

Constraining Cosmology with Deep Learning

Arne Thomsen 21.03.2023, IPA-ML Workshop

Lambda-CDM

- Refinement of **big bang model**
- Gravity described by general relativity
- Major components
 - Ordinary matter
 - Cold dark matter (CDM)
 - Dark energy (Lambda)
- 5 free parameters
 - Mass fraction Ω_M
 - Variance of mass distribution σ_8
 - And $H_0,\,\Omega_b,\,n_s$

\rightarrow Improve constraints

Weak (gravitational) lensing

Matter arrangement

Image credit: Wikipedia

Galaxy shapes

Weak (gravitational) lensing

lensing signal

0.00 0.01 0.02 0.03

shape noise

Weak (gravitational) lensing

Combined probes of large scale structure

General motivation

- Breaking of parameter degeneracies
 - Cosmology
 - Astrophysics
 - Measurement

Deep learning specific

 Combining probes in different channels is easy

Number of galaxies per pixel

weak lensing model

Convergence value per pixel

Dark Energy Survey (DES)

- International colloboration
 - >400 members
 - 25 institutions
 - USA, Spain, UK, Brazil, Germany, Switzerland, Australia
- 4m telescope in the Chilean Andes
- 570 Megapixel camera with 3 deg field of view
- 758 nights of observations (2013-2019)
- Area of 5000 deg² (~1/10 of the sky)
- Half the history of the universe deep

DES: Survey footprint

Shapes and positions of ~100 Million galaxies
Weak lensing
Galaxy clustering

Dark Matter map from DES observations

Image credit: NERSC

Computing resources

- Perlmutter GPU cluster
- National Energy Research Scientific Computing Center (NERSC)
- 8th fastest (TOP500)

Massive compute resources

Time to solution like standard approach

Forward model

General aspects	Deep learning specific
 Data driven approach → Physics is in the modeling 	 Fast pipeline required → Trade-off between accuracy and speed
 No analytical prediction summary statistics needed → Flexible choice 	 The networks can learn anything → Extra accurate forward model
	 New map level systematics tests

Learned summary statistic

General

- Compression
 - High dimensional input
 - Low dimensional output
- Preserve information
 - Ideally Bayesian sufficiency $p(\theta|x) = p(\theta|s(x))$

Learned

- Loss function
 - Simplest choice: Mean squared error
 - More specialized: Information maximizing loss

$$\underbrace{\operatorname{Cov}_{\theta}(s) \leq \frac{\partial \Psi_{\theta}(s)}{\partial \theta} \mathbf{I}(\theta)^{-1} \frac{\partial \Psi_{\theta}(s)}{\partial \theta}^{T}}_{\text{Cramér-Rao bound}} \iff -\log \det(\mathbf{I}(\theta)) \leq \log \det(\operatorname{Cov}_{\theta}(s)) - 2\log \left| \det\left(\frac{\partial \Psi_{\theta}(s)}{\partial \theta}\right) \right|$$

 $d_{\theta} \leq d_s \ll d_x$

 $x \in \mathbb{R}^{d_x}$

 $s(x) \in \mathbb{R}^{d_s}$

Loss function

14

Network architecture

- Large area of the sky \rightarrow Non-negligible curvature
- Complex survey mask \rightarrow Graph representation advantageous
- Pixelation of the sphere (HEALPix)

DeepSphere graph convolutional neural networks (https://github.com/deepsphere)

Simulation based inference

Goal: Posterior distribution $p(\theta|x) \stackrel{\text{if sufficient}}{=} p(\theta|s(x))$

- GPABC J. Fluri et al. 2021
 - Approximate Bayesian (ABC) computation for a kernel K_h

$$p_{ABC}\left(\theta \mid s_{obs}\right) \propto \int K_h\left(\left\|s - s_{obs}\right\|\right) p(s \mid \theta) p(\theta) \mathrm{d}s$$

- Evaluate on the parameter grid
- Gaussian process (GP) regression to emulate between grid points
- Neural density estimation
 - Learn $p(s|\theta)$ with a normalizing flow, mixture auf Gaussians, ...
 - Get $p(\theta|s_{obs})$ from Bayes' theorem

Conclusion

Constraining cosmology with deep learning

- Multiple probes of large scale structure
 - Weak lensing
 - Galaxy clustering
- Forward model
 - Contains all physics
- Learned summary statistic
 - Loss function
 - Network architecture
- Parameter inference
 - Approximate Bayesian computation
 - Neural density estimation

Thanks for your attention