

Annapaola de Cosa IPA ML Workshop 22 March 2023

Introduction on LHC experiments workflow with emphasis on data challenges

LHC and its experiments

The Large Hadron Collider is the largest and most powerful particle accelerator

- Collides beams of protons up to **13.8 TeV**
- Enable investigation at the TeV scale
- Proton bunches collided every 25 ns

A. de Cosa

Broad physics programme

- Measurements of SM processes
 - Higgs, Flavour, EWK physics, ...
- Search for new physics
 - SUSY, Hidden Valleys, Dark Matter, ...

The high intensity challenge

Physics of interest usually quite rare

• Rates ~10-15 orders of magnitude lower than most common background processes

High collision rate increases probability to observe physics of interest

- 600 million collisions/s
- Tens overlapping collisions (pileup)
- Just few containing interesting particles
- Interesting physics look very similar to background

Challenges:

- need to handle large amount of particles,
- disentangle collision products,
- identify interesting physics in a see of particles

CMS Experiment at the LHC, CERN Data recorded: 2016-Oct-14 09:33:30.044032 GMT Run / Event / LS: 283171 / 95092595 / 195

100 overlapping collisions (orange)

The magnitude of the data problem

High collision rate increases probability to observe physics of interest

A. de Cosa

700 1	Mil		
650 I	Mil		
600 1	Mil		
550 1	Mil		
500 1	Mil		
450 I	Mil		
400 1	Mil		
350 1	Mil		
300 1	Mil		
250	Mil		
200 1	Mil		
150 1	Mil		
100 1	Mil		
50 M	il		
0			
st *: 615 I			

750 Mil

File co

4

From interaction to data

Large amounts of heterogeneous and complex data from **multiple sub-detectors**

 $\mathcal{O}(10^8)$ sensors used to record particles from p-p collisions

A. de Cosa

5

From the collisions to the physics result

Challenges:

- Large amounts of high-dimensional data
- Large collisions production rate
- Limited frontend output bandwidth
- Limited storage space

Online data selection

Impossible to handle subdetector outputs at LHC rates

- Need to decide what to discard and what to keep for further analysis
- Online event selection performed by L1 (hardware) and HLT (software) triggers

• High threshold cuts (e.g. particle momentum) applied on trigger object of the analysis

Great benefits from the full exploitation of data high-dimension

• ML embedding in on-detector FPGA systems

Data Simulation

Simulated data is crucial for LHC experiments:

- to design optimal analyses for SM measurements and new pl
- to develop new detector technologies

Large data samples are needed to reduce systematical

Production of MC simulated data is computationally intensive

• Requires a lot of resources (CPU and data storage)

ML techniques (e.g. Generative Adversarial Networks) offer a promising approach to this issue

Collision Data 40 MHz

18 Mar

From data to physics

Raw data are processed to reconstruct tracks and energy to identify and measure physics objects (leptons, hadrons, produced in the collisions)

CMS Experiment at the LHC, CERN Data recorded: 2016-Jul-14 23:45:11.547328 GMT Run / Event / LS: 276811 / 2968707874 / 1776

Reconstruction

Low-level reconstruction algorithms (tracking and calo require huge resources in terms of CPU **Example: Tracking algorithm (~10⁸) channel:**

- Track seeds from hits
- Seeds are extended to full tracks
- Tracking software must be fast for reconstruction at HLT (100 KHz)

Graph neural network techniques are being explored for tracking and calorimeter clustering

• Inter-experiments efforts on going towards HL-LHC (including tracking at L1 trigger)

Mean number of hits 110K

~1 kHz

Jet classification

Quarks and gluons produced in p-p collisions shower and hadronize appearing as jets of particles

- Jets are complex objects to reconstruct and identify
- Jets features can give an important insight on their origin

A. de Cosa

Jets classification:

- Quark vs gluon jets
- Heavy vs light flavour jets
- Boosted objects (top, Higgs, W/Z)
- New physics jets

Jets substructure

- Decay products appear as collimated

identification

A. de Cosa

HL-LHC: the high luminosity challenge

High Lumi LHC: Particle rate expected to increase by a factor 10

- Luminosity will go up to $5 \times 10^{32} cm^{-1} s^{-1}$
- Average pileup: $<\mu>=140$
- 3000 fb^{-1} of data (10 x LHC)

HL-LHC data will allow precision Higgs boson measurements and enlarge the explorations of new physics possibilities

Increase in particle rate comes with

- increase in complexity of data-handling
- increase in storage and CPU requirements

Requiring:

• new tools for data processing

Year

Overlapping collisions

The LHC Session

Today

15:00		
	Introduction on LHC experiments workflow with emphasis on challenges	Prof. Annapaola de Cosa
	HIT E 51, ETH Zurich	15:10 - 15:30
	Object identification and reconstruction	Dr Alessandro Calandri
16:00	HIT E 51, ETH Zurich	15:30 - 15:50
	Ultrafast ML inference for triggering	Dr Thea Aarrestad
	HIT E 51, ETH Zurich	15:50 - 16:10
	Machine learning for data quality monitoring	Roberto Seidita
	HIT E 51, ETH Zurich	16:10 - 16:30
	Probabilistic models in ML for HEP	Davide Valsecchi
	HIT E 51, ETH Zurich	16:30 - 16:50

	09:00	Data-MC matching	Massimiliano Galli
		HIT E 51, ETH Zurich	09:00 - 09:20
Tomorrow		Analysis techniques	Florian Eble
		HIT E 51, ETH Zurich	09:20 - 10:00
	10:00	Quantum machine learning	Vasilis Belis
		HIT E 51, ETH Zurich	10:00 - 10:20

A. de Cosa

Additional material

A. de Cosa

Heavy Flavour jet tagging

Jets originated from b-quark fragmentation appears in final states of several interesting processes:

• e.g.: $t\bar{t} \rightarrow WbWb, VH \rightarrow Vbb$

b-jets tagging exploits B mesons decay features

- B mesons long lifetime leads to displaced decay
- Presence of leptons from semileptonic decays

Modern b-tagging methods use deep learning techniques

Anomaly detection

Lack of a priori knowledge on what new physics might look like

- Vast landscape of new physics models being probed at the LHC experiments up to the TeV scale
- Still lots of possibilities remain unexplored

Model agnostic strategies may open the doors to new physics

• Anomaly detection techniques based on DNN (e.g Autoencoders) are gaining traction

