Electromagnetic Shower Corrections in CMS

X. Chang, G. Dissertori, M. Donegá, <u>M. Galli</u>, P. Musella, S. Pigazzini, T. Reitenspiess <u>22 March 2023</u>

Simulation of Electromagnetic Variables

- Monte Carlo (MC) used in all the analyses with CMS data
- When it comes to analyses that use photons (e.g. H → γγ), the description of the electromagnetic shower in the ECAL is crucial:

Shower shape variables: describe the shape of the EM shower cluster in the calorimeter

Isolation variables: characterize the activity around the object of interest

Simulation of Electromagnetic Variables

• Monte Carlo (MC) used in all the analyses with CMS data

CMS

ETH zürich

• When it comes to analyses that use **photons** (e.g. $H \rightarrow \gamma \gamma$), the description of the **electromagnetic shower** in the ECAL is crucial:

Simulation of Electromagnetic Variables

- Monte Carlo (MC) used in all the analyses with CMS data
- When it comes to analyses that use **photons** (e.g. $H \rightarrow \gamma \gamma$), the description of the **electromagnetic shower** in the ECAL is crucial:

Developed a procedure called Chained Quantile Regression (**CQR**) to match MC with data (and hence decrease systematic uncertainties)

Quantile Morphing

Quantile Morphing

Quantile Regression

- Cumulative Distribution Function (**CDF**) of both data and MC depend on kinematic quantities $X = [p_t, \eta, \phi, \rho]$ which describe the physics of the shower
- Train regressors to predict the conditional shape of CDFs using 21 quantiles
- To correct a certain variable y_i^{MC} :
 - Find two quantiles around y_i^{MC} for data and MC
 - Use linear interpolation between the two points to obtain $cdf^{data}(y_i | X_i)$ and $cdf^{MC}(y_i | X_i)$
 - Compute $y_i^{MC,corr}$ by solving $y_i^{MC,corr} = cdf_{data}^{-1}(cdf^{MC}(y_i^{MC} | X_i))$

Quantile Regression

- Cumulative Distribution Function (**CDF**) of both data and MC depend on kinematic quantities $X = [p_t, \eta, \phi, \rho]$ which describe the physics of the shower
- Train regressors to predict the conditional shape of CDFs using 21 quantiles
- To correct a certain variable y_i^{MC} :
 - Find two quantiles around y_i^{MC} for data and MC
 - Use linear interpolation between the two points to obtain $cdf^{data}(y_i | X_i)$ and $cdf^{MC}(y_i | X_i)$
 - Compute $y_i^{MC,corr}$ by solving $y_i^{MC,corr} = cdf_{data}^{-1}(cdf^{MC}(y_i^{MC} | X_i))$

But this is not enough because the variables are correlated...

- In order to catch correlations between the variables we are correcting we need to chain them:
 - Data: for target variable y_i input variables are $X = [p_t, \eta, \phi, \rho, y_1, ..., y_{i-1}]$
 - MC: for target variable y_i input variables are $X = [p_t, \eta, \phi, \rho, y_1^{corr}, \dots, y_{i-1}^{corr}]$

 y_1

1. Train regressors to learn conditional CDF of MC and data for variable 1 using $X = [p_t, \eta, \phi, \rho]$ as input

 y_i

2. Apply

quantile

morphing

3. Repeat the procedure for variable *i* using $X = [p_t, \eta, \phi, \rho, y_1, ..., y_{i-1}]$ (data) $X = [p_t, \eta, \phi, \rho, y_1^{corr}, ..., y_{i-1}^{corr}]$ (MC) as input

 y_i

1. Train regressors to learn conditional CDF of MC and data for variable 1 using $X = [p_t, \eta, \phi, \rho]$ as input

What are these regressors?

In its first implementation (still used in most $H \rightarrow \gamma \gamma$ analyses) **one BDT per quantile** was trained:

Computationally expensive and time consuming!

What are these regressors?

In its first implementation (still used in most $H \rightarrow \gamma \gamma$ analyses) **one BDT per quantile** was trained:

In a second iteration of the work the 21 BDTs of each variable were replaced by a single **quantile regression neural network**:

Corrected Distributions

CMS ETH zürich

Profiles

CMS Work in Progress

CMS Work in Progress

Profiles

CMS Work in Progress

1.0

0.8

0.0 0.0

0.4

0.2

 $\sim \sim$

-2

 $^{-1}$

-3

probePhi

data

CMS

Correlations

Difference of correlation matrices between data and MC before (left) and after (right) corrections:

CMS

Correlations

Difference of correlation matrices between data and MC before (left) and after (right) corrections:

Systematic Uncertainties

- Correction scheme accounts for all uncertainties and correlations → the only uncertainty comes from finite size of training sample
- Split the training sample in two and derive $\pm 1\sigma$ from the RMS of the $PhoID_1 PhoID_2$ distribution

CMS

ETHzürich

20

Future Prospects: Normalizing Flows

Also in its NN implementation, the CQR requires to train models and regressors one after the other to **take correlations into consideration**

Takes a long time and the corrected distributions need to be checked at every step

Normalizing flows allow to model high dimensional conditional distributions (see D. Valsecchi's talk)

Benefit: chain is removed, making the training simpler and faster

Future Prospects: Normalizing Flows

Also in its NN implementation, the CQR requires to train models and regressors one after the other to **take correlations into consideration**

Takes a long time and the corrected distributions need to be checked at every step

Normalizing flows allow to model high dimensional conditional distributions (see <u>D. Valsecchi's talk</u>)

Benefit: chain is removed, making the training simpler and faster

From Flow4Flow paper

As showed in <u>arXiv:2211.02487</u> it is possible to train a system of three normalizing flows able to map two multidimensional conditional distributions into one another...

But does this procedure reach the level of precision that we require?

Future Prospects: Normalizing Flows

Thank you for your attention!

Backup

Correction Approach

- Developed procedure called **Chained Quantile Regression** (**CQR**) to match data with MC (and hence decrease systematic uncertainties)
- Corrections are derived using Tag & Probe method on $Z \rightarrow e^+e^-$ events, with the reconstruction of the probe leg as a photon
- PhotonID score is re-evaluated with corrected variables

