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Challenges @ the Neutrino Frontiers
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Accelerator-based Neutrino Experiments
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Accelerator-based Neutrino Experiments
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e Identify individual neutrinos
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Future Directions of the AI/ML Development
SR : ] ] §I : :
e A multi-task workflow optimization with a composite model

e Differentiable physics models and inference applications

e Summary







AI/ML is Impactful: can we make it better?

/

-

0 = “electron neutrino”

1 = “muon neutrino”

Today: going beyond a “simple” end-to-end AI/ML

Robustness
Interpretability / Explainability
Reusability

... without losing goodies like powerful optimization methods, automation, etc.




Inductive Bias: Algorithm Structure

4 A

0 = “electron neutrino”

1 = “muon neutrino”
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Pixel Feature - Pixel clUstering';* Kinematics % -
Extraction + Points . Inference

Reconstruction: produce intermediate physical observables
with sensible hierarchical correlations



Full Data Reconstruction via Deep Learning
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Step 1: Identifying pixel-level key features
(Sparse-CNN for globally-sparse, locally-dense images)



https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004

Full Data Reconstruction via Deep Learning
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Step 2: Identifying individual particles
(CNN for dense-pixel clustering + GNN for scattered cluster aggregation)



https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004

Full Data Reconstruction via Deep Learning
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Step 3: Identifying particle-to-particle correlations
(GNN with directed graph and node/edge aggregation layers)



https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004

Full Data Reconstruction via Deep Learning
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https://arxiv.org/abs/2102.01033
https://arxiv.org/abs/2006.01993
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004

SciML: Applying AI/ML Hiking Skills
For Physics Inference




Gradient-based Optimization

“backpropagation”
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Differentiable Physics Models

“backpropagation”
Parameters
Qt = 9t_1 - )\V@L(.’If, 0)
\ g VoLl(x,0)
Input > Physics Sim. 2 Output » 2 Objectives
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simulator evaluation e el simulator evaluation

Physical Design

using Differentiable

.4 3 Learned Simulators
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https://docs.google.com/file/d/10nEPfORyxt_0gx_g7ddaIPhc_urTjmDE/preview
https://arxiv.org/pdf/2202.00728.pdf

Differentiable Physics Models

Modeling
Detector Physics
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Example: Liquid Argon TPC
Objective: given a calibration dataset
(i.e. images of particle trajectories
with approximated dE/dX values),
“fit” the detector physics parameters




Differentiable Physics Models

b olelbig : Example: Liquid Argon TPC
Detector Physics .
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Differentiable Physics Models

Example: Liquid Argon TPC
e (Charged particle ionize electrons
e Electrons drifts under E-field
e Signal diffuse and attenuated
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Detector Simulation
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training iterations

Q = Qo exp(—variget/T)

Optimizing the “lifetime”
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from calibration dataset




Differentiable Physics Models

Work credit due (from left):
ML/Math: Youssef N., Sean G., Daniel R.
1000 2000 3000 1000 2000 3000 neutrino: Yifan C., Roberto S.

training iterations training iterations

Ap

Tonization (signal) yield EeEEwwmrrmeys Lots of applications

e Simultaneous multi-parameter fit

e Inter-parameter dependency study

Kb/eField

e Automation of calibration workflow

Degeneracy e Inverse imaging (i.e. reconstruction)

1000 2000 3000 4000 2000 3000 4000
training iterations training iterations




Differentiable Surrogate as a Simulator

Photo-multiplier tubes (PMTSs) detect scintillation photons
produced isotropically from an Argon atom
1 meter muon produces ~ 5M photons

Optical Photon
Transport




Differentiable Surrogate as a Simulator

T Control dataset: 3D TPC trajectory for
which XYZ position of space-points are
accurately measured

Deposited charge -
. t th . Quantum efficiency

all points

lightyield  SIREN prediction for
\ the point i at the PMT j

11 PMT:
i ) S (P - 0y)
Loss = Z TPl numerical stability,
j J ~25 P.E.-squared




Differentiable Surrogate as a Simulator

Simulation

Preprint arXiv:2210.01505

Implicit Neural Representation as a Differentiable Surrogate for Photon Propagation
in a Monolithic Neutrino Detector

Minjie Lei,2* Ka Vang Tsan; ean Gasiorowski,! Chuan Li,? ssef Nashed,!
Gianluca Petrillo,! O aniel Ra 7 5 Terao!

(on behalf of the DeepLearnPhysic:
1SLAC National Accelerator Laboratory, Menlo Park
2Stanford University, Stanfo " /
3 Lambdalab Inc., San Fra A, ¢ A
! University of California, Berkeley, CA, 94720, USA

B Pan  an " an T en " an Ten  Tan Tan T en’ Work credit (from left): Olivia P. (UC Berkeley), Minjie L. (SLAC),
S & ©b o5 ©b ©b ©O6 ©6b ©o o5 o Patrick T. (SLAC), , Gordon W. (Stanford CS), Chuan L. (Lambda Labs)

Collaborative work between SLAC, Stanford CS,
and Lambda Labs (AI start up in SF)

SIREN as a differentiable surrogate is used for data
reconstruction in addition to simulations


https://arxiv.org/pdf/2211.01505.pdf

Heading Where?
Present and Future R&D




Differentiable Physics Model: Many Applications

Beyond being a self-calibrating machine...
e.g.) solve the inverse problem (unfolding the detector effects)

(—

Backpropagate to
.. solve (optimize) for Al
the input
X e D; Y € Do
Input domain of — Output domain of
detector process F (Y| X, Or) detector process

(simulation-only) Differentiable LArTPC Simulator (inc. real data) 2



Differentiable Physics Model: Many Applications

Beyond being a self-calibrating machine...
... Or use as a regularization + enable real-data training for a NN inverse solver

G (XY, 6c)

Inverse Image Solver
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Liny = |G(Y) — X|?

and / or

‘CCC = |F(G(Y)) B Y|2

Y € Doy

Output domain of

I

LArTPC simulator F (Y| X, HF) LArTPC simulator
(inaccessible) Differentiable LArTPC Simulator (e.g. real data) 25

Input domain of




Closing Overlook




Future Directions of AI/ML and Science

SciML: science for AI/ML

e Multi-task, end-to-end optimizable, hierarchical object reconstruction chain
e Differentiable physics modeling (both explicit and neural representations)

e Things briefly glanced / skipped:
o Diffusion model as a non-iterative inverse solver for detector physics
o Foundation model for particle detector physics with multi-modal input
o Generative graph for modeling a many-body system (nuclear FSI, cosmo.)
o Calibrated model uncertainty quantification methods (e.g. )

e Common themes across the threads:
o Explainability/interpretability, reusability, automation, acceleration
o Enable new techniques or orders of magnitude improvement


https://arxiv.org/pdf/2302.03787.pdf

Fun

CatGPT

What if ChatGPT were a cat?

Meow, meow meow meow, meow meow?
n What are the goals of the ICARUS experiment?

Meow meow meow meow meow meow meow meow Meow Meow Meow Meow Meow Meow meow.
g | learned something. Thank you.

32 Meow meow meow meow meow meow Mmeow Meow Meow Meow meow Meow meow Meow meow.



Back-up Slides



An Approach Opposite to SciML
Foundation Models
~ Learning Physics w/ Representations
from Real Data ~



Toward Fully SciML-based Pipeline

Parameters Parameters Parameters

¥ $ ¥

N - - T
LA

e Automated optimization of model parameters for the entire workflow

Enables:

e Physics simulation and inference, design optimization, UQ study

e Explainable & interpretable by design where physics knowledge applied



Toward Fully SciML-based Pipeline

Parameters Parameters Parameters

¥ $ ¥

N - - T
LA

.. yet, lots of challenges!:

e Non-differentiable operations (e.g. stochastic and/or discrete processes)
e Might suffer from a “missing (new) physics model” in data

e Feed-forward: the model architecture is fixed = cannot “discover”



Toward Fully AI/ML-based Pipeline

[ Pixel Features ] [ Pixel Clustering] [ Particle Clustering ]
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A feed-forward model lacks human-like
capability (e.g. iterative “think again”)




New AI/ML Tool: Foundation Models

“Representation Learning”
Must learn the universe represented by data

“The color of an apple is D.” ‘

Can utilize lots of unlabeled data!

Self-supervision »

Learn from co-occurrence patterns.

Transfer Learning
(e Conceptualizing the world, the model can be
kl adopted to perform various tasks (task-agnostic)

Transfer Learning
(fine-tuning w/ labels)

PR

Rep. Learning .
(via self-supervision) “4

Multiple data modalities

Data

Text I

>
gb
N2
Foundation
Model

A
Adaptation '
N




Foundation Models

5 . d Let me ask questions about logic and commonsense
Stable Diffusion ’ ’ (Chat-) GPT

Sure, I'll do my best to answer any questions you have about logic and common sense.

Please go ahead and ask!

| give you a premise followed by a question.
Tell me your answer, either Yes or No, followed by your reasoning.

Sure, I'll do my best to answer your questions based on the given premise. Please go

ahead and provide the premise and question.

Premise: | have not had food.
Question: Have | had friedrice?

Based on the premise that you have not had any food, my answer would be "No, you have

not had fried rice."

My reasoning is that if you have not had any food, it would be impossible for you to have

had fried rice, which is a type of food. 35




R&D: A shared “detector physics” model
\ HEP FM Ecosystem

Foundation
Model

Intensity Frontier Data
Image credit: Javier Duarte (CMS/UCSD)




What’s in the
“Experimental Physics Pipeline”?
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Aparatus design optimization

AR for support (NASA)

Fast-ML / Edge-ML

S ( )
[ 1111
« ?a I’
L“ ° Tinl
[XP[RMENT ' BUILDING / — DATA TAKING /
DESIGN INSTALLATION FACILITY QPERATIONS
Fast Simulation . Bayesian Optimization
( ) AI/ML 1S Reinforcement Learning
Everywhere
HYPOTHESIS _ PRYSICS _ CALTBRATION
BUILDING INFERENCE RECONSTRUCTION
Detector Response
Uncertainty Quantification Physics Inference Object Reconstruction Calibration
( )

( )



https://arxiv.org/pdf/2002.04632.pdf
https://fastmachinelearning.org/hls4ml/#
https://arxiv.org/abs/2010.09824
https://arxiv.org/abs/2202.07747
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.24.114601
https://arxiv.org/abs/2102.01033
https://arxiv.org/pdf/2204.02496.pdf
https://arxiv.org/abs/2102.01033
https://arxiv.org/pdf/2006.15052.pdf

Closing Note: Ecosystem for AI/ML Research

HEP Ecosystem for Al research

Education and . 5 o o
T e Accessible education and training at all levels

¢ Interdisciplinary research environment (e.g.

@ workshops, hackathons, visiting scholars program)

e Shared computing resources available always

Public Distributed
data and computing ' ¢ Open and reusable datasets and software with
softwre at scale

documentation and performance metrics

e Ethics of Al: how to ensure diversity, equity, and inclusion which is already
terrible in STEM? How to ensure small and large projects both benefits from AI?

Al is an accelerator. It is coming. Don’t avoid.

Participate to make sure the use is good.



Examples of Scientific ML (SciML)



Scientific AI/ML by Physics

Parameters

4
Input > Algorithm 2 Output » 2 Objectives

Inject inductive bias (physics knowledge)
1. Given a neural network, inject physics

2. Given a physics model, equip with the AI/ML tools



Inductive Bias: Injecting Physics Knowledge

Parameters

\ 4

Input > Algorithm 2 Output » 2 Objectives

EFP
— P-CNN
PFN

T o Analog to CNNs: Add constraints to the math

ResNeXt50

T operations in the algorithm to preserve the
invariance under certain transformations
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e.g.) “Lorentz invariant” neural network
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Signal efficiency €5

Lorentz Group Equivariant Neural
Networks ( )


https://arxiv.org/pdf/2006.04780.pdf

Inductive Bias: Injecting Physics Knowledge

Haar SU(3) Haar SU(4) 3D projection

Ideal mass-spring system Baseline NN Prediction
(G
— — >

Hamiltonian NN

( )

Invariance Equivariance
flpg(x)) = f(x) fpg(x) = pg (f(x))

- ParticleNet ( )
ResNeXt50

TopoDNN
LGN ﬁaseline NN

Double Pendulum
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https://arxiv.org/pdf/2203.06153.pdf
https://arxiv.org/pdf/2006.04780.pdf
https://arxiv.org/pdf/2008.05456.pdf
https://arxiv.org/pdf/1902.04615.pdf
https://arxiv.org/pdf/2003.04630.pdf
https://arxiv.org/pdf/1906.01563.pdf

Inductive Bias: Injecting Physics Knowledge

Parameters

\ 4

Input > Algorithm 2 Output » 2 Objectives

Introduce physics concepts in the loss as
regularizations (e.g. boundary conditions,
IEDSNI partial differential equations)

e.g.) Physics-Informed Neural Networks
( )

dx(0 d?x(t!
L= 1 = xoll + |2 | + Y |2

Free-fall physics model regularizations for the loss




Human-in-the-Loop
Optimization of Chat-GPT



Step 1

Human-in-the-Loop (RLHF)

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

>
w7
Explain reinforcement

learning to a 6 year old.

#

o)

Z

We give treats and

punishments to teach...

Step 2

Collect comparison data and
train areward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

™™

./
Explain reinforcement
learning to a 6 year old.

o

In radorconmnt Expiain romards..
learning, the
agentia.

Inmachine W give trests and
Ieamng.. punishments to
teach..

—

Step 3

OpenAl ChatGPT blog post

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

=

Write a story
about otters.

47


https://openai.com/blog/chatgpt/

Human-in-the-Loop (RLHF)

Step 1

Collect demonstration data
and train a supervised policy.

A promptis o

led from our =
Samp e Explain reinforcement
prompt dataset.

:

learning to a 6 year old.

Step 2

Collect comparison data and
train areward model.

A prompt and r}
several model =

Explain reinforcement

Human binary @

classification 7
(good/bad)

We give treats and

punishments to teach...

SFT
This data is used to ./.)?.7:\.
fine-tune GPT-35 Y
with supervised V4
learning. @ @ El

outputs are learning to a 6 year old.
sampled.

(0. 0
Ranking of o
Samp]es by i ‘"J"'l;uf'::i'n.,,’

humans I 2
A labeler ranks the
outputs from best
to worst. 0-60-0-0
RM
This data is used 2R
to train our '\.\g'g{/'
reward model.
0-0-0-0

OpenAl ChatGPT blog post

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is e
sampled from Wit oy
the dataset. about otters.

v

The PPO model is

[ N )
initialized from the N
supervised policy. W

The policy generates e i

an output.

The reward model o
calculates a reward N
for the output. A%

The reward is used
to update the r
policy using PPO.

48


https://openai.com/blog/chatgpt/

Additional Details
Neural Scene Representation for
Optical Transport Modeling



ML for Detector Physics Modeling

Differentiable surrogate for optical photon transport

Optical Detector
Simulation



ML for Detector Physics Modeling
LAr scintillator light detection

Photo-multiplier tubes (PMTs) detect scintillation photons

Optical Photon
Transport




ML for Detector Physics Modeling
LAr scintillator light detection A

Photo-multiplier tubes (PMTs) detect scintillation photons

produced isotropically from an Argon atom
1 meter muon produces ~ 5M photons

Optical Photon
Transport

T

i i//ll“lh‘.\\i&\v‘i = ﬁh&




ML for Detector Physics Modeling

LAr scintillator light simulation

A marginalized “Visibility Map” for 3D voxelized volume Qptical Photon
used to estimate the mean photon count for each PMT Transport
Issue: static and not scalable

Example: ICARUS detector, 2D slice of a 3D map



ML for Detector Physics Modeling

LAr scintillator light simulation

A marginalized “Visibility Map” for 3D voxelized volume Qptical Photon
used to estimate the mean photon count for each PMT Transport
Issue: static and not scalable

Relative Bias =
e Implicitly optimized based on simulation

update (~2 weeks to produce each time) — Stat. Er.

- = Toy
= Toy+Noise

Toy+Noise
(Ref: Toy)

oo

(@)

e Limited scalability ... ~1E9 voxels for ICARUS

o Coarse voxel size (~5cm cubic)
o Large statistical error (~30k photons/vox.)

x*
0
L
m
©
o

N

Difficult to scale full DUNE -2

logio(vis)

Example: ICARUS detector, 2D slice of a 3D map



ML for Detector Physics Modeling

SIREN as aldiie e e e - (CQDE S

e NS,

Differentiable Neural Scene Representation

[T

B T T 111

scalable version of SIREN
by adding spatial feature compression
(essentially a learnable kd-tree)

breakthrough on

high resolution image success of learning the

representation by a very 1st and 2nd order derivatives oo Ollly a few examples

simple nerual network


https://www.matthewtancik.com/nerf
https://vsitzmann.github.io/siren/
https://www.computationalimaging.org/publications/acorn/

ML for Detector Physics Modeling

SIREN as a die Fen e i~ Ry o -

Differentiable Neural Scene Representation

SIREN trained on “Toy + Noise”
successfully learned the underlying
analytical function shape (simulation)

SIREN for LArTPC detectors

e Designed as an implicit representation
of a continuous function in space Relative Bias =
(suited to “visibility”, “E-field”, etc.)
o Can be seen as a trade-off between

an analytical function and a table

—— Stat. Ermr.

SIREN provide
- = Toy

improvement ,
. . = Toy+Noise
on simulation .
| Toy+Noise
already! (Ref: Toy)

X
n
L
28]
[0
o

e “Differentiable” implies we can directly
optimize against “data v.s. simulation
discrepancy” given control samples %

logio(vis)




ML for Detector Physics Modeling

SIREN as a diferen e - QTS o
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ICARUS: 2D slice, map (top) v.s. SIREN (bottom)




ML for Detector Physics Modeling

SIREN as a diferen e - QTS o

o e A\t

ICARUS: 2D slice, map (top) v.s. SIREN (bottom)
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ML for Detector Physics Modeling

SIREN as a die Fen e i~ Ry o -

ad R S\

Training SIREN on real data

T Control dataset: 3D TPC trajectory for which XYZ
position of space-points are accurately measured

Deposited charge .
) t th it Quantum efficiency
Predicted P.E. atthe point1 of the PMT j

all points

Pj: Z CZ'XYXQjX(I)(I‘Z')j

lightyield  SIREN prediction for
the point i at the PMT j

all PMTs

S (P; — 0,;)°
J J
Loss = g BB numerical stability,
j ~25 P.E.-squared

2
Pj—l—e



ML for Detector Physics Modeling
SIREN as a differentiable surrogate for optical detectors,, ,

e

Light Signal [p
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ML for Detector Physics Modeling

SIREN as a differentiable surrogate for optical detectors.,
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ML for Detector Physics Modeling

SIREN as a differentiable surrogate for optical detectors,,

A

Implicit Neural Representation as a Differentiable Surrogate for Photon Propagatio
in a Monolithic Neutrino Detector

njie Lei,?:* Ka Vang Tsang, Sean Gasiorowski,! Chuan Li,® Youssef Nashed,!
Gianluca Petrillo, Olivia Piazza,® Daniel Ratner,! and Kazuhiro Terao!
(on behalf of the DeepLearnPhysics Collaboration)
)LAC National Accelerator Laboratory., Menlo Park, CA, 94025, USA
2Stanford University, Stanford, CA, 94305, USA
* Lambdalab Inc., San Francisco, (
" University of California, Berkeley, (

. 94720, US: . .
Optical photons are used as \l in a wide variety of particle detectors. Modern neutrino Pre rlnt ar S‘ 1‘ 7e : !: ! 10 O 1 [;O [;
>xperiments employ hundreds to tens of thousands of photon detectors to observe signal from millions o 0 a a

to billions of scintillation photons produced from energy depc n of charged particles. These

neutrino detc i 10°) tons of target volume, and may
consist of many materials i 1 result, modeling individual photon
omputational resour: As an alternative to tracking individual
nental community has traditionally used a look-up table, which cont

probabilit ring a photon per photon detector at each grid location in a uniformly v
detector volume. v ince the > of a table i h detector volume for
resolution, this method scales poorly for future larger detectors. Alternati
fitting a polynomial to the model could address the memo ue, but result

more, both look-up table and fitting approaches are prone to discrepancies betw
detector simulation and the r : stector response. We propose a new approach using
a implicit neural representation with periodic activation functions. In our approach, SIRF

to model the look-up table as a “3D scene” and reproduces the acceptance map with high accu
The number of parameters in our SIREN model is orders of magnitude smaller than the number
of voxels in the look-up table. As it models an underlying functional shape, SIREN is scalable to

al detector. Furthermore, SIRE E sfully n the spatial lients of _‘lu- photon Work Credit (from left) OllVla P. (UC Berkeley), Manle L (SLAC),

library, providing additional information for downstream applications. Finally, as SIREN is a neural

network representation, it is differentiable with respect to its > and therefore tunable via Patrick T (SLAC) GOI‘dOl’l A% (Stanford CS) Chuan L (Lambda Labs)
gradient descent. We demonstrate the potential of optimizing SIREN directly on real data, which * ’ ° ’ *

mitigates the concer: i 2 imulation discrepanci We further present an appli ion for

data reconstruction where SIREN is used to form a likelihood function for photon statistics.



https://arxiv.org/pdf/2211.01505.pdf

Challenges for Differentiable Simulators



Differentiable Physics Models

Challenges: physics models involve stochastic, discrete operations that are
not differentiable as they are.

Simulation / Analysis
&0




Differentiable Physics Models

Challenges: physics models involve stochastic, discrete operations that are
not differentiable as they are. But expectation values over statistics are
usually smooth and differentiable (e.g. Al playing a game)
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Differentiable Physics Models

Challenges: physics models involve stochastic, discrete operations that are
not differentiable as they are. But expectation values over statistics are
usually smooth and differentiable (e.g. Al playing a game)

Simple experiment: optimize the calorimeter radius to contain a shower

Material distribution N Radial hit
distribution

EM shower




Differentiable Physics Models

Challenges: physics models involve stochastic, discrete operations that are
not differentiable as they are. But expectation values over statistics are
usually smooth and differentiable (e.g. Al playing a game)

Simple experiment: optimize the calorimeter radius to contain a shower

b

“Noisy gradient
But it works to

find the optimal
radius correctly.

Figures courtesy of
Lucas Heinrich




Extents of Detector Inverse Solvers



ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator

ol AR

E.g. use for optimizing an image inverse solver
G (XY, 6c)

Inverse Image Solver

S

Liny = |G(Y) — X|?

X € D; Y € Dy

Input domain of Output domain of
LArTPC simulator LArTPC simulator

(inaccessible) (e.g. real data) e



ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator

ol AR

E.g. use for optimizing an image inverse solver
G (XY, 6c)

Inverse Image Solver
Linv = |G(Y) - X[’
and / or

Ecc = |F<G(Y)) B Y|2

30 200
o0
- 309 a

Y € Do
Input domain of Output domain of
LArTPC simulator F (Y| X, Or) LArTPC simulator

(inaccessible) Differentiable LArTPC Simulator (e.g. real data)



ML for Analyzing Big Image Data in Neutrino Experiments
Inverse imaging using a differentiable simulator

1l Ay
e AN
(T~~~ TTTTTTTTTTTTT 1
dE/dX Drift & Detector [:> Image data [> : [> :
(inaccessible) | response (charge/light, accessible) Reconstruction Analysis

* $

Detector
calibration
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ML for Analyzing Big Image Data in Neutrino Experiments

Inverse imaging using a differentiable simulator i
e AN
. dEMdX Drift & Detector Image data : .
(inaccessible) response I::> (charge/light, accessible) [:> Reconstruction [:> Analysis
Detector
calibration
Near detector ;
=
Far detector Detector
calibration
dE/dX Drift & Detector Image data : :
(inaccessible) response I::> (charge/light, accessible) I::> Reconstruction I::> AL
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ML for Analyzing Big Image Data in Neutrino Experiments

Inverse imaging using a differentiable simulator

dE/dX Drift & Detector
. (inaccessible) | response

@

Image data
(charge/light, accessible)

=1 AL
0 | B o \

Near detectorl

dE/dX
(inferred) I:>

Reconstruction IZ:> Analysis

Detector calibration can
be automated

Far detector I

dE/dX Drift & Detector
(inaccessible) | response

=N
@

Image data

Reconstruction can be
shared across detectors.

(charge/light, accessible)
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Application Details
Reconstruction Chain



Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction

=1 AL
0 | B o \
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Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction




ML for Analyzing Big Image Data in Neutrino Experiments
Stage 1-b: Particle Edge-point Prediction

ko
P M\
input
-
softmax o
— Residual conr °
A® 09 ’
- --» Concatenatio # " A %
o 0 ’
PPN1
attention Semantic segmentation
mask ‘ . .
@. Multplying by (U-Net + residual conn.)
attention mask
- Edge point detection

attention
mask

(Faster R-CNN)

Sparse tensor operation

(Minkowski Engine) "

See Phys. Rev. D 102, 012005 (2019) and Phys. Rev. D 104, 032004 (2020) |



https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1904.08755
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: input & output

ol AR

0 [y o \

Stage 2-a Input Stage 2-a Output




ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: dense pixel clustering

Clustering in the embedding space

e Use CNN to learn a transformation function from the 3D voxels to the embedding
space where clustering can be performed in a simple manner

79
Image credit: arXiv 1708.02551



https://arxiv.org/pdf/1708.02551.pdf

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: Dense Pixel Clustering
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Work credit . > See arxiv:2007.03083 r 80

Dae Heun Koh (Stanford)


https://arxiv.org/abs/2007.03083

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: Dense Pixel Clustering

ol Ay
Ty L
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Dae Heun Koh (Stanford)


https://arxiv.org/abs/2007.03083

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-a: input & output

ol AR
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Stage 2-a Input Stage 2-a Output




ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: grouping particles as a cluster

croAn
ad b M\
CNN for pixel-level regression dense clustering
(DeepLearnPhysics for DUNE)
J——n
—————————————————————— i \ h/‘
J >
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: grouping particles as a cluster

1AL
CNN for pixel-level regression dense clustering
(DeepLearnPhysics for DUNE)
J .
Graph NN for analyzing
|7 b correlations between

\ 3 q | A entities which size and

\ o distance from other entities

are arbitrary.

|
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering

Graph-NN for Particle /

Aggregation (GrapPA) o e

Input:
e Fragmented EM showers N { .

350

AT N

250 °

350 .
200 00
450

0
W [ 4 Soo
0 S50
¢ 600
6.
o e

See Phys. Rev. D 104, 072004 ® >
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments

Stage 2-b: Sparse Fragment Clustering B A
Graph-NN for Particle

Aggregation (GrapPA) o

Input: \

e Fragmented EM showers

Node features: i
e Centroid, Covariance matrix, PCA
e Start point, direction (PPN)

300

Input graph: B
e Connect every node with every other node 20
(complete graph)

400

0 S50

Edge features: s & &

6 50

e Displacement vector R %

e C(losest points of approach ® >, See Phys. Rev. D 104, 075004



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2-b: Sparse Fragment Clustering

e An
P | NNy g \
Target Prediction
500 / " /
450 ‘l‘_—l\_ 450 W
R e 400 i
74
350 250
300 200
250 250
250 )
I\ b
20 5 950
o0 5
. B%Q > 609 X
«® %o work credit: o 63,
0 Francois D (SLAC), Qing L. (USTC), %05 87

See Phys. Rev. 0 104, 072004 & 5 Brad N (stat, U. Chicago), Alexander Z. (MIT), ¢ 5



https://arxiv.org/abs/2007.01335
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments
Stage 2: input & output

ol AR
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Stage 2 Input Stage 2 Output




ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: Interaction Clustering

? Identifying Each Interaction?

700 T

600 &

Grouping task = re-use GrapPA!

e Interaction = a group of particles that

P / shared the same origin (i.e. neutrino
400 % e < ./ interaction)

0 LN ;\ e Edge classification to identify an

| . / interaction

e Node classification for particle type ID

0 609

See Phys. Rev. D 104, 072004
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Stage 3: Interaction Clustering

ML for Analyzing Big Image Data in Neutrino Experiments

Target Group
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See Phys. Rev. D 104, 072004 ’
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004?ft=1

ML for Analyzing Big Image Data in Neutrino Experiments

Stage 3: Interaction Clustering
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ML for Analyzing Big Image Data in Neutrino Experiments
Stage 3: input & output
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Machine Learning in Neutrino Physics & HEP
Deep Neural Network for Data Reconstruction
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