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Simulation of Electromagnetic Variables
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• Monte Carlo (MC) used in all the analyses with CMS data


• When it comes to analyses that use photons (e.g. ), the description of the electromagnetic 
shower in the ECAL is crucial:  

H → γγ

Shower shape variables: describe the 
shape of the EM shower cluster in the 
calorimeter 

Isolation variables: characterize the 
activity around the object of interest
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• Monte Carlo (MC) used in all the analyses with CMS data


• When it comes to analyses that use photons (e.g. ), the description of the electromagnetic 
shower in the ECAL is crucial:  

H → γγ

Detector aging makes 
it difficult to correctly 
simulate the shower 
development

Data - MC mismatch in shower 
shapes and isolation variables 

ID MVA

Disagreement propagated to 
photon identification…

… which ultimately 
results in higher 
systematic 
uncertainties
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• Monte Carlo (MC) used in all the analyses with CMS data


• When it comes to analyses that use photons (e.g. ), the description of the electromagnetic 
shower in the ECAL is crucial:  

H → γγ

Developed a procedure called Chained 
Quantile Regression (CQR) to match MC 

with data (and hence decrease 
systematic uncertainties)



Quantile Morphing
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1. Integrate 2. Match quantiles

3. Transform



Quantile Morphing
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1. Integrate 2. Match quantiles

3. Transform

But we don’t know the CDFs…



Quantile Regression
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• Cumulative Distribution Function (CDF) of both data and MC 
depend on kinematic quantities  - which 
describe the physics of the shower


• Train regressors to predict the conditional shape of CDFs using 21 
quantiles


• To correct a certain variable :


• Find two quantiles around  for data and MC


• Use linear interpolation between the two points to obtain 
 and 


• Compute  by solving 

X = [pt, η, ϕ, ρ]

yMC
i

yMC
i

cdf data(yi |Xi) cdfMC(yi |Xi)

yMC,corr
i

yMC,corr
i = cdf −1

data(cdfMC(yMC
i |Xi))
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• Cumulative Distribution Function (CDF) of both data and MC 
depend on kinematic quantities  - which 
describe the physics of the shower


• Train regressors to predict the conditional shape of CDFs using 21 
quantiles


• To correct a certain variable :


• Find two quantiles around  for data and MC


• Use linear interpolation between the two points to obtain 
 and 


• Compute  by solving 

X = [pt, η, ϕ, ρ]

yMC
i

yMC
i

cdf data(yi |Xi) cdfMC(yi |Xi)

yMC,corr
i

yMC,corr
i = cdf −1

data(cdfMC(yMC
i |Xi))

But this is not enough because 
the variables are correlated… 



Chained Quantile Regression
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• In order to catch correlations between the variables we are correcting we need to chain them:


• Data: for target variable  input variables are 


• MC: for target variable  input variables are 

yi X = [pt, η, ϕ, ρ, y1, …, yi−1]

yi X = [pt, η, ϕ, ρ, ycorr
1 , …, ycorr

i−1 ]

~X = (pT, ¥, ¡, Ω)

~X y1 y2

~X y1

..
.

~X y1 yn°1. . .

y3

y2

y1

..
.

yn

Input variables TargetDATA
~X = (pT, ¥, ¡, Ω)

~X ycorr
1 ycorr

2

~X ycorr
1

..
.

~X ycorr
1 ycorr

n°1
. . .

y3

y2

y1

..
.

yn

Input variables TargetSIM



Chained Quantile Regression
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y1

yi

1. Train regressors to learn 
conditional CDF of MC and 
data for variable 1 using 

 as inputX = [pt, η, ϕ, ρ]
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y1

yi

1. Train regressors to learn 
conditional CDF of MC and 
data for variable 1 using 

 as inputX = [pt, η, ϕ, ρ]

 

2. Apply 
quantile 
morphing
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y1

yi

1. Train regressors to learn 
conditional CDF of MC and 
data for variable 1 using 

 as inputX = [pt, η, ϕ, ρ]

 

2. Apply 
quantile 
morphing

3. Repeat the procedure for 
variable  using 

 
(data)

 
(MC) as input

i
X = [pt, η, ϕ, ρ, y1, …, yi−1]

X = [pt, η, ϕ, ρ, ycorr
1 , …, ycorr

i−1 ]



What are these regressors?
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In its first implementation (still used in most  
analyses) one BDT per quantile was trained:

H → γγ

21 BDTs 


x 9 variables 


x 2 samples 


x 2 detector parts


+ (…)


= many BDTs!

Computationally 
expensive and time 
consuming!
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In its first implementation (still used in most  
analyses) one BDT per quantile was trained:

H → γγ In a second iteration of the work the 21 BDTs of each 
variable were replaced by a single quantile 
regression neural network:

21 BDTs 


x 9 variables 


x 2 samples 


x 2 detector parts


+ (…)


= many BDTs!

Computationally 
expensive and time 
consuming!



Corrected Distributions
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ID MVA
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Ratio closer to 1 = 
better agreement
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Correlations
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Difference of correlation matrices between data and MC before (left) and after (right) corrections:



Correlations
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Difference of correlation matrices between data and MC before (left) and after (right) corrections:

Correlations in MC are more 
similar to the ones in data 
after applying corrections



Systematic Uncertainties
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• Correction scheme accounts for all uncertainties and correlations  
the only uncertainty comes from finite size of training sample


• Split the training sample in two and derive  from the RMS of the 
 distribution 

→

±1σ
PhoID1 − PhoID2
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Future Prospects: Normalizing Flows
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Also in its NN implementation, the CQR 
requires to train models and regressors 
one after the other to take correlations 
into consideration


Takes a long time and the corrected 
distributions need to be checked at every 
step

Normalizing flows allow to model high 
dimensional conditional distributions (see 
D. Valsecchi’s talk)


Benefit: chain is removed, making the 
training simpler and faster

https://indico.phys.ethz.ch/event/37/timetable/?view=standard#34-machine-learning-for-phenom
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Also in its NN implementation, the CQR 
requires to train models and regressors 
one after the other to take correlations 
into consideration


Takes a long time and the corrected 
distributions need to be checked at every 
step

Normalizing flows allow to model high 
dimensional conditional distributions (see 
D. Valsecchi’s talk)


Benefit: chain is removed, making the 
training simpler and faster

From Flow4Flow paper

DataMC MC Data

As showed in arXiv:2211.02487 it is possible to train 
a system of three normalizing flows able to map two 
multidimensional conditional distributions into one 
another…

But does this procedure reach the level of precision 
that we require?

https://indico.phys.ethz.ch/event/37/timetable/?view=standard#34-machine-learning-for-phenom
https://arxiv.org/pdf/2211.02487.pdf
https://arxiv.org/abs/2211.02487
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From Flow4Flow paper

DataMC MC Data

As showed in arXiv:2211.02487 it is possible to train 
a system of three normalizing flows able to map two 
multidimensional conditional distributions into one 
another…

But does this procedure reach the level of precision 
that we require?

If you find this idea 
interesting and you want to 
work on it, we are offering 
this as a semester project - 

Contact us!

https://arxiv.org/pdf/2211.02487.pdf
https://arxiv.org/abs/2211.02487


Thank you for your attention!



Backup



Correction Approach
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• Developed procedure called Chained Quantile Regression (CQR) to match data with MC (and hence 
decrease systematic uncertainties)


• Corrections are derived using Tag & Probe method on  events, with the reconstruction of 
the probe leg as a photon


• PhotonID score is re-evaluated with corrected variables

Z → e+e−


