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Symmetries are ubiquitous in physics

▸ The Universe is homogeneous & isotropic 

▸ Gauge theory in particle physics 

▸ Crystal structures in solid state physics 

We should care about symmetries when using ML in physics



“Classical” data analysis respects symmetries

▸ The Universe is isotropic 

▸ Summary statistics in 
cosmology are invariant 
to rotations

Planck Collaboration 2018





ML data analysis should respect symmetries too

▸ Ignore symmetries



ML data analysis should respect symmetries too

▸ Data augmentation 

▸ No inductive bias 

▸ Need to learn symmetries 

▸ Redundant parameters 

▸ For 3D data, need many data augmentations 

▸ Inefficient, no guarantees



ML data analysis should respect symmetries too

▸ Invariance 

▸ Output is invariant to transformations of the input 

▸ Example: Characterise a point cloud by distances and 
angles 

▸ Less model flexibility



ML data analysis should respect symmetries too

▸ Equivariance 

▸ Output transforms consistently with transformed input 

▸ Best of both worlds 

▸ No need for data augmentation 

▸ More flexible models than invariance



▸ Deep learning is about finding intermediate 
representations 

▸ These representations should respect the geometry of 
the data 

▸ Output and intermediate representations should transform 
consistently or be invariant



Geometric features

▸ Scalars 

▸ Images 

▸ Vectors 

▸ Velocities 

▸ Tensors 

▸ Polarisation
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Invariance & Equivariance

▸  

▸ Example: n features on a 2d grid: ,  

▸ Group element  

▸ Example:  

▸ Representations on X and Y: ,  

▸ Example: ,  

▸ Invariance:  

▸ Equivariance: 

f : X → Y

X = ℝ2 Y = ℝn

g ∈ G

G = SO(2)

ρX(g) ρY(g)

X = ℝ2 ρX(θ) = ( cos θ sin θ
−sin θ cos θ)

f (ρX(g)x) = f(x)

f (ρX(g)x) = ρY(g)f(x)
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CNN Equivariant CNN



Ingredients for equivariant models

▸ Define geometric meaning of features:                        …  

▸ Specify the irreducible representation of the features 

▸ Use equivariant operations 

▸ E.g. steerable convolutions for SO(3) 

▸ Kernel constraint:  

▸  

▸ Tensor products of irreps 

▸ Decompose into irreps using Clebsch-Gordan coefficients

k(rx) = ρout(r)k(x)ρin(r)−1

k(x) = F( |x | )Yℓout(x/ |x | )Yℓin(x/ |x | )T



Preliminary application to galaxy point clouds



Why should you care?

▸ Guaranteed respect for 
symmetries in the data 

▸ Sample efficiency 

▸ Preliminary: Equivariant 
point cloud model achieves 
same accuracy with order of 
magnitude less parameters 

▸ Equivariant models seem to 
scale better with number of 
training samples than 
invariant models

Batzner++ 2022
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Geometric deep learning

▸ Deep learning on structured and geometric data 

▸ Graphs 

▸ Point clouds 

▸ Manifolds (e.g. ) 

▸ Meshes 

▸ … 

▸ Consistent treatment of transformations 

▸ (Global) group equivariance 

▸ Gauge equivariance 

▸ …

S2



Some (very incomplete) literature

▸ Early works 

▸ Group Equivariant Convolutional Networks: Cohen++ 2016 (1602.07576) 

▸ Tensorfield Networks: Thomas++ 2018 (1802.08219) 

▸ 3D Steerable CNN: Weiler++ 2018 (1807.02547) 

▸ Reviews & background 

▸ A General Theory of Equivariant CNNs on Homogeneous Spaces: Cohen++ 
2018 (1811.02017) 

▸ Theoretical Aspects of Group Equivariant Neural Networks: Esteves 2020 
(2004.05154)  

▸ Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges: 
Bronstein++ 2021 (2104.13478)



Summary

▸ Geometric deep learning provides a framework to include 
inductive biases about symmetries of the data in our 
models 

▸ Equivariant model preserve geometric meaning of inputs, 
intermediate representations, and outputs 

▸ Greater interpretability, robust, and sample efficient 


