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Introduction
• I will briefly discuss the use of CNNs in neutrino event classification 

- With a focus on the DUNE algorithm 

- Well-established technique 

• I will move on to discussing a recent study on transfer learning 

- I hope this will have applications outside of neutrino physics
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CNNs in neutrino physics
• The NOvA experiment was the first to use a CNN[1] 

- Used for event classification 

- 40% increase in efficiency with no loss of purity for  
their main CC νe analysis 

• MicroBooNE: first LArTPC experiment to use a CNN[2] 

- Used for region of interest finding and event  
classification
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[1] A. Aurisano, et al., A convolutional neural network neutrino event classifier, Journal of Instrumentation 11 (2016) 09, P09001 
[2] MicroBooNE Collaboration, Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber, JINST 12 (2017) 03, P03011  

NOvA
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DUNE
• The Deep Underground Neutrino Experiment (DUNE) is a next generation 

neutrino oscillation experiment 

- Uses liquid argon time projection chamber technology (LArTPC) 

- Three 2D projections of each interaction sharing one common coordinate 

• DUNE CVN[1] aims to classify events as CC νµ, CC νe, CC ντ, and NC  

- CC ντ are rare and hard to classify, so I won’t discuss them further
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CC νµCC νe

NC (looks like CC νµ) NC (looks like CC νe)

[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003. 
[2] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos III Madrid (2021) 
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DUNE CVN
• Architecture based on SE-ResNet-34[1,2] 

• Inputs processed separately for the first 
few blocks and then merged 

• Main output is the flavour classifier 

- The top one shown in the figure 

• Other particle counting outputs will be 
further studied in the future 

• Trained on over 3 million events
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[1] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 1512.03385; K. He, X. Zhang, S. Ren, and J. Sun, Identity Mappings in Deep Residual Networks, 1603.05027 
[2] J. Hu, L. Shen, and G. Sun, Squeeze-and-Excitation Networks, 1709.01507 

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1709.01507
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DUNE CVN
• See very good signal background separation
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[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003. 
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DUNE CVN
• We obtain highly efficiency analyses from the CVN event selection
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[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003. 
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DUNE CVN - Particle counting
• We tested some of the particle counting outputs 

- Proof of principle of using the CVN for exclusive final state selections 

• Multiply together different scores: 

- CC νµ, 1p, 0π±, 0π0 

- NC, 0p, 0π±, 1π0 

• Clearly these would need to be strongly validated before use on data 

- Much more likely to be biased by the choice of event generator
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[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003. 
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Transfer Learning
• Transfer learning makes use of previously trained networks 

- Allows you to fine tune a pre-trained network for your task 

- Can be useful if you don’t have much data 

- The idea dates back to the early days of perceptrons[1] 

• I will discuss a recent study 
we performed on using transfer 
learning in neutrino event 
classification

9

https://link.springer.com/article/10.1140/epjc/s10052-022-11066-6

[1] S. Bozinovski, A. Fulgosi, The influence of pattern similarity and transfer learning upon the training of a base perceptron b2. In: Proceedings of Symposium Informatica, Bled, Slovenia (1976) p. 3–1215. 
 

https://link.springer.com/article/10.1140/epjc/s10052-022-11066-6
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Transfer Learning in Physics
• I was only able to find once example of transfer learning in a related field when 

we started this work 

• The AT-TPC[1] was a nuclear physics 
experiment 

• Used transfer learning due to a 
small simulation dataset  

• Also used some hand-labelled data 
due to poor simulation quality
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[1] M. P. Kuchera, et al., Machine Learning Methods for Track Classification in the AT-TPC, NIM A 940 (2019) 156-167, 1810.10350  
 

https://arxiv.org/abs/1810.10350


Dr Leigh Whitehead - IPA-ML 2023, ETH Zürich

Transfer Learning in LArTPCs
• Can we use transfer learning to reduce the number of training examples? 

- Simulations are time consuming and GPUs need a lot of power 

• Conveniently, LArTPC detectors, such as DUNE, have three readout planes 

- We get three images of a given interaction 

- Photographic images have depth three (red, green and blue channels) 

• Can we use a network trained on photographs for our event classification? 

- There are plenty of networks trained on photograph-based challenges 

- Use these networks as a starting point and fine tune the weights
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https://link.springer.com/article/10.1140/epjc/s10052-022-11066-6
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TL: Event Sample
• GENIE neutrino events: 

- CC νµ, CC νe and NC  

- 50,000 of each type 

• Events passed through simple LArTPC simulation 

- Outputs three images of each event 

- Three projections of the (y,z) plane
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TL: Architecture and Training
• We chose to use the Pytorch implementation of ResNet18 

- Small depth was chosen since this study involved training over 1000 networks 

• The pre-trained version of ResNet18 was trained on ImageNet 

- We had to change the final layer from 1000 to 3 classes: CC νµ, CC νe and NC 

• Trained a series of networks with: 

- Kaiming (He) randomly initialised weights 

- Weights from the pre-trained ImageNet network 

- Various numbers of training events from 1,000 to 100,000 

- Trained each network 25 times to give an estimate of the uncertainty
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Results: TF vs random initialisation
• Compared the F1 score from the transfer-learned networks fine-tuned with 1k to 

100k images against the Kaiming-initialised network with 50k and 100k events 

• Transfer-learned network out- 
performs the Kaiming-initialised 
network with 100k training images 

- For 7k training images and above 

• Event fine-tuning just the final  
layer works surprising well 

- F1 score = 0.79
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Results: TF vs random initialisation
• Compared the F1 score from the transfer-learned networks fine-tuned with 1k to 

100k images against the Kaiming-initialised network with 50k and 100k events 

• Improvement is seen in all three 
classes (not just overall)
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Transfer Learning in LArTPCs
• We also looked for potential biases between classes and as a function of energy 

- See reduced bias in both cases using transfer learning 

- Plots show examples from training with 100k events
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Kaiming Initialisation Transfer Learning
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Transfer Learning in LArTPCs
• Also looked at the effect of freezing different layer weights 

- Layers 1 to 4 here correspond to the ResNet blocks 

- As a minimum we have to train the classifier (dense layer) 

- The difference between Layer 1 and All  
Weights is the first convolutional layer 
• No difference in performance is seen when 

the first layer weights can be fine-tuned 

• The ImageNet-trained first convolutional 
layer extracts all the information needed 
to classify our neutrino events
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More weights available for fine-tuning
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Conclusions
• Use of CNNs for neutrino event classification is now well-established 

• Transfer learning looks to be a promising approach 

- Can perform very well with small training samples 

- Reduces number of required training examples 

- Reduced bias for smaller training samples 

- Training process seems more stable 

- The first convolutional layers from networks trained on photographs can extract all of 
the required low-level features
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Thank you… any questions?


