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For my AI/ML 
research focused on 

neutrinos, go look at 
this youtube!

https://www.youtube.com/watch?v=XvcBKS9HIes


Challenges @ the Neutrino Frontiers
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Accelerator-based Neutrino Experiments

Analysis steps
● Identify individual neutrinos
● Infer neutrino properties
● Compare observables 

between two detectors
● Infer the physics
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Future Directions of the AI/ML Development

● Challenges in accelerator-based neutrino experiments

● A multi-task workflow optimization with a composite model 

● Differentiable physics models and inference applications

● Summary
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Composite Deep Learning Model 
for a Multi-task Cascade
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Today: going beyond a “simple” end-to-end AI/ML

Robustness

Interpretability / Explainability

Reusability

… without losing goodies like powerful optimization methods, automation, etc.
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0 = “electron neutrino”

1 = “muon neutrino”

AI/ML is Impactful: can we make it better?



0 = “electron neutrino”

1 = “muon neutrino”

Pixel Feature
Extraction + Points

p

pepi

Pixel clustering Kinematics
Inference

Reconstruction: produce intermediate physical observables 
with sensible hierarchical correlations

Inductive Bias: Algorithm Structure
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Full Data Reconstruction via Deep Learning

Step 1: Identifying pixel-level key features
(Sparse-CNN for globally-sparse, locally-dense images)

Full chain (NeurIPS WS)
Public dataset

1, 2, 3, 4

9

https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Full Data Reconstruction via Deep Learning

Step 2: Identifying individual particles
(CNN for dense-pixel clustering + GNN for scattered cluster aggregation)

Full chain (NeurIPS WS)
Public dataset

1, 2, 3, 4
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https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Full Data Reconstruction via Deep Learning

Step 3: Identifying particle-to-particle correlations
(GNN with directed graph and node/edge aggregation layers) 

Full chain (NeurIPS WS)
Public dataset

1, 2, 3, 4
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https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


End-to-End optimizable full chain
● The 1st/only quality  3D reconstruction model for 

LArTPCs (U.S. long baseline neutrino experiments)
● Orders of magnitudes acceleration for inference

Full Data Reconstruction via Deep Learning
Full chain (NeurIPS WS)

Public dataset
1, 2, 3, 4
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https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


SciML: Applying AI/ML Hiking Skills
For Physics Inference
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Gradient-based Optimization

Neural Net. Evaluation

Parameters

Input Output Objectives

“backpropagation”
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Differentiable Physics Models

Physics Sim. Evaluation

Parameters

Input Output Objectives

“backpropagation”

Program
Physical Design 

using Differentiable 
Learned Simulators

(DeepMind 2202.00728)
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https://docs.google.com/file/d/10nEPfORyxt_0gx_g7ddaIPhc_urTjmDE/preview
https://arxiv.org/pdf/2202.00728.pdf


Differentiable Physics Models

Modeling
Detector Physics

Example: Liquid Argon TPC
Objective: given a calibration dataset 

(i.e. images of particle trajectories 
with approximated dE/dX values), 

“fit” the detector physics parameters
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Detector Simulation

Example: Liquid Argon TPC
● Charged particle ionize electrons
● Electrons drifts under E-field
● Signal diffuse and attenuated

Modeling
Detector Physics

Differentiable Physics Models
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… 

Detector Simulation

Example: Liquid Argon TPC
● Charged particle ionize electrons
● Electrons drifts under E-field
● Signal diffuse and attenuated

Differentiable Physics Models

Optimizing the “lifetime” 
physics parameter directly 

from calibration dataset
18



Differentiable Physics Models

Diffusion during the drift

Ionization (signal) yield

Work credit due (from left): 
ML/Math: Youssef N., Sean G., Daniel R.
neutrino: Yifan C., Roberto S.

Lots of applications

● Simultaneous multi-parameter fit

● Inter-parameter dependency study

● Automation of calibration workflow

● Inverse imaging (i.e. reconstruction)19



Differentiable Surrogate as a Simulator

Photo-multiplier tubes (PMTs) detect scintillation photons 
produced isotropically from an Argon atom
1 meter muon produces ~ 5M photons 

Optical Photon 
Transport

20



Control dataset: 3D TPC trajectory for 
which XYZ position of space-points are 
accurately measured

numerical stability, 
~25 P.E.-squared 

Predicted P.E.
Deposited charge 

at the point i

light yield

Quantum efficiency 
of the PMT j

SIREN prediction for 
the point i at the PMT j

Differentiable Surrogate as a Simulator

21



Simulation

SIRENSIREN also learns the gradient map

SIREN as a differentiable surrogate is used for data 
reconstruction in addition to simulations

Work credit (from left): Olivia P. (UC Berkeley), Minjie L. (SLAC), 
Patrick T. (SLAC), , Gordon W. (Stanford CS), Chuan L. (Lambda Labs)

Preprint arXiv:2210.01505

Collaborative work between SLAC, Stanford CS, 
and Lambda Labs (AI start up in SF)

Differentiable Surrogate as a Simulator
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https://arxiv.org/pdf/2211.01505.pdf


Heading Where?
Present and Future R&D
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Differentiable Physics Model: Many Applications

24

Backpropagate to 
solve (optimize) for 

the input

Input domain of  
detector process

(simulation-only)

Output domain of  
detector process
(inc. real data)

Beyond being a self-calibrating machine…
e.g.) solve the inverse problem (unfolding the detector effects)

F (Y|X, 𝜃F)
Differentiable LArTPC Simulator
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F (Y|X, 𝜃F)
Differentiable LArTPC Simulator

and / or

G (X|Y, 𝜃G)
Inverse Image Solver

Input domain of  
LArTPC simulator

(inaccessible)

Output domain of  
LArTPC simulator

(e.g. real data)

Beyond being a self-calibrating machine…
… or use as a regularization + enable real-data training for a NN inverse solver

Differentiable Physics Model: Many Applications



Closing Overlook
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Future Directions of AI/ML and Science

SciML: science for AI/ML

● Multi-task, end-to-end optimizable, hierarchical object reconstruction chain 

● Differentiable physics modeling (both explicit and neural representations) 

● Things briefly glanced / skipped:
○ Diffusion model as a non-iterative inverse solver for detector physics
○ Foundation model for particle detector physics with multi-modal input
○ Generative graph for modeling a many-body system (nuclear FSI, cosmo.)
○ Calibrated model uncertainty quantification methods (e.g. paper)

● Common themes across the threads:
○ Explainability/interpretability, reusability, automation, acceleration
○ Enable new techniques or orders of magnitude improvement 
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https://arxiv.org/pdf/2302.03787.pdf


Fun

28



Back-up Slides
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An Approach Opposite to SciML
Foundation Models

~ Learning Physics w/ Representations 
from Real Data ~

30



Simulation Reconstruction Analysis

Parameters Parameters Parameters

Evaluation

Toward Fully SciML-based Pipeline

Enables:

● Automated optimization of model parameters for the entire workflow

● Physics simulation and inference, design optimization, UQ study

● Explainable & interpretable by design where physics knowledge applied
31



Simulation Reconstruction Analysis

Parameters Parameters Parameters

Evaluation

Toward Fully SciML-based Pipeline

… yet, lots of challenges!:

● Non-differentiable operations (e.g. stochastic and/or discrete processes)

● Might suffer from a “missing (new) physics model” in data

● Feed-forward: the model architecture is fixed = cannot “discover”
32



Toward Fully AI/ML-based Pipeline

A feed-forward model lacks human-like 
capability (e.g. iterative “think again”) 

33



New AI/ML Tool: Foundation Models

Self-supervision
Learn from co-occurrence patterns. 

“The color of an apple is red.”
Can utilize lots of unlabeled data!

“Representation Learning”
Must learn the universe represented by data

Transfer Learning
Conceptualizing the world, the model can be 

adopted to perform various tasks (task-agnostic)

Rep. Learning
(via self-supervision)

Transfer Learning
(fine-tuning w/ labels) Multiple data modalities

34



Foundation Models

(Chat-) GPTStable Diffusion
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Image credit: Javier Duarte (CMS/UCSD)

R&D: A shared “detector physics” model
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What’s in the
 “Experimental Physics Pipeline”?
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Scientific (physics)
Workflow

Experiment
Design

Building / 
Installation

Data Taking /
Facility Operations

Hypothesis
Building

Calibration
Reconstruction

Physics
Inference

38



AI/ML is
Everywhere

Experiment
Design

Building / 
Installation

Aparatus design optimization
(2002.04632)

AR for support (NASA)

Data Taking /
Facility Operations

Fast-ML / Edge-ML
(HLS4ML)

Bayesian Optimization
Reinforcement Learning
(2010.09824, 2202.07747)

Uncertainty Quantification
(PRAB 24.114601)

Object Reconstruction
(2102.01033)

Hypothesis
Building

Fast Simulation
(2204.02496)

Calibration
Reconstruction

Physics
Inference

Detector Response
Calibration
(2102.01033)

39

Physics Inference
(2006.15052)

https://arxiv.org/pdf/2002.04632.pdf
https://fastmachinelearning.org/hls4ml/#
https://arxiv.org/abs/2010.09824
https://arxiv.org/abs/2202.07747
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.24.114601
https://arxiv.org/abs/2102.01033
https://arxiv.org/pdf/2204.02496.pdf
https://arxiv.org/abs/2102.01033
https://arxiv.org/pdf/2006.15052.pdf


Closing Note: Ecosystem for AI/ML Research

Education and 
training

Public 
data and 
softwre

Distributed 
computing 

at scale

HEP Ecosystem for AI research
● Accessible education and training at all levels

● Interdisciplinary research environment (e.g. 
workshops, hackathons, visiting scholars program) 

● Shared computing resources available always

● Open and reusable datasets and software with 
documentation and performance metrics

AI Center

AI is an accelerator. It is coming. Don’t avoid. 
Participate to make sure the use is good.

● Ethics of AI: how to ensure diversity, equity, and inclusion which is already 
terrible in STEM? How to ensure small and large projects both benefits from AI?

40



Examples of Scientific ML (SciML)

41



Inject inductive bias (physics knowledge)

1. Given a neural network, inject physics

2. Given a physics model, equip with the AI/ML tools

Scientific AI/ML by Physics

Algorithm Evaluation

Parameters

Input Output Objectives

42



Inductive Bias: Injecting Physics Knowledge

Analog to CNNs: Add constraints to the math 
operations in the algorithm to preserve the 
invariance under certain transformations

e.g.) “Lorentz invariant” neural network

Algorithm Evaluation

Parameters

Input Output Objectives

Lorentz Group Equivariant Neural 
Networks (A. Bogatskiy et al.)

43

https://arxiv.org/pdf/2006.04780.pdf


Symmetry Group Equivariant 
Architecture (A. Bogatskiy et al.) 

Lorentz Group Equivariant Neural 
Networks (A. Bogatskiy et al.)

Sampling using SU(N) gauge equivalent 
flows (D. Boyda et al.)

Gauge Equivariant CNN
(T.S. Cohen et al.)

Lagrangian Neural Networks
 (M. Cranmer et al.) 

Hamiltonian Neural Networks
 (S. Greydanus et al.) 

Inductive Bias: Injecting Physics Knowledge

44

https://arxiv.org/pdf/2203.06153.pdf
https://arxiv.org/pdf/2006.04780.pdf
https://arxiv.org/pdf/2008.05456.pdf
https://arxiv.org/pdf/1902.04615.pdf
https://arxiv.org/pdf/2003.04630.pdf
https://arxiv.org/pdf/1906.01563.pdf


Evaluation

Parameters

Input Output ObjectivesAlgorithm

Introduce physics concepts in the loss as 
regularizations (e.g. boundary conditions, 
partial differential equations)

e.g.) Physics-Informed Neural Networks
(M. Raissi et al.)

Free-fall physics model regularizations for the loss

PINNs

Naive NN

Inductive Bias: Injecting Physics Knowledge
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Human-in-the-Loop
Optimization of Chat-GPT
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Human-in-the-Loop (RLHF) OpenAI ChatGPT blog post

47

https://openai.com/blog/chatgpt/


OpenAI ChatGPT blog post

Human binary 
classification 
(good/bad)

Ranking of 
samples by 

humans

Human-in-the-Loop (RLHF)

48

https://openai.com/blog/chatgpt/


Additional Details
Neural Scene Representation for 

Optical Transport Modeling

49
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Optical Detector 
Simulation

ML for Detector Physics Modeling
Differentiable surrogate for optical photon transport
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Photo-multiplier tubes (PMTs) detect scintillation photons 
Optical Photon 

Transport

ML for Detector Physics Modeling
LAr scintillator light detection



Photo-multiplier tubes (PMTs) detect scintillation photons 
produced isotropically from an Argon atom
1 meter muon produces ~ 5M photons 

52

Optical Photon 
Transport

ML for Detector Physics Modeling
LAr scintillator light detection



53Example: ICARUS detector, 2D slice of a 3D map

Optical Photon 
Transport

A marginalized “Visibility Map” for 3D voxelized volume 
used to estimate the mean photon count for each PMT
Issue: static and not scalable

ML for Detector Physics Modeling
LAr scintillator light simulation
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A marginalized “Visibility Map” for 3D voxelized volume 
used to estimate the mean photon count for each PMT
Issue: static and not scalable

Example: ICARUS detector, 2D slice of a 3D map

Optical Photon 
Transport

● Implicitly optimized based on simulation 
update (~2 weeks to produce each time)

● Limited scalability … ~1E9 voxels for ICARUS
○ Coarse voxel size (~5cm cubic)
○ Large statistical error (~30k photons/vox.)

Difficult to scale full DUNE 

ML for Detector Physics Modeling
LAr scintillator light simulation
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Differentiable Neural Scene Representation

NeRF: breakthrough on 
high resolution image 
representation by a very 
simple nerual network

SIREN: success of learning the 
1st and 2nd order derivatives

ACORN: scalable version of SIREN 
by adding spatial feature compression 
(essentially a learnable kd-tree) 

… only a few examples

ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors

https://www.matthewtancik.com/nerf
https://vsitzmann.github.io/siren/
https://www.computationalimaging.org/publications/acorn/
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Differentiable Neural Scene Representation
SIREN trained on “Toy + Noise” 

successfully learned the underlying 
analytical function shape (simulation)

SIREN for LArTPC detectors

● Designed as an implicit representation 
of a continuous function in space 
(suited to “visibility”, “E-field”, etc.)
○ Can be seen as a trade-off between 

an analytical function and a table

● “Differentiable” implies we can directly 
optimize against “data v.s. simulation 
discrepancy” given control samples

SIREN provide 
improvement 
on simulation

already! 

ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors
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ICARUS: 2D slice, map (top) v.s. SIREN (bottom) 

ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors
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ICARUS: 2D slice, map (top) v.s. SIREN (bottom) 

ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors
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Training SIREN on real data
Control dataset: 3D TPC trajectory for which XYZ 
position of space-points are accurately measured

numerical stability, 
~25 P.E.-squared 

Predicted P.E.
Deposited charge 

at the point i

light yield

Quantum efficiency 
of the PMT j

SIREN prediction for 
the point i at the PMT j

ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors
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ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors
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Training SIREN on real data

ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors
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ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors

Work credit (from left): Olivia P. (UC Berkeley), Minjie L. (SLAC), 
Patrick T. (SLAC), , Gordon W. (Stanford CS), Chuan L. (Lambda Labs)

Preprint arXiv:2210.01505

https://arxiv.org/pdf/2211.01505.pdf


Challenges for Differentiable Simulators

63



Differentiable Physics Models

Challenges: physics models involve stochastic, discrete operations that are 
not differentiable as they are.

Simulation Analysis

Image: courtesy of Lucas Heinrich
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Differentiable Physics Models

Challenges: physics models involve stochastic, discrete operations that are 
not differentiable as they are. But expectation values over statistics are 
usually smooth and differentiable (e.g. AI playing a game)
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Differentiable Physics Models

Challenges: physics models involve stochastic, discrete operations that are 
not differentiable as they are. But expectation values over statistics are 
usually smooth and differentiable (e.g. AI playing a game)

EM shower

Material distribution Radial hit
distribution

Simple experiment: optimize the calorimeter radius to contain a shower

66



Differentiable Physics Models

Challenges: physics models involve stochastic, discrete operations that are 
not differentiable as they are. But expectation values over statistics are 
usually smooth and differentiable (e.g. AI playing a game)

InitialFinal
“Noisy gradient”
But it works to 
find the optimal 
radius correctly.

Figures courtesy of 
Lucas Heinrich

Simple experiment: optimize the calorimeter radius to contain a shower

67



Extents of Detector Inverse Solvers

68
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ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator

G (X|Y, 𝜃G)
Inverse Image Solver

Input domain of  
LArTPC simulator

(inaccessible)

Output domain of  
LArTPC simulator

(e.g. real data)

E.g. use for optimizing an image inverse solver 
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F (Y|X, 𝜃F)
Differentiable LArTPC Simulator

and / or

G (X|Y, 𝜃G)
Inverse Image Solver

Input domain of  
LArTPC simulator

(inaccessible)

Output domain of  
LArTPC simulator

(e.g. real data)

E.g. use for optimizing an image inverse solver 

ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator
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ReconstructiondE/dX
(inaccessible)

Detector
calibration

Image data
(charge/light, accessible)

Drift & Detector 
response Analysis

ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator
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ReconstructiondE/dX
(inaccessible)

Detector
calibration

Image data
(charge/light, accessible)

Drift & Detector 
response Analysis

ReconstructiondE/dX
(inaccessible)

Image data
(charge/light, accessible)

Drift & Detector 
response Analysis

Detector
calibration

Near detector

Far detector

D
iff

ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator
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Near detector

Far detector

dE/dX
(inaccessible)

Image data
(charge/light, accessible)

Drift & Detector 
response

AnalysisReconstruction

dE/dX
(inaccessible)

Image data
(charge/light, accessible)

Drift & Detector 
response

dE/dX
(inferred)

Reconstruction can be 
shared across detectors.

Detector calibration can 
be automated

ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator



Application Details
Reconstruction Chain

74
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Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction
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Stage 1

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-b: Particle Edge-point Prediction

Semantic segmentation 
(U-Net + residual conn.) 

Edge point detection
(Faster R-CNN)

Sparse tensor operation
(Minkowski Engine) 77

See Phys. Rev. D 102, 012005 (2019) and Phys. Rev. D 104, 032004 (2020)

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1904.08755
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: input & output

Stage 2-a Input Stage 2-a Output



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: dense pixel clustering

Image credit: arXiv 1708.02551

Clustering in the embedding space
● Use CNN to learn a transformation function from the 3D voxels to the embedding 

space where clustering can be performed in a simple manner

79

https://arxiv.org/pdf/1708.02551.pdf


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083Work credit: 
Dae Heun Koh (Stanford)

80

https://arxiv.org/abs/2007.03083


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083Work credit: 
Dae Heun Koh (Stanford)

81

https://arxiv.org/abs/2007.03083
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: input & output

Stage 2-a Input Stage 2-a Output



  

CNN for pixel-level regression dense clustering
(DeepLearnPhysics for DUNE)

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: grouping particles as a cluster

83



  

CNN for pixel-level regression dense clustering
(DeepLearnPhysics for DUNE)

Graph NN for analyzing 
correlations between 

entities which size and 
distance from other entities 

are arbitrary.

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: grouping particles as a cluster
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering

See Phys. Rev. D 104, 072004

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

85

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

Node features:
● Centroid, Covariance matrix, PCA
● Start point, direction (PPN)

Input graph:
● Connect every node with every other node 

(complete graph)

Edge features:
● Displacement vector
● Closest points of approach

86
See Phys. Rev. D 104, 072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Target Prediction

work credit:
Francois D (SLAC), Qing L. (USTC),
Brad N (stat, U. Chicago), Alexander Z. (MIT), 

87
See Phys. Rev. D 104, 072004

https://arxiv.org/abs/2007.01335
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: input & output

Stage 2 Input Stage 2 Output



ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: Interaction Clustering

Identifying Each Interaction?
Grouping task = re-use GrapPA! 

● Interaction = a group of particles that 
shared the same origin (i.e. neutrino 
interaction)

● Edge classification to identify an 
interaction

● Node classification for particle type ID

89
See Phys. Rev. D 104, 072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: Interaction Clustering

Target Group Predicted Interaction

90
See Phys. Rev. D 104, 072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1


ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: Interaction Clustering

Predicted Interaction

Promising result to address 
DUNE-ND reconstruction challenge 
(~20 neutrino pile-up) 91

See Phys. Rev. D 104, 072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: input & output

Stage 3 Input Stage 3 Output
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Reference publications
Full chain (NeurIPS WS)

Public dataset
1, 2, 3, 4

Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction

https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004

