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Reweighting and generating data
● Machine learning often used to summarise multidimensional data.

○ Given high-dimensional representation of the event X, produce a classification 
score y.

● But we may be interested in generating some data X, starting from the summary y, or 
some modified data X', starting from our nominal data X.

● I will briefly describe three applications of ML in neutrino physics where we are 
interested in obtaining a detailed description of events, X, rather than the summary, y.

○ A generative model for Super-Kamiokande events.
○ Reweighting between neutrino interaction models in DUNE.

■ This is actually a classification task.
○ Translating DUNE events from the near to the far detector.

MLFeatures, X Labels, y

ML"Labels", y "Features", X MLFeatures, X Features, X'
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Super-Kamiokande event 
reconstruction
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Super-Kamiokande
50 kt H2O
11k photomultiplier tubes



Particle identification at Super-K
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Super-K event reconstruction
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Build likelihood 
function for event 

hypothesis x

Use information from sensors both with 
and without registered hits in the event

For hit photosensors:

Compare observed 
charge to prediction

Compare hit time 
to predictionand

● Maximise the likelihood for hit pattern as a function 
of particle kinematics.

● "Traditional" approach has shortcomings due to 
curse of dimensionality.

○ Very difficult to model reflection of light in the 
detector in few dimensions.

● Use neural network to generate probability density 
function at each photosensor.



Generating PDFs for Super-K
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https://doi.org/10.3389/fdata.2022.868333


Generating PDFs for Super-K
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Hit probability
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● Compare neural network output to average of 50k events generated with the 
same parameters.

https://doi.org/10.3389/fdata.2022.868333


Charge and time PDF

10Front. Big Data 5:868333

Electron Muon

PMT at the edge of the Cherenkov ring.

https://doi.org/10.3389/fdata.2022.868333


Energy reconstruction
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● Reconstruct the particle energy by 
maximizing the likelihood.

● Take likelihood ratios between 
different hypotheses to identify 
particles.

https://doi.org/10.3389/fdata.2022.868333


DUNE event reweighting
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Event reweighting: what is it good for?
● We use Monte Carlo methods to predict what our data should look like under different hypotheses.
● Roughly factorizes into:

a. Generate neutrino-nucleus interactions (fast)
b. Simulate the detector response (slow)
c. Reconstruct the events (slow)

● There are significant uncertainties in the neutrino-nucleus interaction models, so we want to test the 
impact of different models on our sensitivity.

○ However, re-running the full simulation chain is often prohibitively expensive.

GenerateModel A Simulate Reconstruct Prediction A

Model B Generate

Compute 
weights

Apply 
weights

Prediction B
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Reweighting between models
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Near Detector
Neutrino mode 
GENIE
NuWro
Total

● Traditional reweighting methods make use of histograms.
○ Allows for reweighting up to 2 or 3 dimensions but not more.
○ Can only be used to reweight low-dimensional parts of the model that can be 

factorized from the rest of the model.
● But we can reweight in high number of dimensions using ML.
● DUNE TDR: boosted decision trees used to classify generated events between two 

different models using 18 variables for describing the events.
○ Classifier output can be interpreted as a probability and expressed as a weight.



Reweighting examples
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θ𝜇 Np x

Q2 [GeV2] W [GeV] Y

GENIE
NuWro
GENIE→NuWro
Far Detector
Neutrino mode 



Check model impact on analysis
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Neutrino mode
Pre-fit
Post-fit 

Antineutrino mode 

Antineutrino mode Neutrino mode 

● Run neutrino oscillation analysis on 
reweighted simulation.

● Get significantly different results if the 
wrong model is assumed.

○ But near detector saves the day!
● Important result, only possible using ML.



DUNE near to far detector 
translation
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Combine 
DUNE-PRISM

fluxes

Precision Reaction-Independent Spectrum Measurement
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Combine 
DUNE-PRISM

data
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● Data-driven DUNE analysis 
possible using the DUNE-PRISM 
moveable detector.

● For this to work, we need to be 
able to compare near detector 
data to far detector data.
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Detector response in data-driven analyses
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10 kton LArTPC with 3 x 2D wire 
read-out and very large drift 
volumes

67 ton LArTPC with 3D pixel read-out, 
segmentation, and downstream muon 

spectrometer

ND 

𝜇 spectrometer

FD 

𝜈
5 m LArTPC

62 m LArTPC

● Need a model-independent method to account for differences in the detector responses.
○ If an ND event had occurred instead in the FD, what would be its reconstructed energy at the FD?



Learning the differences between ND and FD
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CycleGAN arXiv:1703.10593 (2017)

Model 
dependence

Curse of 
dimensionalityTrade-off

p �� p

ND response 
2D projection

FD response for 
the same event

Cycle
GAN

ND module 
gap filled in

● Traditional approach: response matrices out of high-level reconstructed variables.
○ Leads to model dependence.

● Reduce model dependence by using image-to-image translation techniques to 
generate FD-like events from ND events at hit level.

● 2D proof-of-concept shows promising results.
● Next step:

○ ND 3D readout → FD 3x2D readout
○ Needs novel neural network architectures.
○ Work in progress with R. Radev (CERN).

3D ND Event
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Summary
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● Lots of interesting applications of machine learning in neutrino physics.
● Showed three examples of applications not focused on classification:

○ Generative model for Super-Kamiokande events.
■ Produces probability density functions for the detector sensors given an 

event hypothesis.
○ Event reweighting for DUNE.

■ Reweight between interaction models in many dimensions.
■ Enables important studies that would not be possible without ML.

○ Near-to-far detector event translation in DUNE.
■ Get far detector response given a near detector event.
■ Exploit full information content of the data to avoid model dependence.
■ Work in progres… 



Extra
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PDF parameterisation
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● Requirements:
○ Statistically robust (i.e., integrates to 1) and smooth (for gradient descent)
○ General-ish – do not assume what the PDFs look like a priori

● Strategy:
○ Use combinations of Gaussians (a la Gaussian Mixture Model)

■ 2x1D or 2D, correlated or uncorrelated.

Uncorrelated
Note: q-t correlations can still arise from the 
different means of each component.

Correlated
Extra DOF for each component: the q-t correlation.

Work with components of the 
Cholesky-decomposed triangular matrix.

Add conditions to the alphas to guarantee 
covariance matrix properties.Front. Big Data 5:868333

https://doi.org/10.3389/fdata.2022.868333

