GEOMETRIC DEEP LEARNING

TILMAN TRÖSTER

IPA ML WORKSHOP 2023/03/21

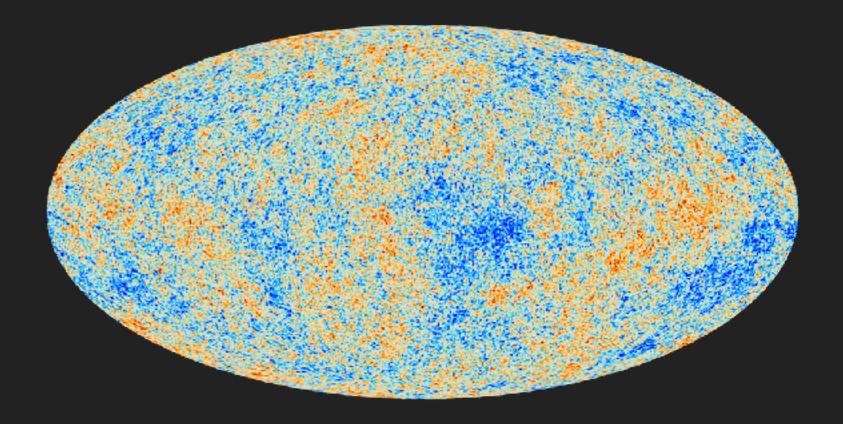
Symmetries are ubiquitous in physics

- The Universe is homogeneous & isotropic
- Gauge theory in particle physics
- Crystal structures in solid state physics

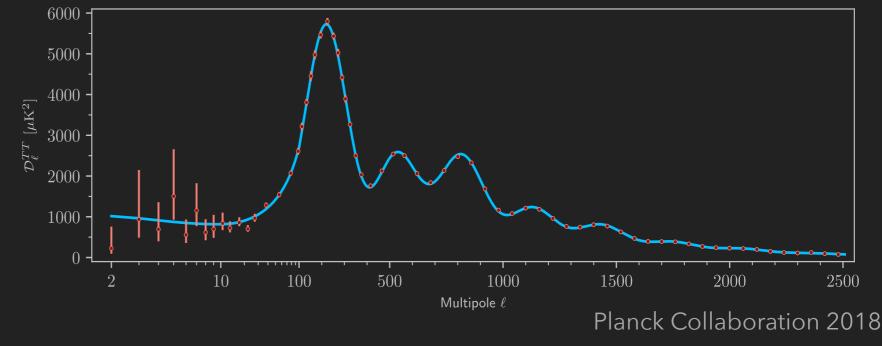
We should care about symmetries when using ML in physics

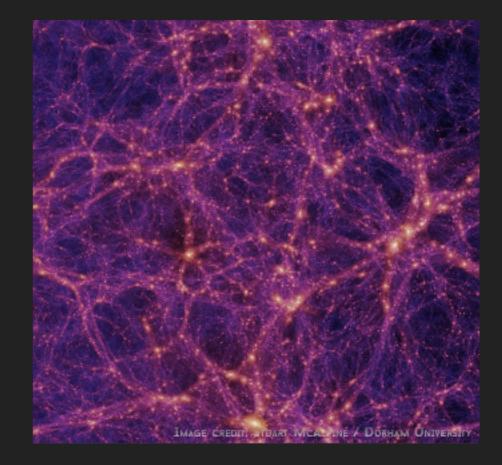
"Classical" data analysis respects symmetries

The Universe is isotropic



 Summary statistics in cosmology are invariant to rotations





Ignore symmetries

Predicted label: 2

- Data augmentation
 - No inductive bias
 - Need to learn symmetries
 - Redundant parameters
 - For 3D data, need many data augmentations
 - Inefficient, no guarantees

Invariance

- Output is invariant to transformations of the input
- Example: Characterise a point cloud by distances and angles
- Less model flexibility

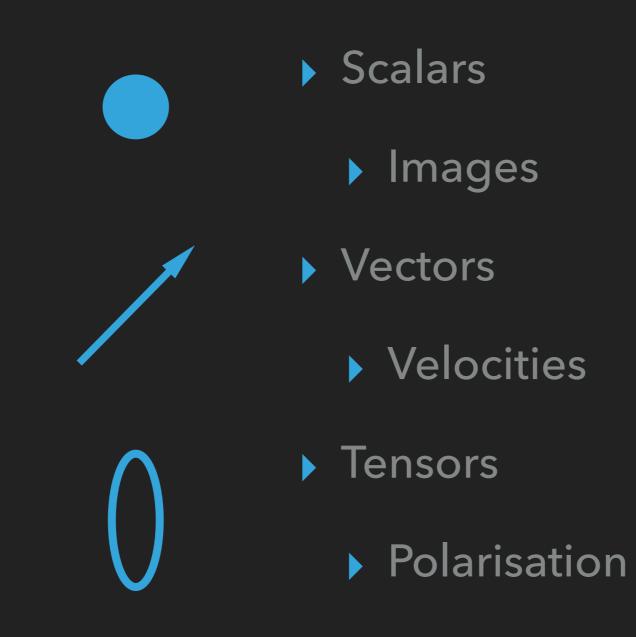
Equivariance

- Output transforms consistently with transformed input
- Best of both worlds
 - No need for data augmentation
 - More flexible models than invariance

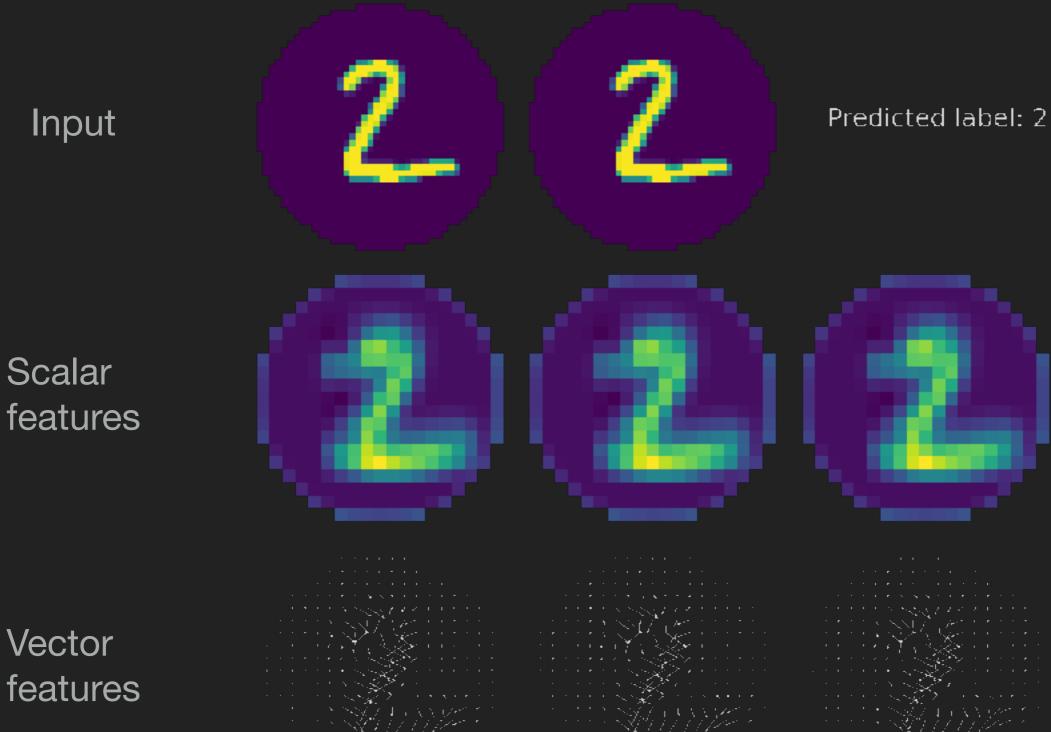
Deep learning is about finding intermediate representations

- These representations should respect the geometry of the data
- Output and intermediate representations should transform consistently or be invariant

Geometric features



Rotated input Rotated input stablised



Vector features

Invariance & Equivariance

 $\blacktriangleright f: X \to Y$

- Example: n features on a 2d grid: $X = \mathbb{R}^2$, $Y = \mathbb{R}^n$
- Group element $g \in G$
 - Example: G = SO(2)
- ▶ Representations on X and Y: $\rho_X(g)$, $\rho_Y(g)$

Example:
$$X = \mathbb{R}^2$$
, $\rho_X(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

- Invariance: $f(\rho_X(g)x) = f(x)$
- Equivariance: $f(\rho_X(g)x) = \rho_Y(g)f(x)$

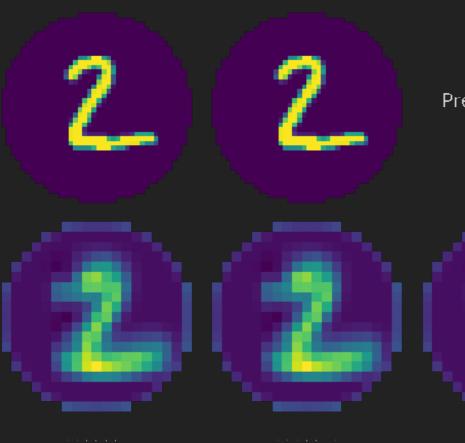
Rotated input Rotated input stablised Predicted label: 2 Input

Scalar features

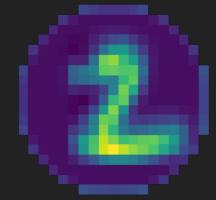
Vector features

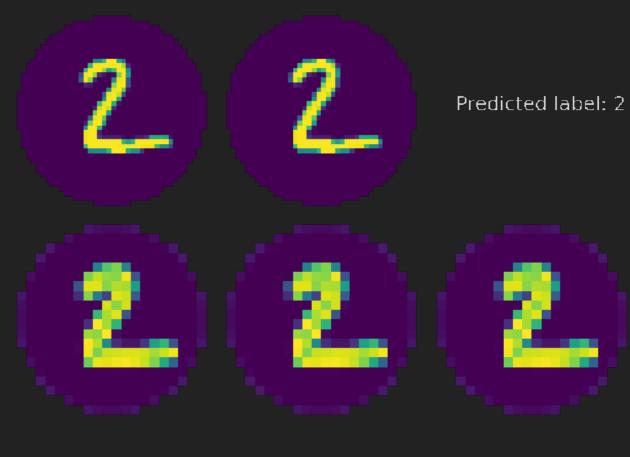
CNN

Equivariant CNN



Predicted label: 2





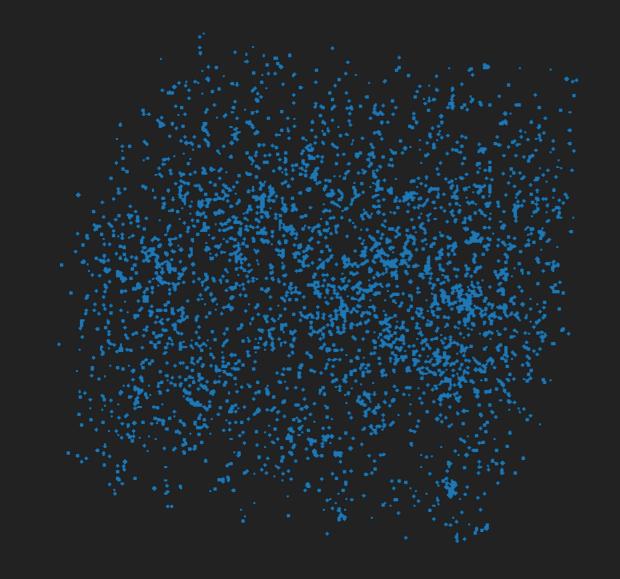
Ingredients for equivariant models

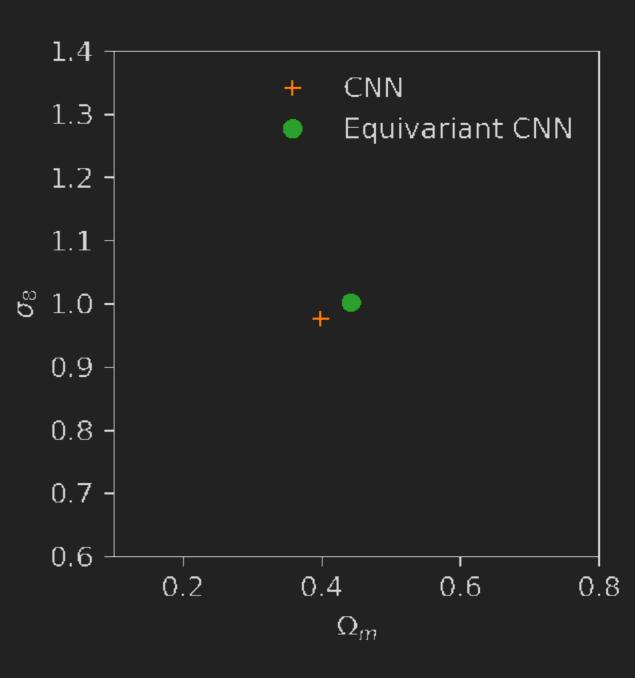
- Define geometric meaning of features:
 - Specify the irreducible representation of the features
- Use equivariant operations
 - E.g. steerable convolutions for SO(3)
 - Kernel constraint: $k(rx) = \rho_{out}(r)k(x)\rho_{in}(r)^{-1}$

$$k(x) = F(|x|) \overline{Y^{\ell_{\text{out}}}(x/|x|)} Y^{\ell_{\text{in}}}(x/|x|)^T$$

- Tensor products of irreps
 - Decompose into irreps using Clebsch-Gordan coefficients

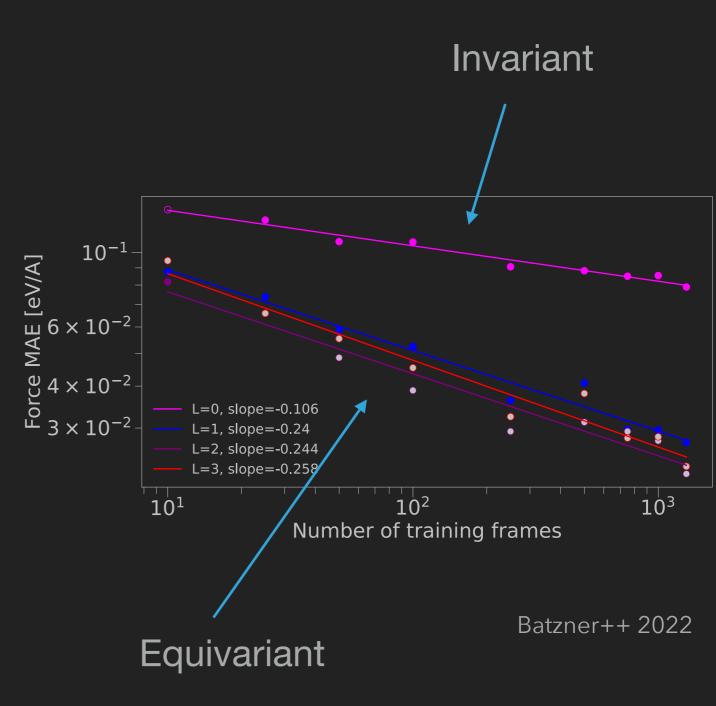
Preliminary application to galaxy point clouds





Why should you care?

- Guaranteed respect for symmetries in the data
- Sample efficiency
 - Preliminary: Equivariant point cloud model achieves same accuracy with order of magnitude less parameters
 - Equivariant models seem to scale better with number of training samples than invariant models



Geometric deep learning

Deep learning on structured and geometric data

- Graphs
- Point clouds
- Manifolds (e.g. S^2)
- Meshes
- •••

•••

- Consistent treatment of transformations
 - (Global) group equivariance
 - Gauge equivariance

Some (very incomplete) literature

- Early works
 - Group Equivariant Convolutional Networks: Cohen++ 2016 (1602.07576)
 - Tensorfield Networks: Thomas++ 2018 (1802.08219)
 - 3D Steerable CNN: Weiler++ 2018 (1807.02547)
- Reviews & background
 - A General Theory of Equivariant CNNs on Homogeneous Spaces: Cohen++ 2018 (1811.02017)
 - Theoretical Aspects of Group Equivariant Neural Networks: Esteves 2020 (2004.05154)
 - Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges: Bronstein++ 2021 (2104.13478)

- Geometric deep learning provides a framework to include inductive biases about symmetries of the data in our models
- Equivariant model preserve geometric meaning of inputs, intermediate representations, and outputs
- Greater interpretability, robust, and sample efficient