
Real-time ML in particle physics

Thea Klæboe Årrestad
(ETH Zürich)

CERN Data Science Seminar 07.12.2022

Real-time Machine Learning
for triggering at the LHC

Thea Klæboe Årrestad (ETH Zürich)
thea.aarrestad@cern.ch

IPA-ML 21.03.2023

making very fast decisions

mailto:thea.aarrestad@cern.ch

Open AI (2023)

Example of GPT-4 visual input:
User What is funny about this image? Describe it panel by panel.

Source: https://www.reddit.com/r/hmmm/comments/ubab5v/hmmm/

GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin con-
nector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of
a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning con-
nector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large,
outdated VGA connector into a small, modern smartphone charging port.

Table 3. Example prompt demonstrating GPT-4’s visual input capability. The prompt consists of a
question about an image with multiple panels which GPT-4 is able to answer.

4.1 Visual Inputs

GPT-4 accepts prompts consisting of both images and text, which—parallel to the text-only set-
ting—lets the user specify any vision or language task. Specifically, the model generates text outputs
given inputs consisting of arbitrarily interlaced text and images. Over a range of domains—including
documents with text and photographs, diagrams, or screenshots—GPT-4 exhibits similar capabilities
as it does on text-only inputs. An example of GPT-4’s visual input can be found in Table 3. The stan-
dard test-time techniques developed for language models (e.g. few-shot prompting, chain-of-thought,
etc) are similarly effective when using both images and text - see Appendix G for examples.

Preliminary results on a narrow set of academic vision benchmarks can be found in the GPT-4 blog
post [59]. We plan to release more information about GPT-4’s visual capabilities in follow-up work.

9

https://cdn.openai.com/papers/gpt-4.pdf

Open AI (2023)

GPT-4 visual input example, Chart Reasoning:

User What is the sum of average daily meat consumption for Georgia and Western Asia?
Provide a step-by-step reasoning before providing your answer.

GPT-4 To find the sum of average daily meat consumption for Georgia and Western Asia,
we will follow these steps:

1. Identify the average daily meat consumption for Georgia.
2. Identify the average daily meat consumption for Western Asia.
3. Add the values from steps 1 and 2.

Step 1: From the provided chart, we see that the average daily meat con-
sumption for Georgia is 79.84 grams per person per day.
Step 2: From the chart, we see that the average daily meat consumption for
Western Asia is 69.62 grams per person per day.
Step 3: Add the values from steps 1 and 2.
79.84 g (Georgia) + 69.62 g (Western Asia) = 149.46 g

So, the sum of average daily meat consumption for Georgia and Western
Asia is 149.46 grams per person per day.

Table 14. Example prompt demonstrating GPT-4’s visual input capability. The prompt consists of a
question which requires reading information from a chart and performing computation.

32

Example of GPT-4 visual input:
User What is funny about this image? Describe it panel by panel.

Source: https://www.reddit.com/r/hmmm/comments/ubab5v/hmmm/

GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin con-
nector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of
a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning con-
nector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large,
outdated VGA connector into a small, modern smartphone charging port.

Table 3. Example prompt demonstrating GPT-4’s visual input capability. The prompt consists of a
question about an image with multiple panels which GPT-4 is able to answer.

4.1 Visual Inputs

GPT-4 accepts prompts consisting of both images and text, which—parallel to the text-only set-
ting—lets the user specify any vision or language task. Specifically, the model generates text outputs
given inputs consisting of arbitrarily interlaced text and images. Over a range of domains—including
documents with text and photographs, diagrams, or screenshots—GPT-4 exhibits similar capabilities
as it does on text-only inputs. An example of GPT-4’s visual input can be found in Table 3. The stan-
dard test-time techniques developed for language models (e.g. few-shot prompting, chain-of-thought,
etc) are similarly effective when using both images and text - see Appendix G for examples.

Preliminary results on a narrow set of academic vision benchmarks can be found in the GPT-4 blog
post [59]. We plan to release more information about GPT-4’s visual capabilities in follow-up work.

9

https://cdn.openai.com/papers/gpt-4.pdf

Open AI (2023)

GPT-4 visual input example, Chart Reasoning:

User What is the sum of average daily meat consumption for Georgia and Western Asia?
Provide a step-by-step reasoning before providing your answer.

GPT-4 To find the sum of average daily meat consumption for Georgia and Western Asia,
we will follow these steps:

1. Identify the average daily meat consumption for Georgia.
2. Identify the average daily meat consumption for Western Asia.
3. Add the values from steps 1 and 2.

Step 1: From the provided chart, we see that the average daily meat con-
sumption for Georgia is 79.84 grams per person per day.
Step 2: From the chart, we see that the average daily meat consumption for
Western Asia is 69.62 grams per person per day.
Step 3: Add the values from steps 1 and 2.
79.84 g (Georgia) + 69.62 g (Western Asia) = 149.46 g

So, the sum of average daily meat consumption for Georgia and Western
Asia is 149.46 grams per person per day.

Table 14. Example prompt demonstrating GPT-4’s visual input capability. The prompt consists of a
question which requires reading information from a chart and performing computation.

32

Example of GPT-4 visual input:
User What is funny about this image? Describe it panel by panel.

Source: https://www.reddit.com/r/hmmm/comments/ubab5v/hmmm/

GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin con-
nector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of
a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning con-
nector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large,
outdated VGA connector into a small, modern smartphone charging port.

Table 3. Example prompt demonstrating GPT-4’s visual input capability. The prompt consists of a
question about an image with multiple panels which GPT-4 is able to answer.

4.1 Visual Inputs

GPT-4 accepts prompts consisting of both images and text, which—parallel to the text-only set-
ting—lets the user specify any vision or language task. Specifically, the model generates text outputs
given inputs consisting of arbitrarily interlaced text and images. Over a range of domains—including
documents with text and photographs, diagrams, or screenshots—GPT-4 exhibits similar capabilities
as it does on text-only inputs. An example of GPT-4’s visual input can be found in Table 3. The stan-
dard test-time techniques developed for language models (e.g. few-shot prompting, chain-of-thought,
etc) are similarly effective when using both images and text - see Appendix G for examples.

Preliminary results on a narrow set of academic vision benchmarks can be found in the GPT-4 blog
post [59]. We plan to release more information about GPT-4’s visual capabilities in follow-up work.

9

*What is a good AP® Physics 2 score? Earning a 3, 4, or 5 is generally accepted as scoring well on an AP® exam.
As reported by the College Board, a 3 is 'qualified,' a 4 'well qualified,' and a 5 'extremely well qualified.

https://cdn.openai.com/papers/gpt-4.pdf

?

(0.16% of neurons in your brain) (All the neurons in your brain?)

NVIDIA Press Release 2020

Train (GPT-3):
• 285,000 CPU cores
• 10,000 GPUs
• 400 Gb/s network
• Several weeks
• Trained on ~25 km high book of text

https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/

NVIDIA Press Release 2020

Train (GPT-3):
• 285,000 CPU cores
• 10,000 GPUs
• 400 Gb/s network
• Several weeks
• Trained on ~25 km high book of text

Inference (GPT-3):
• ?

https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/

AI & Memory Wall

x11 of these to fit one GPT-3 at inference time!
Price each: $10,000

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Max atency 10 seconds

Resources: 11 interconnected GPUs
Latency : 101 seconds

Max atency 10 seconds

Resources: One single chip
Latency: 10-9 seconds

Resources: 11 interconnected GPUs
Latency : 101 seconds

https://a3d3.ai/

https://a3d3.ai/

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

25 ns

2.2·1011 protons

HL-LHC:
Up to 200 pp collisions

per crossing!

7.5 m

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Up to 8 billion collisions per second

~10 PB of data per second

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Up to 8 billion collisions per second

~10 PB of data per second

Saving all collisions not useful
(even if we could)!

Higgs produced
~1 in a billion collisions

13 TeV

gg→H

Total

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Billions of collisions/s
Petabytes of data/s

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Level-1 trigger:
Get rid of >98%

of collisions!

63 Tb/s to L1

Data temporarily stored
INSIDE detector for ~3-12 µs

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML TIER 0: ∞

High Level Trigger:
Latency 0(100) ms

~2% of events remain
750 kHz

Tb/s

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

100% of events remain
40 MHz

Pb/s

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML TIER 0: ∞
Processing and permanent storage

0.02% of events remain :(
7.5 kHz

Gb/s

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor MLALL OF OUR PHYSICS RESULTS USE ONLY ~0.02% OF COLLISION DATA!

To make sure we select “the right” 0.02%, algorithms must be
• Fast (get more data through)
• Accurate (select the right data)

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

https://arxiv.org/pdf/1407.0558.pdf

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

→ U t i l i se modern Machine Learn ing to become

fas ter
be t ter

and do more

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Level-1 trigger:
Firmware

FPGAs (Latency ~µs)

High Level Trigger:
Software

(Latency ~ms)

Inside detector:
Hardware

ASIC (Latency ~ns)

Level-1 trigger:
Firmware

FPGAs (Latency ~µs)

High Level Trigger:
Software

(Latency ~ms)

Inside detector:
Hardware

ASIC (Latency ~ns)

Nanosecond ML inference
on specialised hardware for triggering!

Level-1 trigger:
Firmware

FPGAs (Latency ~µs)

High Level Trigger:
Software

(Latency ~ms)

Inside detector:
Hardware

ASIC (Latency ~ns)

Nanosecond ML inference
on specialised hardware for triggering!

Not covered in this talk. Great work here by S. Hasan (IPA)

The Leve l-1 t r igger

266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

CALORIMETRY:
370 FPGAs MUONS:

96 FPGAs

TRACKING
174 FPGAs

12.5 µs

Trigger
accept/reject

5 µs

PARTICLE
FLOW:

66 FPGAs

GLOBAL
TRIGGER:
24 FPGAs

*54 for HGCAL only!

63 Tb/s

28

On-detec tor ML
Low latency

• Strictly limited by collisions
occurring every 25 ns

29

On-detec tor ML Low resource usage
• Several algorithms in parallel

on single device

Low latency
• Strictly limited by collisions

occurring every 25 ns

30

On-detec tor ML Power efficient
• On detector: Detector is cooled!

Limited to mW

ML algorithms here must be low power, low latency, low resource!

Encoder architecture

4

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al
Se

ns
or

 m
od

ul
e

PC
B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

ASIC

ASIC

ASIC

Low resource usage
• Several algorithms in parallel

on single device

Low latency
• Strictly limited by collisions

occurring every 25 ns

Why FPGAs a t LHC?

Why FPGAs a t LHC?

High parallelism = Low latency
• Can work on different data simultaneously (pipelining)! High bandwidth

Why FPGAs a t LHC?

High parallelism = Low latency
• Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient
• FPGAS ~x10 more power efficient than GPUs

(even our FPGAs dissipate heat of ~7W/cm2 while processing 5% of total internet traffic!)

Why FPGAs a t LHC?

High parallelism = Low latency
• Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient
• FPGAS ~x10 more power efficient than GPUs

(even our FPGAs dissipate heat of ~7W/cm2 while processing 5% of total internet traffic!)

Latency deterministic
• CPU/GPU has processing randomness, FPGAs repeatable and predictable latency

32

On-detec tor ML

Idea l ly Real i t y

Edge in ference

Before deploying any DNN on the edge, must make it efficient!

During training
• Quantization: do you really need 32-bit FP precision?
• Pruning: removal insignificant synapses
• Knowledge distillation (see Patrick Odagiu talk tomorrow!)

Post-training
• Parallelise:

all computation that can be done in parallel, do in parallel!

https://indico.phys.ethz.ch/event/37/contributions/328/

Quant iza t ion

Weights Layer 1 Weights Layer 2

FP 32 FP 32

Float ing po in t 32

Quant iza t ion

Weights Layer 1 Weights Layer 2

4-b i t 4-b i t

F ixed po in t

Quant iza t ion

Weights Layer 1 Weights Layer 2

4-b i t 4-b i t

F ixed po in t

hls4ml tutorial – 4th IML Workshop19th October 2020

Efficient NN design: quantization
• In the FPGA we use fixed point representation

- Operations are integer ops, but we can represent
fractional values

• But we have to make sure we’ve used the correct data types!

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width bits, integer bits>

Dense (32)
〈8,0〉

Dense (32)
〈8,0〉

ReLU ReLU ReLU Softmax

Dense (5)
〈8,0〉

Dense (64)
〈8,0〉

〈16,6〉〈8,1〉 〈8,1〉 〈8,1〉

Forward pass →

← Back propagat ion

FP 32 FP 32 FP 32FP 32
FP 32FP 32 FP 32 FP 32

Quant iza t ion-aware t ra in ing

→

Nature Machine Intelligence 3 (2021)

https://www.nature.com/articles/s42256-021-00356-5

Pruning

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

hls4ml tutorial – 4th IML Workshop19th October 2020

Efficient NN design: compression

• DSPs (used for multiplication) are often
limiting resource

- maximum use when fully parallelized

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

Pruning

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

hls4ml tutorial – 4th IML Workshop19th October 2020

Efficient NN design: compression

• DSPs (used for multiplication) are often
limiting resource

- maximum use when fully parallelized

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

Pruning

hls4ml tutorial – 4th IML Workshop19th October 2020

Efficient NN design: compression

• DSPs (used for multiplication) are often
limiting resource

- maximum use when fully parallelized

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available
Train

with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Figure 6: Illustration of the iterative parameter pruning and retraining with L1 regularization proce-
dure. The distribution of the absolute value of the weights relative to the maximum absolute value
of the weights is shown after each step of the pruning and retraining procedure. In the top left, the
distribution before compression is shown, while in the bottom right, the distribution after compression
is displayed.

Reducing precision saves resources used for signal routing as well as resources and latency used
for mathematical operations. For many applications, the limiting FPGA resource will be the number of
DSPs, which are used primarily for multiplications. The number of DSPs used per multiplier depends
on the precision of the numbers being multiplied and can change abruptly. For example, one Xilinx
DSP48E1 block [90] can multiply a 25-bit number with an 18-bit number, but two are required to
multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

As mentioned in Sec. 2.1, non-trivial activation functions are precomputed for a range of input
values and stored in BRAMs. The binning within this range and the output bit width are configurable
in hls4ml. Lastly, we note that additional methods exist to further compress the network architecture
through quantization that have not been explored in this paper [82, 88]. In particular, retraining the

– 12 –

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

Pruning

hls4ml tutorial – 4th IML Workshop19th October 2020

Efficient NN design: compression

• DSPs (used for multiplication) are often
limiting resource

- maximum use when fully parallelized

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available
Train

with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Figure 6: Illustration of the iterative parameter pruning and retraining with L1 regularization proce-
dure. The distribution of the absolute value of the weights relative to the maximum absolute value
of the weights is shown after each step of the pruning and retraining procedure. In the top left, the
distribution before compression is shown, while in the bottom right, the distribution after compression
is displayed.

Reducing precision saves resources used for signal routing as well as resources and latency used
for mathematical operations. For many applications, the limiting FPGA resource will be the number of
DSPs, which are used primarily for multiplications. The number of DSPs used per multiplier depends
on the precision of the numbers being multiplied and can change abruptly. For example, one Xilinx
DSP48E1 block [90] can multiply a 25-bit number with an 18-bit number, but two are required to
multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

As mentioned in Sec. 2.1, non-trivial activation functions are precomputed for a range of input
values and stored in BRAMs. The binning within this range and the output bit width are configurable
in hls4ml. Lastly, we note that additional methods exist to further compress the network architecture
through quantization that have not been explored in this paper [82, 88]. In particular, retraining the

– 12 –

hls4ml tutorial – 4th IML Workshop19th October 2020

TF Sparsity
l Iteratively remove low magnitude weights, starting with 0 sparsity, smoothly

increasing up to the set target as training proceeds

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

Pruning

hls4ml tutorial – 4th IML Workshop19th October 2020

Efficient NN design: compression

• DSPs (used for multiplication) are often
limiting resource

- maximum use when fully parallelized

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available
Train

with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Figure 6: Illustration of the iterative parameter pruning and retraining with L1 regularization proce-
dure. The distribution of the absolute value of the weights relative to the maximum absolute value
of the weights is shown after each step of the pruning and retraining procedure. In the top left, the
distribution before compression is shown, while in the bottom right, the distribution after compression
is displayed.

Reducing precision saves resources used for signal routing as well as resources and latency used
for mathematical operations. For many applications, the limiting FPGA resource will be the number of
DSPs, which are used primarily for multiplications. The number of DSPs used per multiplier depends
on the precision of the numbers being multiplied and can change abruptly. For example, one Xilinx
DSP48E1 block [90] can multiply a 25-bit number with an 18-bit number, but two are required to
multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

As mentioned in Sec. 2.1, non-trivial activation functions are precomputed for a range of input
values and stored in BRAMs. The binning within this range and the output bit width are configurable
in hls4ml. Lastly, we note that additional methods exist to further compress the network architecture
through quantization that have not been explored in this paper [82, 88]. In particular, retraining the

– 12 –

hls4ml tutorial – 4th IML Workshop19th October 2020

TF Sparsity
l Iteratively remove low magnitude weights, starting with 0 sparsity, smoothly

increasing up to the set target as training proceeds

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……
Figure 6: Illustration of the iterative parameter pruning and retraining with L1 regularization proce-
dure. The distribution of the absolute value of the weights relative to the maximum absolute value
of the weights is shown after each step of the pruning and retraining procedure. In the top left, the
distribution before compression is shown, while in the bottom right, the distribution after compression
is displayed.

Reducing precision saves resources used for signal routing as well as resources and latency used
for mathematical operations. For many applications, the limiting FPGA resource will be the number of
DSPs, which are used primarily for multiplications. The number of DSPs used per multiplier depends
on the precision of the numbers being multiplied and can change abruptly. For example, one Xilinx
DSP48E1 block [90] can multiply a 25-bit number with an 18-bit number, but two are required to
multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

As mentioned in Sec. 2.1, non-trivial activation functions are precomputed for a range of input
values and stored in BRAMs. The binning within this range and the output bit width are configurable
in hls4ml. Lastly, we note that additional methods exist to further compress the network architecture
through quantization that have not been explored in this paper [82, 88]. In particular, retraining the

– 12 –

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

→Knowledge Dis t i l la t ion

Can we have the best of both worlds?

Tra in In ference

See talk by Patrick Odagiu (IPA) tomorrow!

https://indico.phys.ethz.ch/event/37/contributions/328/

FPGA t r igger code

M. Jeitler

https://indico.desy.de/event/19044/contributions/33781/attachments/21538/27423/Munich_Jeitler_LHCtriggers.pdf

FPGA t r igger code

M. Jeitler

Gener ic implementa t ions for
DNN in ference?

hls4ml tutorial – 4th IML Workshop19th October 2020

Neural network inference

activation function multiplication addition
precomputed and
stored in BRAMs DSPs logic cells

L1
Ln

LN

https://indico.desy.de/event/19044/contributions/33781/attachments/21538/27423/Munich_Jeitler_LHCtriggers.pdf

Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense

Softmax

Prediction

pynq-z2 floorplan

Our work here at IPA!
P. Odagiu, C. Sun, A. Oliver, T. Årrestad

From Python code…….. to hardware blocks that can do inference in nanoseconds!

https://arxiv.org/abs/1804.06913

from hls4ml import …
import tensorflow as tf

train or load a model
model = … # e.g. tf.keras.models.load_model(…)

make a config template
cfg = config_from_keras_model(model,
granularity=‘name’)

tune the config
cfg[‘LayerName’][‘layer2’][‘ReuseFactor’] = 4

do the conversion
hmodel = convert_from_keras_model(model, cfg)

write and compile the HLS
hmodel.compile()

run bit accurate emulation
y_tf = model.predict(x)
y_hls = hmodel.predict(x)

do some validation
np.testing.assert_allclose(y_tf, y_hls)

run HLS synthesis
hmodel.build()

Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense

Softmax

Prediction

pynq-z2 floorplan

Our work here at IPA!
P. Odagiu, C. Sun, A. Oliver, T. Årrestad

https://arxiv.org/abs/1804.06913

Ongoing work by Andrew Oliver (IPA)
https://arxiv.org/abs/2210.05189

https://arxiv.org/abs/1804.06913

qDNN

BDT

Ongoing work by Andrew Oliver (IPA)

https://arxiv.org/abs/1804.06913

46

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML
Where and how are we using this at LHC?

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Terabytes of data to L1!

Petabytes of data generated

ML for compress ion

CMS High Granularity calorimeter
• 6.5 million readout channels, 50 layers

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN

ML for compress ion

CMS High Granularity calorimeter
• 6.5 million readout channels, 50 layers

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN

BUT: Cannot read out a l l these channels
fas t enough for L1 to t r igger !

ML for compress ion

200 vertices

Encoder architecture

4

Encoded dataEncoded data

ENCODE DECODEBottleneck
(lower dim.

space)

Var ia t ional Autoencoder

Encoder architecture

4

ECON-T, D. Noonan

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf

Transmit encoded data!

Encoded data

ML for compress ion
Encoder architecture

4

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

ASIC

On ASIC

ECON-T, D. Noonan

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf

Transmit encoded data!

Encoded data

ML for compress ion
Encoder architecture

4

Encoded data

On FPGA

Encoder architecture

4

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

ASIC

On ASIC

ECON-T, D. Noonan

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

12 µs to make
accurate decisions!

• O(1000) hits
• O(100) tracks
• 5 µs latency!

Graph Neural Networks for fast reconstruction!

ML for t rack reconstruc t ion

DOI:10.3389/fdata.2022.828666

How to get fast and small graph-like NNs on FPGAs? Ongoing work by Patrick Odagiu (IPA)

3 μs, but all the FPGA resources are used!

https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full

Limi ta t ions o f current t r igger

CERN Summer student 2012

Energy (GeV)Trigger threshold

New
Physics?

- - LOST DATA
- - SELECTED DATA
- - POSSIBLE NP SIGNAL

Level-1 re jec ts >98% o f events !
Is there a smarter way to se lec t?

Learn ing f rom data

CERN Summer student 2012

Energy (GeV)Trigger threshold

NP?

- - LOST DATA
- - SELECTED DATA
- - POSSIBLE NP SIGNAL

Look at data rather than defining signal hypothesis a priori
• Can we “classify” objects/events?

anomalous data
noise

normal data

VAE: Learn from data

ML for anomaly detec t ion

CERN Summer student 2012

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

Real data x Reconstructed data x̂

ℜk

• Difference - defines "degree of abnormality”

x x̂

ML for anomaly detec t ion

CERN Summer student 2012

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

Real data x Reconstructed data x̂

ℜk

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

ML for anomaly detec t ion

CERN Summer student 2012

Reconstruction error
AD threshold

NP?

- - LOST DATA
- - SELECTED DATA
- - POSSIBLE NP SIGNAL

Selec t based on degree o f abnormal i ty !
Everything here

is normal
Everything here

is abnormal

Ongoing work by Chang Sun, P. Odagiu (IPA)

Credi ts : Chang Sun (IPA)
AXOL1TL

arXiv:2101.08578

Graph Deep Neural Networks:
End-to-end ML for reconstructing the full collision?
Faster and better than classical reconstruction algorithms

5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show
the ECAL detector surface (cyan) and the muon stations (blue).

5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show
the ECAL detector surface (cyan) and the muon stations (blue).

Particle
interaction  
& detection

Detector
measurements

“True” or
generated particles PF candidates

Particle-flow
reconstruction

Graph neural network

muon
neutral
hadron

charged
hadrons

photon

MLPF candidates

Baseline PF, adapted from
B. Mangano for CMS, 2013

Machine-learned
particle-flow

reconstruction

Extract  
features

Compare  
via  

loss 
function

muon
neutral
hadron

charged
hadrons

photon

muon
neutral
hadron

charged
hadrons

photon

MLPFAn overview of the MLPF approach. Calorimeter clusters
and tracks are used as the input to the MLPF algorithm.
The predictions from the model are compared to ground
truth particles. In this iteration of MLPF, we use the
reconstructed particles from the current baseline PF
algorithm as the ground truth. This means that the full
reconstruction chain can be exercised with a realistic
ground truth, but also that the physics performance of
this training cannot exceed baseline PF by construction.
In a future iteration, it is possible to train the model
against a generator-level ground truth consisting of
stable MC particles to potentially improve the physics
performance with respect to the baseline PF.

3

Classical Particle Flow Graph Neural Network

The dream: ML for every th ing?

https://arxiv.org/abs/2101.08578

F. Capel et al.
Tr igger ing in o ther exper iments

https://indico.ph.tum.de/event/7057/contributions/5302/attachments/4053/5139/Spannfellner_seed_ml_fpga_1v1.pdf

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

Bioluminescence bursts up to few MHz!

F. Capel et al.

Data to shore

Signals and backgrounds

https://indico.ph.tum.de/event/7057/contributions/5302/attachments/4053/5139/Spannfellner_seed_ml_fpga_1v1.pdf

Semantic segmentation for autonomous vehicles Seizure Predicting Brain Implant

…and outs ide o f HEP

N. Ghielmetti et al.

NN accelerator for quantum control

D Xu et al. Other examples
• For fusion science phase/mode monitoring
• Crystal structure detection
• Triggering in DUNE
• Accelerator control
• Magnet Quench Detection
• MLPerf tinyML benchmarking
• Food contamination detection
• etc….

W. Lemaire et al.

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://arxiv.org/abs/2208.02645
https://indico.cern.ch/event/1156222/contributions/5058420/attachments/2535257/4363120/CJH_FML4Science-10_4_22.pdf
https://docs.google.com/presentation/d/1gnAqn4gpZvx4JVVD8dqbXKMsZ_vpguO9hxC7zH0jv6w/edit#slide=id.g13512715b6e_0_5
https://indico.cern.ch/event/1156222/contributions/5062816/attachments/2522993/4338612/fast_ml_2022_gk.pdf
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://ieeexplore.ieee.org/document/9354037
https://arxiv.org/abs/2206.11791
https://ieeexplore.ieee.org/document/9181293
https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf

Join the community:
fastmachinelearning.org

Sign up to the hls-fml group

…or come have a chat with
Patrick, Chang, Andrew and me in HPK E 29!

https://fastmachinelearning.org
https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10279178

Extra mater ia l

AI & Memory Wall

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

