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Symmetries are ubiquitous in physics

▸ The Universe is homogeneous & isotropic


▸ Gauge theory in particle physics


▸ Crystal structures in solid state physics


We should care about symmetries when using ML in physics



“Classical” data analysis respects symmetries

▸ The Universe is isotropic


▸ Summary statistics in 
cosmology are invariant 
to rotations

Planck Collaboration 2018





ML data analysis should respect symmetries too

▸ Ignore symmetries



ML data analysis should respect symmetries too

▸ Data augmentation


▸ No inductive bias


▸ Need to learn symmetries


▸ Redundant parameters


▸ For 3D data, need many data augmentations


▸ Inefficient, no guarantees



ML data analysis should respect symmetries too

▸ Invariance


▸ Output is invariant to transformations of the input


▸ Example: Characterise a point cloud by distances and 
angles


▸ Less model flexibility



ML data analysis should respect symmetries too

▸ Equivariance


▸ Output transforms consistently with transformed input


▸ Best of both worlds


▸ No need for data augmentation


▸ More flexible models than invariance



▸ Deep learning is about finding intermediate 
representations


▸ These representations should respect the geometry of 
the data


▸ Output and intermediate representations should transform 
consistently or be invariant



Geometric features

▸ Scalars


▸ Images


▸ Vectors


▸ Velocities


▸ Tensors


▸ Polarisation
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Invariance & Equivariance

▸ 


▸ Example: n features on a 2d grid: , 


▸ Group element 


▸ Example: 


▸ Representations on X and Y: , 


▸ Example: , 


▸ Invariance: 


▸ Equivariance: 

f : X → Y

X = ℝ2 Y = ℝn

g ∈ G

G = SO(2)

ρX(g) ρY(g)

X = ℝ2 ρX(θ) = ( cos θ sin θ
−sin θ cos θ)

f (ρX(g)x) = f(x)

f (ρX(g)x) = ρY(g)f(x)
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CNN Equivariant CNN



Ingredients for equivariant models

▸ Define geometric meaning of features:                        … 


▸ Specify the irreducible representation of the features


▸ Use equivariant operations


▸ E.g. steerable convolutions for SO(3)


▸ Kernel constraint: 


▸ 


▸ Tensor products of irreps


▸ Decompose into irreps using Clebsch-Gordan coefficients

k(rx) = ρout(r)k(x)ρin(r)−1

k(x) = F( |x | )Yℓout(x/ |x | )Yℓin(x/ |x | )T



Preliminary application to galaxy point clouds



Why should you care?

▸ Guaranteed respect for 
symmetries in the data


▸ Sample efficiency


▸ Preliminary: Equivariant 
point cloud model achieves 
same accuracy with order of 
magnitude less parameters


▸ Equivariant models seem to 
scale better with number of 
training samples than 
invariant models

Batzner++ 2022
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Geometric deep learning

▸ Deep learning on structured and geometric data


▸ Graphs


▸ Point clouds


▸ Manifolds (e.g. )


▸ Meshes


▸ …


▸ Consistent treatment of transformations


▸ (Global) group equivariance


▸ Gauge equivariance


▸ …

S2



Some (very incomplete) literature

▸ Early works


▸ Group Equivariant Convolutional Networks: Cohen++ 2016 (1602.07576)


▸ Tensorfield Networks: Thomas++ 2018 (1802.08219)


▸ 3D Steerable CNN: Weiler++ 2018 (1807.02547)


▸ Reviews & background


▸ A General Theory of Equivariant CNNs on Homogeneous Spaces: Cohen++ 
2018 (1811.02017)


▸ Theoretical Aspects of Group Equivariant Neural Networks: Esteves 2020 
(2004.05154) 


▸ Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges: 
Bronstein++ 2021 (2104.13478)



Summary

▸ Geometric deep learning provides a framework to include 
inductive biases about symmetries of the data in our 
models


▸ Equivariant model preserve geometric meaning of inputs, 
intermediate representations, and outputs


▸ Greater interpretability, robust, and sample efficient 


