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The Large Hadron Collider is the largest and  
most powerful particle accelerator 

•  Collides beams of protons up to 13.8 TeV 
•  Enable investigation at the TeV scale  

• Proton bunches collided every 25 ns 

LHC and its experiments
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Broad physics programme 
• Measurements of SM processes 

•  Higgs, Flavour, EWK physics, … 

•  Search for new physics 

•  SUSY, Hidden Valleys, Dark Matter, …

CMS

ALICE

ATLAS

LHCb
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Physics of interest usually quite rare 
• Rates ~10-15 orders of magnitude lower  

than most common background processes 

High collision rate increases probability  
to observe physics of interest 

•600 million collisions/s 
• Tens overlapping collisions (pileup)  

• Just few containing interesting particles  

• Interesting physics look very similar to background 

Challenges:  
•need to handle large amount of particles, 
•disentangle collision products,  
• identify interesting physics in a see of particles

The high intensity challenge
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100 overlapping collisions (orange)
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High collision rate increases probability  
to observe physics of interest 

• ~600 million collisions/s 
➡ ~ 1PB/s 

As of today we have 498 PB  
of data stored on tapes 

Challenges:  
•cope with large amounts of data

The magnitude of the data problem
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498 PB
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From interaction to data
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Large amounts of heterogeneous and complex data from  
multiple sub-detectors 

 sensors used to record particles from p-p collisions𝒪(108)
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Challenges: 
•Large amounts of high-dimensional data 
•Large collisions production rate 
•Limited frontend output bandwidth 
•Limited storage space  

From the collisions to the physics result
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Online data selection
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Impossible to handle subdetector outputs at LHC rates 

• Need to decide what to discard and what to keep for further analysis  

• Online event selection performed by L1 (hardware) and HLT (software) triggers 

But trigger selection is currently a huge limitation to experiments sensitivity reach 
• High threshold cuts (e.g. particle momentum) applied on trigger objects to limit data rate 

Great benefits from the full exploitation of data high-dimensionality  
• ML embedding in on-detector FPGA systems
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Simulated data is crucial for LHC experiments: 
• to design optimal analyses for SM measurements and new physics searches 

• to develop new detector technologies  

Large data samples are needed to reduce systematical uncertainties  

Production of MC simulated data is computationally intensive 
• Requires a lot of resources (CPU and data storage) 

ML techniques (e.g. Generative Adversarial Networks)  
offer a promising approach to this issue

Data Simulation
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Raw data are processed to reconstruct tracks and energy clusters, which are combined  
to identify and measure physics objects (leptons, hadrons) produced in the collisions

From data to physics
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Low-level reconstruction algorithms (tracking and calorimeter clustering)  
require huge resources in terms of CPU 
Example: Tracking algorithm (~108) channel: 

• Track seeds from hits 

• Seeds are extended to full tracks 

• Tracking software must be fast for reconstruction at HLT (100 KHz) 

Graph neural network techniques are being explored for tracking and calorimeter clustering 
• Inter-experiments efforts on going towards HL-LHC (including tracking at L1 trigger) 

•

Reconstruction
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Mean number of hits 110K
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Quarks and gluons produced in p-p collisions 
shower and hadronize appearing as jets of particles  

• Jets are complex objects to reconstruct and identify 

• Jets features can give an important insight on their origin

Jet classification
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Jets classification: 
• Quark vs gluon jets 

• Heavy vs light flavour jets 

• Boosted objects (top, Higgs, W/Z) 

• New physics jets
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Highly energetic jets from heavy objects (t, H, W, Z) overlap 
• Decay products appear as collimated 

• High level jet substructure variables widely used for jet 
classification 

• Modern approach: make use of low-level features (particle 
momenta)  

• feeding minimally processed data into a DDN 

Similar considerations apply to q-, g- and nonSM-jets 
identification

Jets substructure
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JINST 15 (2020) P06005

https://arxiv.org/abs/2004.08262
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High Lumi LHC: Particle rate expected to increase by a factor 10 
• Luminosity will go up to  

• Average pileup:  

•  of data (10 x LHC) 

HL-LHC data will allow precision Higgs boson measurements  
and enlarge the explorations of new physics possibilities 

Increase in particle rate comes with 
• increase in complexity of data-handling  

• increase in storage and CPU requirements 

Requiring: 
• new tools for data processing

5 × 1032cm−1s−1

< μ > = 140
3000 fb−1

HL-LHC: the high luminosity challenge
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The LHC Session
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Today

Tomorrow



A. de Cosa 

Additional material
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Jets originated from b-quark fragmentation appears  
in final states of several interesting processes: 

• e.g.: ,  

b-jets tagging exploits B mesons decay features 
• B mesons long lifetime leads to displaced decay 

• Presence of leptons from semileptonic decays  

Modern b-tagging methods use deep learning techniques

tt̄ → WbWb VH → Vbb

Heavy Flavour jet tagging
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performance

JINST 13 (2018) P05011
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https://arxiv.org/abs/1712.07158
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Lack of a priori knowledge on what new physics might look like 
• Vast landscape of new physics models being probed  

at the LHC experiments up to the TeV scale 

• Still lots of possibilities remain unexplored 

Model agnostic strategies may open the doors to new physics 
• Anomaly detection techniques based on DNN  

(e.g Autoencoders) are gaining traction

Anomaly detection
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