clas-
sifier.

Finally, let us also comment briefly on the performance
of planing. Unlike DisCo regularization and some of the
other methods studied here, planing yields a single work-
ing point, instead of a tunable tradeoff between decorre-
lation and classifier performance. Since its performance
depends on the joint probability distribution for mass
and the other observables,8 planing is not guaranteed to
achieve strong results. But it is interesting to see that
in this case (and in many of the cases studied in [63]),
planing the DNN and CNN classifiers achieves very good
performance. The performance lies on the DisCo regu-
larization curve, and DisCo is capable of further decor-
relation.

Conclusions
Deep learning is greatly increasing the classification per-
formance for a wide number of reconstruction problems
in particle physics. With the increasing adoption of these
powerful machine learning solutions, a thorough under-
standing of their stability is needed.

In this paper it was shown how a simple regularisation
term based on the distance correlation metric can achieve
state-of-the-art decorrelation power. Training is easier to
set-up, with far less hyperparameters to optimise, and is
more stable than adversarial networks, while simultane-
ously being more powerful than simpler approaches.

DisCo regularization is an effective and promising new
method for decorrelation which should have a host of
immediate experimental applications at the LHC. At the
same time, the potential use cases are much wider and
include problems of fairness and bias of decision algo-
rithms in social applications. This will be an extremely
interesting direction for future exploration.
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Training physics model decorrelated classifier (1)

What if the signal is unknown?
E.g. searching for resonance at
unknown mass

Can use parametric neural network
(pNN)

Train a NN on a mixture of signals with
an additional input feature: the true
value of the signal parameter p

For background examples:
If p not meaningful for background,
use random value, following signal
distribution

Else, e.g. p directly translates as a
physics observable A, use p = A

Ô pNNs achieve same performance on
hypothesis p0 as a single NN trained
only on signal hypothesis p0

Ô pNNs better interpolate between the
different signal hypotheses than a plain
NN trained on a mixture of signals

pNN used at ETH in search for long-lived
Heavy Neutral Leptons:

Motivation

Phase
space

Dataset

Strategy

Status

Signal

MC cor-
rections

Reconstruction

Preselection

Categorisation

Selection

Background

Method

Results

Summary

Backup

Analysis strategy

Search for long-lived HNLs, produced in B meson decays
I Restrict the search to HNLs decaying within the tracker volume (Lxy < 1m)

Inclusive B meson decays enhances the sensitivity

Perform a bump hunt in the HNL mass spectrum

At least one µ triggers a B-parking HLT line

Interpret the results against mixed-flavour coupling scenarios
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FIG. 7: Comparison of the signal-to-background discrimi-
nation for four classes of networks for a testing sample with
mX = 1000 GeV. A parameterized network trained on a set
of masses (mX = 500, 750, 1000, 1250, 1500) is compared to a
single network trained at mX = 1000 GeV. The performance
is equivalent. A second parameterized network is trained only
with samples at mx = 500, 750, 1250, 1500, forcing it to in-
terpolate the solution at mX = 1000 GeV. Lastly, a single
non-parameterized network trained with all the mass points
shows a reduced performance. The results are indistinguish-
able for cases where the networks use only low-level features
(shown) or low-level as well as high-level features (not shown,
but identical).

work is capable of generalizing the solution even in a
high-dimensional example.

Conversely, Fig 8 compares the performance of the
parameterized network to a single network trained at
mX = 1000 GeV when applied across the mass range
of interest, which is a common application case. This
demonstrates the loss of performance incurred by tradi-
tional approaches and recovered in this approach. Simi-
larly, we see that a single network trained an unlabeled
mixture of signal samples from all masses has reduced
performance at each mass value tested.

In previous work, we have shown that deep networks
such as these do not require the additional of high-level
features [21, 22] but are capable of learning the necessary
functions directly from the low-level four-vectors. Here
we extend that by repeating the study above without
the use of the high-level features; see Fig 7. Using only
the low-level features, the parameterized deep network
is achieves essentially indistinguishable performance for
this particular problem and training sets of this size.

DISCUSSION

We have presented a novel structure for neural net-
works that allows for a simplified and more powerful so-
lution to a common use case in high-energy physics and
demonstrated improved performance in a set of exam-
ples with increasing dimensionality for the input feature
space. While these example use a single parameter θ, the
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Parameterized NN (mass is a feature)
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FIG. 8: Comparison of the performance in the signal-
background discrimination for the parameterized network,
which learns the entire problem as a function of mass, and a
single network trained only at mX = 1000 GeV. As expected,
the AUC score decreases for the single network as the mass
deviates from the value in the training sample. The param-
eterized network shows improvement over this performance;
the trend of improving AUC versus mass reflects the increas-
ing separation between the signal and background samples
with mass, see Figs. 5 and 6. For comparison, also shown in
the performance a single network trained with an unlabeled
mixture of signal samples at all masses.

technique is easily applied to higher dimensional param-
eter spaces.

Parameterized networks can also provide optimized
performance as a function of nuisance parameters that
describe systematic uncertainties, where typical networks
are optimal only for a single specific value used during
training. This allows statistical procedures that make
use of profile likelihood ratio tests [23] to select the net-
work corresponding to the profiled values of the nuisance
parameters [13].

Datasets used in this paper containing millions of
simulated collisions can be found in the UCI Machine
Learning Repository [24] at archive.ics.uci.edu/ml/

datasets/HEPMASS.
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Training physics model decorrelated classifer (2)

What if the model parameters
to decorrelate against are not
directly related to a physics
observable?

E.g. varying anomalous
coupling of the Higgs boson

Ô impacts many observables in
a non-trivial way and signal
shape for template fit!

921 Page 4 of 16 Eur. Phys. J. C (2022) 82 :921

Fig. 1 Schematic view of the
adversarial deep neural network

quantifying the distance between two distributions. There-
fore one may minimize the objective function defined as the
average of the K–S test statistic computed between the clas-
sifier output shapes of signal events simulated under the SM
and each of the considered alternative hypotheses. The objec-
tive function defined in this way will be referred to as the aver-
age K–S test statistic in the following. If no residual model
dependence is left in the classifier outputs, the distributions
of signal events generated under different model assumptions
are expected to be compatible within the statistical accuracy.
By doing so, the best estimation of the hyperparameters out-
lining the ADNN can be found.

4 The H→W+W− case

In this section the application of the adversarial method to the
case of the H → W+W− STXS cross section measurement at
the LHC is shown, as a suitable case study where all the issues
connected with the model dependence are present. It can be
seen as a simplification of a possible SM analysis, performed
purely at particle-level on a simulated data sample from p-p
collisions at a centre of mass energy of 13 TeV, corresponding
to an integrated luminosity of 138 fb−1.

Algorithm 1 Two-step training of the ADNN.

Require: Parameter vector of the classifier at epoch k θ
(k)
C

Require: Parameter vector of the adversary at epoch k θ
(k)
A

Require: Learning rate of the classifier ηC

Require: Learning rate of the adversary ηA

for k epochs do
with θ

(k)
A fixed,

g(k)
C ← ∇θCL(C + A);

with θ
(k)
C fixed,

g(k)
A ← ∇θAL(A);

θ
(k+1)
C ← θ

(k)
C − ηCg(k)

C ;

θ
(k+1)
A ← θ

(k)
A − ηAg(k)

A ;

end for

The analysis targets events in which a Higgs boson is
produced via vector boson fusion (VBF) and subsequently
decays to a pair of opposite-sign W bosons, each decaying
in turn to an electron or muon and a neutrino.
The presence of neutrinos in the final state makes the full
kinematic reconstruction, and thus the measurement of the

123

Can use adversarial neural network

Train both a classifier C and an adversary A:
C classifies signal vs background
A takes the latent representation from the last
hidden layer of C and tries to find from which
process it comes:

L = LC − αLA
where LC/A is the categorical cross-entropy

α is an hyper-parameter

If the adversary A cannot figure out from which
process the event is, then the output of C is
model-independent!

[Eur. Phys. J. C 82, 921 (2022)]
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Searching for new physics with autoencoders

An autoencoder (AE) is composed
of:

an encoder NN f

a “symmetric” decoder NN g

The AE network is trained to
learn to reconstruct the input
examples it is given.

Loss for an example x:

L(x) = ||g(f(x))− x||

where ||·|| is a distance

Input features Reconstructed  features

Latent space
Encoded features

Encoder DecoderBottleneck

The aim of an AE for anomaly detection is to reconstruct with low error only
the examples it is trained on but not others!

Search for new physics in HEP with AE is based on learning SM physics and
flag new physics as anomalous!
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The problem of outlier reconstruction

Normalized AEs

12

▪ In parallel, we are exploring normalized AEs (NAEs) [5]

▪ Designed to suppress outlier reconstruction that can happen in standard AEs

▪ Architecturally identical to a standard AE, the novelty is in the definition of the loss function:

∇𝜃𝐿 = 𝔼𝑥∼𝑝 𝑥 ∇𝜃𝑙(𝑥) /𝑇 − 𝔼𝑥′∼𝑝𝜃 𝑥 ∇𝜃𝑙 𝑥
′ /𝑇

Standard reconstruction loss (positive energy)

Model-induced loss (negative energy) Full phase space

Training data support

Low reconstruction loss

Outlier 
reconstruction

▪ Sample from the low loss space via MCMC and apply penalty

▪ Upon convergence, outlier reconstruction should be 
suppressed

Autoencoding Under Normalization Constraints

Sangwoong Yoon 1 Yung-Kyun Noh 2 3 Frank C. Park 1 4

Abstract
Likelihood is a standard estimate for outlier de-
tection. The specific role of the normalization
constraint is to ensure that the out-of-distribution
(OOD) regime has a small likelihood when sam-
ples are learned using maximum likelihood. Be-
cause autoencoders do not possess such a pro-
cess of normalization, they often fail to recognize
outliers even when they are obviously OOD. We
propose the Normalized Autoencoder (NAE), a
normalized probabilistic model constructed from
an autoencoder. The probability density of NAE
is defined using the reconstruction error of an
autoencoder, which is differently defined in the
conventional energy-based model. In our model,
normalization is enforced by suppressing the re-
construction of negative samples, significantly im-
proving the outlier detection performance. Our
experimental results confirm the efficacy of NAE,
both in detecting outliers and in generating in-
distribution samples.

1. Introduction
An autoencoder (Rumelhart et al., 1986) is a neural network
trained to reconstruct samples from a training data distri-
bution. Since in principle the quality of reconstruction is
expected to be poor for inputs that deviate significantly from
the training data, autoencoders are widely used in outlier
detection (Japkowicz et al., 1995), in which an input with a
large reconstruction error is classified as out-of-distribution
(OOD). Autoencoders for outlier detection have been ap-
plied in domains ranging from video surveillance (Zhao
et al., 2017) to medical diagnosis (Lu & Xu, 2018).

However, autoencoders have been known to reconstruct
1Department of Mechanical Engineering, Seoul National

University, Seoul, Republic of Korea 2Department of Com-
puter Science, Hanyang University, Seoul, Republic of Korea
3Korea Institute of Advanced Studies, Seoul, Republic of Ko-
rea 4Saige Research, Seoul, Republic of Korea. Correspondence
to: Yung-Kyun Noh <nohyung@hanyang.ac.kr>, Frank C. Park
<fcp@snu.ac.kr>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1. Examples of reconstructed outliers. The last two rows
show the reconstructions from a conventional autoencoder (AE)
and NAE. Both autoencoders are trained on MNIST, and other
inputs are outliers. The architecture of the two autoencoders is
identical. Successful detection of an outlier is highlighted with blue
solid rectangles, while detection failures due to the reconstruction
of outliers are denoted with an orange dotted rectangle. Note that
AE is not the identity mapping, as it fails to reconstruct the shirt.

outliers consistently across a wide range of experimental
settings (Lyudchik, 2016; Tong et al., 2019; Zong et al.,
2018; Gong et al., 2019). We name this phenomenon outlier
reconstruction. Figure 1 shows examples of some outliers
reconstructed by an autoencoder trained with MNIST data;
the autoencoder is able to reconstruct a wide range of OOD
inputs, including constant black pixels, Omniglot charac-
ters, and fragments of MNIST digits. The early works on
regularized autoencoders (Vincent et al., 2008; Rifai et al.,
2011; Ng et al., 2011) focus for the most part on preventing
the autoencoder from turning into the identity mapping that
reconstructs every input. Nonetheless, outlier reconstruc-
tion can still occur even when the autoencoder is not the
identity as shown by the non-identity autoencoder in Figure
1. Not surprisingly, outlier reconstruction is a leading cause
of autoencoder’s detection failure.

On the other hand, in a normalized probabilistic model, it
is known that maximum likelihood learning suppresses the
assignment of probability mass in OOD regions in order to
keep the model normalized. Thus, the likelihood is widely
used as a predictor for outlier detection (Bishop, 1994).
Meanwhile, an autoencoder is not a probabilistic model
of the data and does not have a suppression mechanism
corresponding to the normalization in other probabilistic
models. As a result, the reconstruction of outliers are not
inhibited during training of an autoencoder.

This paper formulates an autoencoder as a normalized prob-
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Outlier reconstruction example: AE and NAE
trained on MNIST, other inputs are outliers.

Outlier reconstruction happens when the
network assigns low reconstruction error
to out-of-distribution (OOD) examples

OOD reconstruction not suppressed
during training in plain AE

Sometimes phrased as “OOD examples
need to be more ‘complex’ to not be
reconstructed”

Ô Normalized autoencoder1(NAE)
features a mechanism to suppress
OOD reconstruction!

1NAE first introduced in arXiv:2105.05735 and used in HEP in arXiv:2206.14225
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Working principle of the Normalized Autoencoder (NAE)

Ensure that low reconstruction error
phase-space matches that of training data

i.e. OOD examples are constrained to have high
reconstruction error

The model probability pθ is defined from the
reconstruction error Eθ via the Boltzmann
distribution:

pθ(x) =
1

Ωθ
exp (−Eθ(x))

Autoencoding Under Normalization Constraints

In the autoencoder-based outlier detection (Japkowicz et al.,
1995), an input is classified as OOD if its reconstruction
error lθ(x) is greater than a threshold τ : lθ(x) > τ . The
outlier reconstruction indicates that there exists an input x∗

with p(x∗) ≤ ρ, but lθ(x∗) < τ . Appendix includes the
detailed investigation on outlier reconstruction.

2.2. Energy-based Models

Unlike autoencoders, energy-based models (EBMs) are
valid models for a normalized probability distribution. The
EBM represents a probability distribution through the un-
normalized negative log probability, also called the energy
function Eθ(x). Here, θ denotes the model parameters.

For a continuous input x ∈ X ⊂ RDx , Eθ(x) defines the
model density function pθ(x) through Gibbs distribution:

pθ(x) =
1

Ωθ
exp(−Eθ(x)/T ), (4)

where T ∈ R+ is called the temperature and is often ignored
by setting T = 1. Ωθ is the normalization constant and is
defined as:

Ωθ =

∫
X

exp(−Eθ(x)/T )dx <∞. (5)

The computation of Ωθ is usually difficult for high-
dimensional x. However, maximum likelihood learning
can still be performed without the explicit evaluation of Ωθ.
The gradient of negative log likelihood of data is given as
follows (Younes, 1999):

Ex∼p(x)[−∇θ log pθ(x)]

=Ex∼p(x)[∇θEθ(x)]/T +∇θ log Ωθ (6)
=Ex∼p(x)[∇θEθ(x)]/T − Ex′∼pθ(x)[∇θEθ(x

′)]/T (7)

∇θ log Ωθ in Eq. (6) is evaluated from the energy gradients
of samples x′ generated from the model in Eq. (7). The
samples from pθ(x) are often called ”negative” samples.
The derivation of Eq. (7) is provided in Appendix.

In Eq. (7), the first term decreases the energy of the training
data, or “positive” samples, while the second term increases
the energy of the generated samples, or “negative” samples.
The training converges when pθ(x) becomes identical to
p(x), as the two gradient terms cancel out. In practice, the
two expectations in Eq. (7) are approximated with a mini-
batch of samples during each iteration. Figure 2 visualizes
the gradients in Eq. (7).

Langevin Monte Carlo (LMC) The negative samples are
generated using MCMC. LMC (Parisi (1981); Grenander
& Miller (1994)) is a simple yet effective MCMC method
used in recent work on deep EBMs (Du & Mordatch, 2019;
Grathwohl et al., 2020; Nijkamp et al., 2019). In LMC, a

Figure 2. An illustration of the energy gradients in Eq. (7). The
red and blue shades represent the model and the data density,
respectively. The gradient update following Eq. (7) increases the
energy of samples from pθ(x) (the red dots) and decreases the
energy of training data (the blue crosses).

starting point x0 is drawn from a noise distribution p0(x),
typically a Gaussian or uniform distribution. Starting from
x0, a Markov chain evolves as follows:

xt+1 = xt + λx∇x log pθ(xt) + σxεt, (8)

where εt ∼ N (0, I). λx and σx are the step size and
the noise parameters, respectively. A theoretically moti-
vated choice is 2λx = σ2

x, but the parameters are often
tweaked separately for better performance (Du & Mordatch,
2019; Grathwohl et al., 2020; Nijkamp et al., 2019). As
∇x log pθ(x) = −∇xE(x)/T , tweaking the step size can
be seen as adjusting the temperature T .

To ensure the convergence of the chain, either Metropolis-
Hastings rejection (Roberts et al., 1996) or annealing of
the noise parameter to zero (Welling & Teh, 2011) may be
employed, but often omitted in practice.

We discuss specific strategies to evaluate the second term in
Eq. (7) in Section 4. For a comprehensive review on various
strategies for training an EBM, readers may refer to Song &
Kingma (2021).

3. Normalized Autoencoders
3.1. Definition

We propose Normalized Autoencoder (NAE), a normal-
ized probabilistic model defined from an autoencoder. The
probability density of NAE pθ(x) is defined as a Gibbs
distribution (Eq. (4)) the energy of which is defined as the
reconstruction error of an autoencoder:

Eθ(x) = lθ(x). (9)

Thus, the model density of NAE is given as

pθ(x) =
1

Ωθ
exp(−lθ(x)/T ), (10)

where Ωθ is defined as in Eq. (5). Due to the normalization
constant, pθ(x) is a properly normalized probability density.

As a probabilistic model, NAE is trained to maximize the
likelihood of data. The loss function to be minimized is the

Ô Low energy examples have high
probability

The loss is designed to learn pθ = pdata:

Ex∼pdata [Lθ(x)] = Ex∼pdata [Eθ(x)]− Ex′∼pθ
[
Eθ(x′)

]
positive energy E+ negative energy E−

Positive energy is the reconstruction error of the training examples

Need to sample from the model to get the “negative samples” x′ and compute E−
Ô Monte Carlo Markov Chain (MCMC) employed
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NAE for semi-visible jet search

Semi-visible jets (SVJ) are new physics signatures
arising from theories where dark matter is made of
dark quarks and a dark QCD force, very similar its
SM counterpart

Dark quarks hadronize to form dark hadrons, a
fraction of which promptly decays to SM quarks
which hadronize in the SM sector

SVJs are jets made of visible SM hadrons with
different substructure than SM QCD jets

Currently developing NAE using substructure
variables and a fully connected NN

Loss function:

L = log (cosh (E+ − E−)) + λ+E
2
+

Ô First term to suppress OOD reconstruction

Ô Second term to learn training examples
reconstruction

SciPost Physics Submission
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Figure 1: Schematic illustration of a dark shower from the decay of a Z ′ produced in associ-
ation with a gluon. Figure taken from ref. [10].

that in this set-up all dark pions are stable on cosmological scales and therefore constitute a
potential DM candidate.

The interactions of the dark sector with the SM are mediated by the massive U(1)′ gauge
boson Z ′ with vector couplings to both dark and SM quarks, denoted ed and gq, respectively.
Couplings to leptons, as well as mixing between the Z ′ and SM gauge bosons, are assumed to
be suppressed. In analogy to γ-ρ0 mixing in the SM, the Z ′ mixes with the ρ0

d, which induces
small couplings between the ρ0

d and SM quarks and renders the ρ0
d unstable. For mρd

< 2mπd

the ρ±d mesons can only decay into three-body final states via an off-shell Z ′, which makes
them stable with respect to collider phenomenology. We assume that each mesonic degree of
freedom is produced with the same probability during the dark hadronisation process while
the production of dark baryons in the shower is negligible, and that the ρ0

d mesons decay
promptly.2 The invisible energy fraction in a dark shower is then given by rinv = 0.75, which
we will use as the benchmark value in the following. Furthermore, the relevant mass for
characterising the dark shower is the mass of the dark vector mesons: mmeson = mρd

.
We note in passing that the assumption mρd

< 2mπd
can be motivated from cosmology,

because the relic density of dark pions is determined by the rate of the annihilation process
πdπd → ρdρd, which becomes Boltzmann suppressed at low temperatures. Provided mπd

and mρd
are sufficiently close, the observed relic abundance can be reproduced even for weak

portal interactions and/or heavy Z ′ bosons, which makes it possible to satisfy constraints
from direct detection experiments. For example, for mπd

= 4 GeV and gd = 1 one requires
mρd

≈ 5 GeV, while the Z ′ mediator can be in the TeV range [10].
LHC phenomenology for this model is then dominated by the on-shell production of the Z ′

(possibly in association with SM particles) and its subsequent decays into either SM or dark
quarks. While the former case leads to di-jet resonances that can be easily reconstructed,

2We note that for small Z′ couplings the ρ0
d can be long-lived and lead to displaced vertices at the LHC. The

corresponding production cross sections can nevertheless be sufficiently large that thousands of such events have
already gone unnoticed at ATLAS and CMS. Ongoing detector upgrades as well as new analysis strategies make
these signatures a promising target for future LHC runs. Exploring the sensitivity of searches for displaced
vertices for dark sector models is subject of separate work in progress.

4

rinv = 1rinv = 0 0 < rinv < 1

�ET

�ET
q ⌘d

�ET ⇡ 0
SM hadrons
Stable dark hadrons
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Understanding NAE dynamics

Visualizing positive and negative samples:

Energy Mover’s Distance (EMD)

t-distributed Stochastic Neighbor Embedding
(t-SNE) plots

Ô Check suppression of OOD reco, e.g. “that the reco
loss is high outside the training manifold”

Ô Good anomaly detection: low reco error of training
examples (SM physics) AND suppression of OOD
(BSM physics) reco (low EMD, overlap in t-SNE plots)
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Decorrelated autoencoders to search for new physics

The idea is1:

to train 2 autoencoders, decorrelated from each other using DisCo regularization

such that the new physics enriched region is the high loss region of the AEs

to perform ABCD background estimation using the losses of the two AEs

New 
Physics

Standard 
Model

New 
Physics

Standard 
Model

AE2

AE1

Background
Signal

AC

BD
c1

c2

Autoencoder 1

Autoencoder 2

1arXiv:2111.06417
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Conclusions

ML provides tools to address several HEP problems:

Background estimation

Building decorrelated classifiers with respect to signal hypotheses or a physics observable

... not mentioning building classifiers for jet tagging, searches or precision
measurement!

Many exiting developments to search for new physics with unsupervised
learning!

Still ongoing developments to incorporate physics knowledge into new ML
models and improve interpretability
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Distance correlation (DisCo)

The Pearson correlation only evaluates
linear correlations:

ρ2
Pearson(X,Y ) =

Cov2(X,Y )

Cov(X,X)Cov(Y, Y )
(3)

The Distance correlation (DisCo) makes use
of all information of the random variables:

dCov2(X,Y ) =∫
dpsdqt

∣∣fX,Y (s, t)− fX(s)fY (t)
∣∣2 w(s, t)

where fX (resp. Y ) is the characteristic
function of X (resp. Y ), fX,Y is the joint
characteristic function of X and Y .
fX,Y == fXfY iff X and Y are independent.

DisCo2(X,Y ) =
dCov2(X,Y )

dCov(X,X)dCov(Y, Y )
(4)

Pearson correlation coefficient

Distance correlation coefficient
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Energy-based models

Energy-based models (EMBs)

EBMs are models where the probability is defined through the Boltzmann distribution

Let θ denote the model parameters

The model probability pθ is defined from the energy Eθ

pθ(x) =
1

Ωθ
exp (−Eθ(x)/T ) (5)

where the normalization constant Ωθ is

Ωθ =

∫
exp (−Eθ(x)/T ) dx (6)

The EBM loss for a training example x is the negative log-likelihood:

Lθ(x) = − log pθ(x) = Eθ(x)/T + log Ωθ (7)

The gradient of the EBM loss is thus:

∇θLθ(x) = ∇θEθ(x)− Ex′∼pθ
[
∇θEθ(x′)

]
(8)

The expectation value over the training dataset, with probability pdata is:

Ex∼pdata [∇θLθ(x)] = Ex∼pdata [∇θEθ(x)]− Ex′∼pθ
[
∇θEθ(x′)

]
(9)
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Working principle of the Normalized Autoencoder (NAE)

Loss
Ex∼pdata [Lθ(x)] = Ex∼pdata [Eθ(x)]− Ex′∼pθ

[
Eθ(x′)

]
= E+ − E−

positive energy negative energy

Positive energy

Simply the reconstruction error over the training dataset

Take SM jets and compute the reconstruction error!

Negative energy

Reconstruction error of the “negative samples” x′ from the probability distribution pθ

Need to sample from the model to get the “negative samples”

Ô Monte Carlo Markov Chain (MCMC) employed

MCMC

Start from an initial point x′0
Run n Langevin MCMC steps:

x′i+1 = x′i − λi∇xEθ(x′i) + σiε ε ∼ N (0, I) (10)

drift diffusion

Repeat with several points x
′(j)
0 , the negative samples are the x

′(j)
n
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Improvements compared to plain AE
Autoencoding Under Normalization Constraints

Table 1. MNIST hold-out class detection AUC scores. The values in parentheses denote the standard error of mean after 10 training runs.
HOLD-OUT: 0 1 2 3 4 5 6 7 8 9 AVG

NAE-OMI .989(.002) .919(.013) .992(.001) .949(.004) .949(.005) .978(.003) .938(.004) .975(.024) .929(.004) .934(.005) .955
NAE-CD .799 .098 .878 .769 .656 .806 .874 .537 .876 .500 .679
NAE-PCD .745 .114 .879 .754 .690 .813 .872 .509 .902 .544 .682
AE .819 .131 .843 .734 .661 .755 .844 .542 .902 .537 .677
DAE .769 .124 .872 .935 .884 .793 .865 .533 .910 .625 .731
VAE(R) .954 .391 .978 .910 .860 .939 .916 .774 .946 .721 .839
VAE(L) .967 .326 .976 .906 .798 .927 .928 .751 .935 .614 .813
WAE .817 .145 .975 .950 .751 .942 .853 .912 .907 .799 .805
GLOW .803 .014 .624 .625 .364 .561 .583 .326 .721 .426 .505
PXCNN++ .757 .030 .663 .663 .483 .642 .596 .307 .810 .497 .545
IGEBM .926 .401 .642 .644 .664 .752 .851 .572 .747 .522 .672
DAGMM .386 .304 .407 .435 .444 .429 .446 .349 .609 .420 .423

6.2. 2D Density Estimation

We demonstrate the density estimation capability of NAE
with a two-dimensional mixture of 8 Gaussians. First,
we benchmark negative sample generation strategies for
NAE, including CD, PCD with and without restart, and on-
manifold initialization. The results are shown in Figure 3
and discussed in Section 4.1 in detail.

Second, we compare NAE trained with the on-manifold ini-
tialization to a conventional autoencoder and VAE (Figure
5). An autoencoder assigns high densities on regions be-
tween Gaussian modes, meaning that an autoencoder gives
a small reconstruction error from a points from the region.
For the overcomplete case (Dz = 3 > Dx), an autoencoder
almost becomes the identity map, and its reconstruction
error is not an informative predictor for an outlier. VAE and
NAE learn a non-identity function under the overcomplete
setting, showing the effectiveness of their regularizers.

In the experiments, the identical network architecture is
used, and the temperature is optimized by gradient descent.
In on-manifold initialization, temperature values are shared
by the main MCMC and the latent chain. When perform-
ing MCMC in X , Metropolis-Hastings rejection is applied
to ensure the detailed balance but is not applied in the la-
tent chain. For visualization, the normalization constants
for an autoencoder and NAE are computed by numerically
integrating over the domain, [−4, 4]2.

6.3. Outlier Detection

Experimental Setting We empirically demonstrate the ef-
fectiveness of NAE as an outlier detector. In outlier detec-
tion tasks, an outlier detector is trained only using inlier
data and then asked to discriminate outliers from inliers
during test phase. Given an input, a detector is assumed to
produce a scalar decision function which indicates the out-
lierness of the input. We measure the detection performance
in AUC, i.e., the area under the receiver operating character-
istic curve. Following the protocol of Ren et al. (2019) and
Hendrycks et al. (2019), we use an OOD dataset different

from the datasets used in test phase to tune model hyper-
pamraeters. Additional details on model implementation
and datasets can be found in the supplementary material.

The identical networks architectures are used for all
autoencoder-based methods. The reconstruction error is
used as the decision function, except for VAE. For deep
generative models, PixelCNN++ (PXCNN++, Salimans
et al. (2017)), Glow (Kingma & Dhariwal, 2018) and a
feed-forward EBM (IGEBM, Du & Mordatch (2019)), we
use the negative log-likelihood (i.e., the energy) as the de-
cision function. For VAE, we show two results from using
the reconstruction error (R) or the negative log-likelihood
(L) as decision functions.

MNIST Hold-Out Class Detection One class from
MNIST is set as the outlier class and the rest as the inlier
class. Then, the procedure is repeated for all ten classes in
MNIST. ConstantGray dataset is used for model selection.

This problem is not as easy as it seems, as confirmed in
the very low performance of various algorithms in Table
1. When a class is held out from MNIST, the remaining
9 classes may contain a set of visual features sufficient to
reconstruct the hold-out class, i.e., the outlier reconstruction
occurs. The outlier reconstruction is particularly severe for
the digit 1, 4, 7 and 9, possibly because their shape can be
reconstructed from the recombination of other digits. For
example, overlapping 4 and 7 produces a shape similar to
9. Interestingly, most of the other baseline algorithms also
show poor performance when 1, 4, 7 or 9 are held out as the
outlier. NAE shows the highest AUC score for all classes
and effectively suppresses the reconstruction of the outlier
class (Figure 6).

We also compare CD and PCD along with OMI in training
NAEs. Using CD and PCD show poor outlier detection
performance, although given the identical set of MCMC
parameters.

Out-of-Distribution Detection The samples from differ-
ent datasets are used as the outlier class. We test two in-
lier datasets, CIFAR-10 or ImageNet 32×32 (ImageNet32).

Autoencoding Under Normalization Constraints

Table 1. MNIST hold-out class detection AUC scores. The values in parentheses denote the standard error of mean after 10 training runs.
HOLD-OUT: 0 1 2 3 4 5 6 7 8 9 AVG

NAE-OMI .989(.002) .919(.013) .992(.001) .949(.004) .949(.005) .978(.003) .938(.004) .975(.024) .929(.004) .934(.005) .955
NAE-CD .799 .098 .878 .769 .656 .806 .874 .537 .876 .500 .679
NAE-PCD .745 .114 .879 .754 .690 .813 .872 .509 .902 .544 .682
AE .819 .131 .843 .734 .661 .755 .844 .542 .902 .537 .677
DAE .769 .124 .872 .935 .884 .793 .865 .533 .910 .625 .731
VAE(R) .954 .391 .978 .910 .860 .939 .916 .774 .946 .721 .839
VAE(L) .967 .326 .976 .906 .798 .927 .928 .751 .935 .614 .813
WAE .817 .145 .975 .950 .751 .942 .853 .912 .907 .799 .805
GLOW .803 .014 .624 .625 .364 .561 .583 .326 .721 .426 .505
PXCNN++ .757 .030 .663 .663 .483 .642 .596 .307 .810 .497 .545
IGEBM .926 .401 .642 .644 .664 .752 .851 .572 .747 .522 .672
DAGMM .386 .304 .407 .435 .444 .429 .446 .349 .609 .420 .423

6.2. 2D Density Estimation

We demonstrate the density estimation capability of NAE
with a two-dimensional mixture of 8 Gaussians. First,
we benchmark negative sample generation strategies for
NAE, including CD, PCD with and without restart, and on-
manifold initialization. The results are shown in Figure 3
and discussed in Section 4.1 in detail.

Second, we compare NAE trained with the on-manifold ini-
tialization to a conventional autoencoder and VAE (Figure
5). An autoencoder assigns high densities on regions be-
tween Gaussian modes, meaning that an autoencoder gives
a small reconstruction error from a points from the region.
For the overcomplete case (Dz = 3 > Dx), an autoencoder
almost becomes the identity map, and its reconstruction
error is not an informative predictor for an outlier. VAE and
NAE learn a non-identity function under the overcomplete
setting, showing the effectiveness of their regularizers.

In the experiments, the identical network architecture is
used, and the temperature is optimized by gradient descent.
In on-manifold initialization, temperature values are shared
by the main MCMC and the latent chain. When perform-
ing MCMC in X , Metropolis-Hastings rejection is applied
to ensure the detailed balance but is not applied in the la-
tent chain. For visualization, the normalization constants
for an autoencoder and NAE are computed by numerically
integrating over the domain, [−4, 4]2.

6.3. Outlier Detection

Experimental Setting We empirically demonstrate the ef-
fectiveness of NAE as an outlier detector. In outlier detec-
tion tasks, an outlier detector is trained only using inlier
data and then asked to discriminate outliers from inliers
during test phase. Given an input, a detector is assumed to
produce a scalar decision function which indicates the out-
lierness of the input. We measure the detection performance
in AUC, i.e., the area under the receiver operating character-
istic curve. Following the protocol of Ren et al. (2019) and
Hendrycks et al. (2019), we use an OOD dataset different

from the datasets used in test phase to tune model hyper-
pamraeters. Additional details on model implementation
and datasets can be found in the supplementary material.

The identical networks architectures are used for all
autoencoder-based methods. The reconstruction error is
used as the decision function, except for VAE. For deep
generative models, PixelCNN++ (PXCNN++, Salimans
et al. (2017)), Glow (Kingma & Dhariwal, 2018) and a
feed-forward EBM (IGEBM, Du & Mordatch (2019)), we
use the negative log-likelihood (i.e., the energy) as the de-
cision function. For VAE, we show two results from using
the reconstruction error (R) or the negative log-likelihood
(L) as decision functions.

MNIST Hold-Out Class Detection One class from
MNIST is set as the outlier class and the rest as the inlier
class. Then, the procedure is repeated for all ten classes in
MNIST. ConstantGray dataset is used for model selection.

This problem is not as easy as it seems, as confirmed in
the very low performance of various algorithms in Table
1. When a class is held out from MNIST, the remaining
9 classes may contain a set of visual features sufficient to
reconstruct the hold-out class, i.e., the outlier reconstruction
occurs. The outlier reconstruction is particularly severe for
the digit 1, 4, 7 and 9, possibly because their shape can be
reconstructed from the recombination of other digits. For
example, overlapping 4 and 7 produces a shape similar to
9. Interestingly, most of the other baseline algorithms also
show poor performance when 1, 4, 7 or 9 are held out as the
outlier. NAE shows the highest AUC score for all classes
and effectively suppresses the reconstruction of the outlier
class (Figure 6).

We also compare CD and PCD along with OMI in training
NAEs. Using CD and PCD show poor outlier detection
performance, although given the identical set of MCMC
parameters.

Out-of-Distribution Detection The samples from differ-
ent datasets are used as the outlier class. We test two in-
lier datasets, CIFAR-10 or ImageNet 32×32 (ImageNet32).
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B (εS = 0.2) AUC AUC

top (AE) 0.875 68 0.89 0.87
top (NAE) 0.91 80
QCD (AE) 0.579 12 – 0.75
QCD (NAE) 0.89 350

Figure 4: ROC curve for top (orange) and QCD (blue) tagging after AE pre-training
(dashed), and after NAE training (solid). In the table we compare the performance
of the NAE, and the pre-trained AE used here, to two studies in the literature.

corresponding top tagging.
Altogether, we see in the right panels of Fig. 4 that the NAE combines competitive perfor-

mance with symmetric tagging top and QCD tagging. In the easier direction of top tagging
it beats the AE and DVAE benchmarks in spite of the non-optimized setup, and in the reverse
direction of QCD tagging it provides competitive results for the first time.

4 QCD vs dark jets

After testing NAE on this benchmark process, we can move to a more difficult task, namely
tagging two distinct kinds of dark jets with the same network. The signal datasets are the same
as in Ref. [15].

To first illustrate the pT -reweighting we select the most poorly reconstructed 1000 QCD
images, according to their MSE or energy. In Fig. 5 we show the average of these images to
the left, the average reconstruction in the second column, and the pixel-wise energy between
the two in the third row. Reducing the remapping defined in Eq.(14) from n= 0.5 to n= 0.01
washes out the pT -structures, so the input and especially the reconstructed images change
from more structured jets to a simple, single-prong structure. For our two signal hypotheses
this means that for large n the poorly reconstructed QCD images resemble the Heidelberg
signal, leading to a more efficient signal extraction, while for small n the poorly reconstructed
jet images resemble the Aachen dataset.

This difference in the jet reconstruction for different models can be explained by looking at
the sampled distributions during training. The NAE-sampled average of the negative-energy
jets in the last iteration is shown in the two right column of Fig. 5. At n = 0.5 the NAE
sampling discards all secondary clusters and focuses on the main feature of the QCD jets, the
single prong. During training, the loss function enhances the main feature by increasing the
energy of everything around it in the latent and phase spaces. As a consequence, the initial
background is lost after some epochs, but to keep the normalization of each jet the central
prong is enhanced. As a result, the tagging of two-prongs structure like the Heidelberg jets

12

AUC score for top tagging (2 first
rows) and QCD tagging (2 last
rows) for AE and NAE. The AE is
a pre-training phase of the NAE.

Autoencoding Under Normalization Constraints

Table 2. OOD detection performance in AUC.
In: CIFAR-10 ConstantGray FMNIST SVHN CelebA Noise

NAE .963 .819 .920 .887 1.0
AE .006 .650 .175 .655 1.0

DAE .001 .671 .175 .669 1.0
VAE(R) .002 .700 .191 .662 1.0
VAE(L) .002 .767 .185 .684 1.0

WAE .000 .649 .168 .652 1.0
GLOW .384 .222 .260 .419 1.0

PXCNN++ .000 .013 .074 .639 1.0
IGEBM .192 .216 .371 .477 1.0

In: ImageNet32 ConstantGray FMNIST SVHN CelebA Noise

NAE .966 .994 .985 .949 1.0
AE .005 .915 .102 .325 1.0

DAE .069 .991 .102 .426 1.0
VAE(R) .030 .936 .132 .501 1.0
VAE(L) .028 .950 .132 .545 1.0

WAE .069 .991 .081 .364 1.0
GLOW .413 .856 .169 .479 1.0

PXCNN++ .000 .004 .027 .238 1.0

Figure 6. Reconstruction examples in MNIST hold-out class de-
tection. Data and their reconstructions are shown for four difficult
hold-out settings (1, 4, 7 and 9). Digit 2 is shown as an inlier
example. The bottom two rows depict the reconstructions from
four autoencoders (AE) and four NAEs trained on each setting.
AEs reconstruct the outlier class well, while NAEs selectively
reconstruct only inliers.

Zero-padded 32×32 MNIST images are used for model
selection. Results are shown in Table 2.

It is known that constant images and SVHN images are
particularly difficult outliers for generative models trained
on a set of images with rich visual features (Nalisnick et al.,
2019; Serrà et al., 2020). However, NAE detect such difficult
outliers successfully. All models are able to discriminate
noise outliers, indicating that their poor performance is not
from the failure of training.

6.4. Sample Generation

Samples are generated from NAE using MCMC with OMI.
Figure 7 shows the samples from NAEs trained on MNIST
and on CelebA 64×64. The random initial states of the
latent chain (z0) map to unrecognizable images. After
the latent chain, OMI produces somewhat realistic images.
MCMC on X refines the OMI images. Although quantita-
tive image (in Appendix) quality metric for samples gener-
ated from NAE is not on a par with that of generative models

Figure 7. Sampling with NAEs trained on MNIST and CelebA
64×64. (z0) The random initialization of the latent chain. We
visualize fd(z0). (OMI) Images after OMI. (Samples) Samples
obtained after MCMC starting from OMI. OMI images and Sam-
ples corresponds to the red start and the green cross in Figure 4,
respectively.

which specialize in sampling, but the generated samples are
indeed visually sensible.

7. Discussion and Conclusion
Comparison to Other EBMs NAE uses Gibbs distribu-
tion to define a density function as in other EBMs (Eq. 4).
The main difference between NAE and other EBMs is the
choice of an energy function. However, this difference re-
sults in significant theoretical and practical consequences.
First, we naturally incorporate the manifold hypothesis, i.e.
the assumption that high-dimensional data lie on a low-
dimensional manifold, into a model. Second, the energy
function of NAE can be pre-trained as a conventional au-
toencoder. Third, more effective sampling can be performed
by using OMI, leading to a more accurate density estimate.

Likelihood-based Outlier Detection and Inductive Bias
The likelihood is considered as a poor decision function for
outlier detection, after the failures of likelihood-based deep
generative models such as VAE, PixelCNN++, and Glow
(Nalisnick et al., 2019; Hendrycks et al., 2019). Those gen-
erative models fail to detect obvious outlier images which
typically have low complexity. However, we believe that the
failures should not be attributed to the use of the likelihood.
There are likelihood-based models, particularly EBMs (Du
& Mordatch, 2019; Grathwohl et al., 2020), including NAE,
that show better outlier detection performance than VAE,
PixelCNN++ and Glow. Instead, inductive bias of a gen-
erative model is likely to be responsible for the failure of
detecting low-complexity outliers. It is reported that the
likelihoods of the failed models are negatively correlated to
the complexity of images (Serrà et al., 2020). Meanwhile,

Reconstruction examples in MNIST hold-out class de-
tection for AE (middle row) and NAE (bottom row).
Each pair of column is a different training for a dif-
ferent hold-out class.

The NAE brings huge improvement compared to the plain AE on image classification
task

NAE achieves symmetric tagging, not only tagging of more complex objects!

State-of-the-art anomaly detection on images

Florian Eble Anaysis techniques in HEP 22/03/2023 5 / 5


	Introducing inductive bias
	Background estimation in HEP
	Training decorrelated models
	Searching for new physics
	Appendix

