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Data quality monitornig in CMS

▪ CMS is a complex machine made of 
hundreds of systems working in unison to 
record collision events → things can (and 
do) go wrong

▪ Data quality monitoring (DQM) is the set 
of procedures by which we try to ensure 
our datasets are as free of issues as 
possible and thus can be used to make 
measurements

▪ This happens at many levels:

• During data taking

• After events are reconstructed

• When calibrations are updated

ML FOR DATA QUALITY MONITORING

As an example: a noise-dominated channel in 
the hadronic calorimeter leads to anomalies in 
the distribution of missing transverse energy 
(MET) related quantities
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LHC data taking in a nutshell

▪ The LHC produces collisions with a rate of 40 MHz

▪ A two-stage trigger filters out uninteresting* events, reducing the rate to ~1 kHz

▪ Data is monitored “online” in chunks of ~23 s (LSs) and “offline” after reconstruction

ML FOR DATA QUALITY MONITORING

Electron pT GeV

40 MHz collisions Trigger Online DQM
Reconstruction 

and offline DQM

*hopefully, see Thea’s talk
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The technology

▪ Anomalies in the operation of the detector are unpredictable by definition

▪ Unsupervised/semi-supervised methods are the name of the game:

• Learn “normal” behavior of the detector

• Flag deviations from known behavior to alert experts

ML FOR DATA QUALITY MONITORING

Train on “normal” data

Flag deviations 
from learned 

behavior



5

Aside: how do AEs achieve this? 

▪ The task is very different from classification: no truth labels during training

▪ Simplest (far only) AE architecture: fully connected MLP with bottleneck

ML FOR DATA QUALITY MONITORING

𝑥 = (𝑥0, … , 𝑥𝑛) 𝑥′ = (𝑥′0, … , 𝑥′𝑛) ℒ 𝑥, 𝑥′ = 𝑥 − 𝑥′

▪ Train by compressing and reconstructing input; at inference time, monitor the 
reconstruction error



The EM calorimeter
ONLINE DQM

ML FOR DATA QUALITY MONITORING 6



▪ Two typical problems:

• Noisy cells manifest as higher 
than average occupancy

• Low-response cells manifest as 
lower than average (or zero) 
occupancy

▪ This data is gathered with LS 
granularity i.e., every 23 seconds

▪ Anomalies can be missed by 
human operator over hours of shift
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ECAL online DQM

▪ The aim is to monitor the behavior of the EM calorimeter (ECAL) during operation 
of CMS, spot issues as promptly as possible to intervene with fixes

▪ The main quantity being monitored is the occupancy map of calorimeter cells

ML FOR DATA QUALITY MONITORING
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Automatizing ECAL DQM

▪ Train an AE to reconstruct the occupancy map as an image

▪ ResNET-based architecture with conv layers for both the encoder and decoder

▪ The pixel-by-pixel reconstruction error (loss map) makes anomalies evident

▪ Lower false positive rate w.r.t. simple threshold on cell occupancy

ML FOR DATA QUALITY MONITORING

Original occupancy map Loss map of the AE Loss map after threshold
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A few more details

▪ Correct processing of the data is crucial (garbage in, garbage out), for example:

▪ Because of collider physics, high pseudorapidity (𝜂) regions have higher occupancy

▪ But we still want the same relative discrepancies to be flagged → normalize by average

ML FOR DATA QUALITY MONITORING

• Whole block off, but
• AE learned to expect 

more hits at high 𝜂, so
• Higher loss at higher 𝜂

Normalize loss to 
average occupancy

Loss is flat over 𝜂 for 
the same anomaly
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Deploying on 2022 data

▪ This technology was deployed in CMS for 2022 data taking

▪ Strong performance on new data

ML FOR DATA QUALITY MONITORING

Noticing this instead of this in real time is much, much easier, especially after 8h of shift :)

▪ Supervised nature means that any* potential anomaly will be flagged as anomalous 

*not so simple: see outlier reconstruction problem in Florian’s talk



Jets and MET
OFFLINE DQM
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JetMET offline DQM

▪ After data is acquired and reconstructed, a second set of quality checks is performed

▪ The focus is moved from detector-level quantities, like hits and efficiencies, to physics-
level quantities, like muons, electrons, hadronic jets1, missing transverse energy2 (MET)

▪ For the specific case of hadronic jets and MET (JetMET), data is grouped in runs 
spanning O(hours) → an issue in one run can potentially void hours of data taking

▪ Per-LS granularity desirable → pinpoint issues to limited set of “bad” data, save the rest

▪ Every run has O(1000) LSs, prohibitive with “standard” (i.e., human looking at 
distributions) approach → need an automated effort

ML FOR DATA QUALITY MONITORING

[1]: hadronic jets are sprays of 
particles originating from a 
high energy quark or gluon

[2]: MET is the momentum 
imbalance on the plane 
transverse to the colliding beams

𝑀𝐸𝑇 = 

𝑖

Ԧ𝑝𝑇,𝑖
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Achieving per-LS granularity

▪ Slightly different challenge: if a run shows issues, have a tool that goes through each 
LS and flag the ones that are potentially anomalous

▪ Expert has to look at O(10) plots instead of O(1000)

▪ Achieved with simple yet effective AE that encodes/decodes histograms

ML FOR DATA QUALITY MONITORING

𝑥 𝑥
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Architecture of the AE

▪ One consideration is that some distributions are expected to naturally shift during

▪ E.g., the number of interactions per collision event gradually diminishes during a “fill” 
because of degradation of the beams in the LHC

▪ This morphs the distributions of physics observables, like MET, over time; can lead to 
false positives when looking for anomalies

ML FOR DATA QUALITY MONITORING

▪ Tackled by treating a sequence of histograms 
from successive LSs as a time series

▪ Long-Short-Term-Memory (LSTM) nodes read 
the “sliding window” → account for natural 
shifts but still sensitive to sudden changes

▪ Anomalous drifts (on longer time scales) are 
monitored by integrating over runs
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Deployment on 2022 data

▪ During 2022 data taking, some runs exhibited clearly anomalous behavior in JetMET
related quantities, such as the simplified MET significance1 (METSig)

ML FOR DATA QUALITY MONITORING

[1]: 𝑀𝐸𝑇𝑆𝑖𝑔 ≡ Τ𝑀𝐸𝑇 ∑𝑝𝑇 estimates the probability of MET being genuine i.e., not from detector inefficiencies

▪ Clearly unphysical bump in the METSig tail

▪ This is the region of interest for many 
analyses searching for undetectable particles

▪ These runs lasted O(1d): removing them 
from the pool of “good for analysis” runs 
would have meant a significant loss of data

▪ Almost 350 pb−1 of data, or 1% of the whole 
2016 CMS dataset

▪ Ideal testbed for deploying the per-LS AE
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Results

▪ After deploying the tool on the two anomalous runs, the issues were restricted to a 
total of 3 LS (i.e., 3x24 seconds of data taking)

ML FOR DATA QUALITY MONITORING

Removing LS 469

▪ This run alone contained ~1600 LSs → with a simple AE we could pinpoint the issue in a 
matter of minutes and fully recover data that would otherwise have been lost
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In summary

▪ I hope these two examples from DQM in HEP illustrate a few key points:

▪ The “ML approach to programming” (see Mauro’s introduction talk from yesterday) 
means that we don’t have to invent a new algorithm for every problem, because

▪ We can abstract the problem from “how do I find LSs in which the METSig shows a 
bump in any position” to “anomaly detection”

▪ Use a well-known technology, like AEs, to efficiently deploy reliable and powerful tools

▪ Exploit the fact that humans have low false positive rates, but can miss many anomalies, 
while an ML-based anomaly detection tool can be tuned to miss very few of them

ML FOR DATA QUALITY MONITORING

Good

Bad

Actually, good

Yes, bad
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