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• Goal:	Develop	an	analysis	strategy	that	does	not	depend	on	the	𝜐 interaction	model:

1. Algorithms	to	reject	noise	and	identify	single	vs	multi-primary-particle	hits.
• Graph	neural	networks	and	Submanifold	sparse	convolutional	networks.
• Publication:	doi:10.1103/PhysRevD.103.032005.

2. Algorithm	to	perform	fitting	on	single-particle	objects.
• RNN/Transformer,	drastically	improving	track	fitting	performance.
• Publication:	arXiv:2211.04890.

3. Algorithm	to	extract	physics	parameters	from	vertex	activity.
• GAN	for fast simulation,	used for fitting particles in	the vertex activity.

Reconstruction approach
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https://doi.org/10.1103/PhysRevD.103.032005
https://arxiv.org/abs/2211.04890


1. Hit	identification.
2. Particle	trajectory	fitting.
3. Vertex	activity	fitting.

Approach
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Hit identification: noise rejection
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• Matching	the	common	axis	2-to-2	in	the	three	views	XY,	XZ,	YZ	we	obtain	the	3D	information.

• Drawback:	non-physical	voxels	appear	due	to	lack	of	information	during	the	2D	to	3D	reconstruction	
algorithm,	called	ghost	voxels.

• Approach:	use	Graph	Neural	Networks	(GNNs)	to	identify	and	reject	ghost	voxels.
• In	GNNs,	each	node’s	neighbourhood	defines	a	computation	graph	(in	our	example,	each	voxel	is	connected	to	all	voxels	

within	a	1.75	cm	radius).
• The	algorithm	chosen	was	GraphSAGE (arXiv:1706.02216).

Orthogonal	views. 3D	event



Hit identification: single vs multi-particle hits
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• Classify	each	individual	hit	as:	
§ Single-particle	hit:	only	one	particle	passes	

through	the	hit	cube	and	no	other	tracks	
pass	through	its	adjacent	cubes

§ Multiple-particle	hit:	at	least	two	different	
particles	pass	through	the	hit	cube	and	its	
adjacent	cubes.

§ Other:	mainly	crosstalk	or	ghost.

• Using	a	submanifold	sparse	U-Net-based	
neural	network	architecture	
(https://arxiv.org/abs/1706.01307).
§ More	computationally	efficient	than	standard	

CNNs.

• Efficiencies: True	multiple-
particle	hit

True	single-
particle	hit

True	other

Pred.	
multiple-
particle	hit

0.7777 0.1511 0.0711

Pred.	single-
particle	hit

0.0055 0.9654 0.0291

Pred.	other 0.0079 0.0479 0.9442

https://arxiv.org/abs/1706.01307
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Fitting of the particle trajectory
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• The	next	step	is	to	predict	the	trajectory	of	particles	based	on	single-particle	hit	
information.	

• For	each	state	we	consider	3D	position,	and	energy	deposition	of	the	hit.

• Implemented	a	recurrent	neural	network	(RNN),	a	Transformer	(encoder),	and	a	
sequential-importance-resampling	particle	filter	(SIR-PF).
§ We	treat	each	particle	as	a	sequence	of	hits,	benefiting	from	the	success	of	
RNN	and	Transformer	in	Natural	Language	Processing	(NLP).



Workflow
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Details
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• Each	algorithm	outputs	the	fitted	3D	
trajectory	point	for	each	input	hit.
§ SIR-PF:	first	reconstructed	hit	as	prior,	sample	

propagation	through	the	following	15	hits.	The	
likelikhood calculating	relies	on	precomputed	
5-dimensional	histogram.

§ RNN:	five	bi-directional	GRU	layers,	50	hidden	
units	each,	.

§ Transformer:	5	transformer-encoder	layers,	8	
heads,	and	hidden	size	of	64.

• Main	results:
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Vertex activity: fitting method
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• Fitting	method:
§ Extract	the	values	of	the	parameters	that	define	VA.

• #	of	particles	(mostly	protons),	energy,	direction,	vertex	position.
§ Analysis	Method:	likelihood	fitting,	i.e. VA	simulation	is	performed	during	the	fitting.

1. Simulate	any	possible	combination	of	the	VA	parameters	and	build	VA.
2. Find	the	VA	3D	image	(e.g. SFGD	hits)	that	“best	fit”	the	data	and	find	the	“best-fit”	parameters.

§ The	fitting	method	is	highly	computationally	
expensive.
• Requires	a	large	number	of combinations	of	

parameters	to	be	simulated.	

§ Solution:	learn	a	fast	and	accurate	VA	simulation	
using	neural	networks	(generative	models).
• VA	simulation	independent	of	the	position	in	

SFGD,	i.e. 7x7x7	cubes	are	enough.
• The	VA	simulation	becomes	differentiable,	

meaning	that	physical	parameters	can	be	inferred	
through	minimisation methods.

§ We	found	GANs	as	the	best	trade-off	between	
speed,	generation	accuracy,	and	ease	of	use.
• Implementation	of	a	Wasserstein	GAN	(WGAN)	with	

gradient	penalty.

GANs VAEs Flow-based Diffusion

Accuracy Good Moderate Very Good Excellent

Speed Fast Fast Fast Very slow

Computing 
Resources

Moderate/
High

Low/
Moderate High Low

Complexity/
Ease of Use

Low/
Moderate

Low/
Moderate

High Low

Ecosystem 
Maturity

High High Low/
Moderate

Low/
Moderate



Validating the GAN generator
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Number	
of	

protons

Initial	KE	
[MeV]

Initial	
position	
[cm]

𝜃
[rad]

𝜑
[rad]

Testing	
sample	1	

10K 10 −2.3𝑒!",
−2.3𝑒!",
−5.1𝑒!#

2.186 -2.356

Testing	
sample	2

10K 20 −2.3𝑒!",
−2.3𝑒!",
−5.1𝑒!#

3.142 0.000

Testing	
sample	3

10K 30 −2.3𝑒!",
−2.3𝑒!",
−5.1𝑒!#

2.356 -1.571

Testing	
sample	4

10K 40 −2.3𝑒!",
−2.3𝑒!",
−5.1𝑒!#

2.526 0.785

Testing	
sample	5

10K 50 −2.3𝑒!",
−2.3𝑒!",
−5.1𝑒!#

1.741 -0.540

• Five	distinct batches of samples,	each with fixed
initial physics parameters.
§ 10K	protons each.

• We generated five batches of protons with the NN	
using the same physics parameters.
§ 10K	protons each too.

• Allows us to understand whether the network is
catching the stochasticity of the simulation.

XY charge projection

True

GAN



Fitting strategy
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1. Select	a	target	event	not	used	for	training.

2. Generate	N	random	proton	candidates	using	the	
NN	(trained	on	the	training	sample).
§ The	candidates	can	be	stored	for	caching.

3. Choose	a	metric	(e.g.,	chi2,	MSE)	to	find	the	closest	
candidate	to	the	target	event.
§ Alternatively,	since	the	NN	is	fully	

differentiable,	one	can	run	a	gradient-descent	
approach	to	find	the	best-fit	parameters.

4. Select	the	physical	parameters	of	the	best	
candidate.

*	The	fitting	can	be	done	for	multiple	events	at	the	same	
time.	The	idea	is	to	extend	the	approach	to	N	protons.

Training	
(1.2	M	
protons)

Testing	
(60K	

protons)Si
m
ul
at
ed
	sa
m
pl
e

NN	Generator

Target	
proton

Canditates

1

2tra
in

3

4

Retrieve	physics	
parameters	of	the	
selected	candidate

The	generator	module	of	the	GAN	becomes	an	extremely	fast	simulation:
• 100K	images:	3	seconds.
• 1M	images:	31	seconds	(>1	hour	with	GEANT4).
• 10	M	images:	~5:30	min.
• 100	M	images:	<1	hour.

*test	on	an	NVIDIA	A100	GPU.



standard
brute	force

1.2M	
simulated	
images

GAN
brute	force

10M
generated	
images
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GAN	trained	on	the	1.2M	
simulated	images	used	for	
the	standard	brute	force!

significant	KE	reconstruction	
improvement	for	the	0-30	KE	range

Fitting results (60K events, 1 proton per event) 



Summary
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• Deep	learning	is	used	for	different	complementary	tasks.

• Rejecting	noise	and	identifying	single-particle	hits.
§ Graph	neural	networks	(GNN)	and	Sparse	Convolutional	Neural	Networks	(SCNN).

• Fitting	the	track	trajectory.
§ Recurrent	neural	networks	(RNN)	and	Transformers.
§ Better	performance	than	Bayesian	inference.

• Fast	vertex	activity	simulation.
§ Generative	adversarial	networks	(GANs).
§ Useful	for	the	sampling	stage	of	the	vertex	activity	fitting.

• Future	work:
§ Fully	validate	the	different	methods	(avoid	biases,	test	on	control	samples,	etc.).
§ Integrate	the	different	methods	into	the	same	analysis.
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Training details
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• Each	proton	is	a	5x5x5	cube	volume,	with	a	proton	starting	uniformly	
in	the	centre cube	of	the	volume;	isotropic	direction,	uniform	KE	in	the	
range	0-60	MeV.

• We	may	look	at	the	generated	images	during	training.
§ Fix	arbitrary	input	parameters:

• 𝑋!"! = −2.3𝑒#$, −2.3𝑒#$, −5.1𝑒#% 𝑚𝑚 .
• 𝐾𝐸 = 30𝑀𝑒𝑉, 𝜃 = 2.356 𝑟𝑎𝑑 , 𝜑 = 1.571 [𝑟𝑎𝑑].

Example	of	true	
simulated	image	using	
the	selected	parameters


