Event reweighting and
generative models

JIn'neutfrine experiments

IPA workshop on Machine Learning for particle physics and astrophysics

March 21, 2023
@

LABORATORIO DE INSTRUMENTAGAO e | . R N
E FiSICA EXPERIMENTAL DE PARTICULAS e Cristévae Vilela
particulas Ig @

]



Reweighting and generating data

e Machine learning often used to summarise multidimensional data.
o  Given high-dimensional representation of the event X, produce a classification

score y.
Features, X # Labels, y

e But we may be interested in generating some data X, starting from the summary y, or
some modified data X', starting from our nominal data X.

"Labels’, y # "Features”, X Features, X % Features, X'

o | will briefly describe three applications of ML in neutrino physics where we are
interested in obtaining a detailed description of events, X, rather than the summary, y.
o A generative model for Super-Kamiokande events.
o  Reweighting between neutrino interaction models in DUNE.
m Thisis actually a classification task.
o Translating DUNE events from the near to the far detector.
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Super-K event reconstruction

Use information from sensors both with
and without registered hits in the event

L) =[ TT P Gunnie) TT P Ginse ) (@) t1)

For hit photosensors:

Build likelihood Cunhit Thit
function for_event Compare observed and Compare hit time
hypothesis x charge to prediction to prediction

e Maximise the likelihood for hit pattern as a function
of particle kinematics.
e "Traditional" approach has shortcomings due to
curse of dimensionality.
o Very difficult to model reflection of light in the
detector in few dimensions.

e Use neural network to generate probability density
function at each photosensor.




Generating PDFs for Super-K
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e Compare neural network output to average of 50k events generated with the

same parameters.
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Charge and time PDF
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PMT at the edge of the Cherenkov ring.
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Energy reconstruction

U~ Energy Residual
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e Reconstruct the particle energy by e Take likelihood ratios between
maximizing the likelihood. different hypotheses to identify
parficles.
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Event reweighting: what is it good for?

We use Monte Carlo methods to predict what our data should look like under different hypotheses.
Roughly factorizes into:

a. Generate neutrino-nucleus inferactions (fast)
b. Simulate the detector response (slow)
c. Reconstruct the events (slow)

There are significant uncertainties in the neutrino-nucleus interaction models, so we want to test the
impact of different models on our sensitivity.

o However, re-running the full simulation chain is often prohibitively expensive.

Model A Generate Simulate Reconstruct Prediction A

Apply Prediction B
weights

Model B Generate
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Reweighting between models

e Traditional reweighting methods make use of histograms.

o  Allows for reweighting up to 2 or 3 dimensions but not more.
o Canonly be used to reweight low-dimensional parts of the model that can be
factorized from the rest of the model.

e But we can reweight in high number of dimensions using ML.

DUNE TDR: boosted decision trees used to classify generated events between two

different models using 18 variables for describing the events.

o Classifier output can be interpreted as a probability and expressed as a weight.
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Reweighting examples
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Check model impact on analysis

Run neutrino oscillation analysis on
reweighted simulation.
Get significantly different results if the
wrong model is assumed.

o  But near detector saves the day!
Important result, only possible using ML.
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Precision Reaction-Independent Spec’rrum Measurement

e Data-driven DUNE analysis
possible using the DUNE-PRISM
moveable detector.

e For this to work, we need to be
able to compare near detector
data to far detector data.
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Detector response in data-driven analyses

67 ton LArTPC with 3D pixel read-out, - - RND (E,,E o ) £ RFD (E,,E oo ) -- 10 kton LAITPC with 3 x 2D wire
segmentation, and downstream muon AL N S R e A e read-out and very large drift
spectrometer volumes
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Need a model-independent method to account for differences in the detector responses.

. -
If an ND event had occurred instead in the FD, what would be its reconstructed energy at the FD?
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Learning the differences between ND and FD

e Traditional approach: response matrices out of high-level reconstructed variables.

o Leadsto model dependence. Model c .
ode ‘ . urse o
dependence dimensionality

Trade-off
Monet — pholo ‘ e Reduce model dependence by using image-to-image translation techniques to
CycleGAN arXiv:1703.10593 (2017) . .
generate FD-like events from ND events at hit level.
ND response FD response for
2D projection the same event 3D ND Event
0
100 =
\;ﬁ\\_
200 § e
e 2D proof-of-concept shows premising results.
0 N[») moduleO e Nextstep:
gap filled in o ND 3D readout = FD 3x2D readout

o Needs novel neural network architectures.
o Workin progress with R. Radev (CERN).

400
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Summary

e Lots of inferesting applications of machine learning in neutrino physics.
e Showed three examples of applications not focused on classification:
o Generative model for Super-Kamiokande events.
m Produces probability density functions for the detector sensors given an
event hypothesis.
o Event reweighting for DUNE.
m Reweight between interaction models in many dimensions.
m Enables important studies that would not be possible without ML.
o Near-to-far detector event translation in DUNE.
m Geft far detector response given a near detector event.
m Exploit full information content of the data to avoid model dependence.
m Workin progres...
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PDF parameterisation

e Requirements:

o  Statistically robust (i.e., infegrates to 1) and smooth (for gradient descent)
o  General-ish — do not assume what the PDFs look like a priori

e Strategy:

o Use combinations of Gaussians (a la Gaussian Mixture Model)
m 2x1D or 2D, correlated or uncorrelated.
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Note: g-t correlations can still arise from the
different means of each component.
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Extra DOF for each component: the g-t correlation.
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Work with components of the
Cholesky-decomposed triangular matrix.

Add conditions to the alphas to guarantee
covariance matrix properties. 23
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