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Introduction

* | will briefly discuss the use of CNNs in neutrino event classification
- With a focus on the DUNE algorithm

- Well-established technique

* | will move on to discussing a recent study on transfer learning

- 1 hope this will have applications outside of neutrino physics
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CNNSs in neutrino physics
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- Used for event classification
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- 40% increase in efficiency with no loss of purity for
their main CC ve analysis
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* MicroBooNE: first LArTPC experiment to use a CNNI]

- Used for region of interest finding and event
classification

MicroBooNE
Simulation + Data Overlay

[1] A. Aurisano, et al., A convolutional neural network neutrino event classifier, Journal of Instrumentation 11 (2016) 09, PO9001
[2] MicroBooNE Collaboration, Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber, JINST 12 (2017) 03, PO3011
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DUNE

* The Deep Underground Neutrino Experiment (DUNE) is a next generation
neutrino oscillation experiment

- Uses liquid argon time projection chamber technology (LArTPC)

- Three 2D projections of each interaction sharing one common coordinate

e DUNE CVNI'T aims to classify events as CC vy, CC ve, CC v;, and NC

- CC vy are rare and hard to classify, so | won't discuss them further

DUNE Simulation DUNE Simulation DUNE Simulation DUNE Simulation

NC (looks like CC vy) NC (looks like CC ve)
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[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003.

[2] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos Ill Madrid (2021)
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DUNE CVN
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[1] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 1512.03385; K. He, X. Zhang, S. Ren, and J. Sun, Identity Mappings in Deep Residual Networks, 1603.05027

[2] J. Hu, L. Shen, and G. Sun, Squeeze-and-Excitation Networks, 1709.01507
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http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1709.01507

DUNE CVN

* See very good signal background separation

Neutrino mode
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Arrows show events selected for the CC ve
appearance sample

Arrows show events selected for the CC vy
disappearance sample

[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003.
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DUNE CVN

* We obtain highly efficiency analyses from the CVN event selection
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[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003.
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DUNE CVN - Particle counting

* We tested some of the particle counting outputs

- Proof of principle of using the CVN for exclusive final state selections
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* Clearly these would need to be strongly validated before use on data

- Much more likely to be biased by the choice of event generator

[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003.
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Transfer Learning

* Transfer learning makes use of previously trained networks
- Allows you to fine tune a pre-trained network for your task
- Can be useful if you don’t have much data

- The idea dates back to the early days of perceptronsl’]

" " Eur. Phys.J.C  (2022) 82:1099 THE E M)
* | will discuss a recer)t study By o L ¢ ok
we performed on using transfer Regular Artice - Experimental Physics
learning In neutrino event

Application of transfer learning to neutrino interaction

classification classification

Andrew Chappell>*®, Leigh H. Whitehead "

I Department of Physics, University of Cambridge, Cambridge CB3 OHE, UK
2 Department of Physics, University of Warwick, Coventry CV4 7AL, UK

https://link.springer.com/article/10.1140/epjc/s10052-022-11066-6

[1] S. Bozinovski, A. Fulgosi, The influence of pattern similarity and transfer learning upon the training of a base perceptron b2. In: Proceedings of Symposium Informatica, Bled, Slovenia (1976) p. 3—1215.
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Transfer Learning in Physics

* | was only able to find once example of transfer learning in a related field when
we started this work

Simulated Real
* The AT-TPCll was a nuclear physics e N ' .
eX p e ri m e n t Proton "sﬁ}.; : . . @ . ;‘@ @ . ""‘

* Used transfer learning due to a
small simulation dataset Carbon

* Also used some hand-labelled data
due to poor simulation quality Other HfgR

[1] M. P. Kuchera, et al., Machine Learning Methods for Track Classification in the AT-TPC, NIM A 940 (2019) 156-167, 1810.10350
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https://arxiv.org/abs/1810.10350

Transfer Learning in LArTPCs

 Can we use transfer learning to reduce the number of training examples?

- Simulations are time consuming and GPUs need a lot of power

 Conveniently, LArTPC detectors, such as DUNE, have three readout planes
- We get three images of a given interaction

- Photographic images have depth three (red, green and blue channels)

 Can we use a network trained on photographs for our event classification”?
- There are plenty of networks trained on photograph-based challenges

- Use these networks as a starting point and fine tune the weights
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TL: Event Sample

* GENIE neutrino events: / CC Ve NG
- CC Vy, CC ve and NC ""“"‘*“\ . 7%\\

- 50,000 of each type CC vy

* Events passed through simple LArTPC simulation
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TL: Architecture and Training

* \We chose to use the Pytorch implementation of ResNet18

- Small depth was chosen since this study involved training over 1000 networks

* The pre-trained version of ResNet18 was trained on ImageNet
- We had to change the final layer from 1000 to 3 classes: CC vy, CC ve and NC

* Trained a series of networks with:
- Kaiming (He) randomly initialised weights
- Weights from the pre-trained ImageNet network
- Various numbers of training events from 1,000 to 100,000

- Trained each network 25 times to give an estimate of the uncertainty
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Results: TF vs random Initialisation

e Compared the F1 score from the transfer-learned networks fine-tuned with 1k to
100k images against the Kaiming-initialised network with 50k and 100k events

* Transfer-learned network out-
performs the Kaiming-initialised
network with 100k training images

- For 7k training images and above

* Event fine-tuning just the final
layer works surprising well

F1 score =0.79
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Results: TF vs random Initialisation

e Compared the F1 score from the transfer-learned networks fine-tuned with 1k to
100k images against the Kaiming-initialised network with 50k and 100k events
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Transfer Learning in LArTPCs

* We also looked for potential biases between classes and as a function of energy

- See reduced bias in both cases using transfer learning

- Plots show examples from training with 100k events

1.0

0.871

0.6-

0.4-

0.2-

Kaiming Initialisation

o CC Ve
e NC

0.0
1000

1500 2000 2500 3000 3500
Energy (MeV)

4000

1.0

0.8+

0.6

0.4

0.2+

@ CC ve
e NC

=1

Transfer Learning

0.0
1000

1500 2000 2500 3000 3500 4000
Energy (MeV)

Dr Leigh Whitehead - IPA-ML 2023, ETH Zurich

16



Transfer Learning in LArTPCs

* Also looked at the effect of freezing different layer weights
- Layers 1 to 4 here correspond to the ResNet blocks

- As a minimum we have to train the classifier (dense layer)

- The difference between Layer 1 and All
Weights is the first convolutional layer

0.92
0.9

L

 No difference In performance is seen when
the first layer weights can be fine-tuned

0.88

0.86

Accuracy

e The ImageNet-trained first convolutional
layer extracts all the information needed
to classify our neutrino events 0.82

0.8
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' More weights available for fine-tuning
o R S S S .l

Classifier Only + Layer 4 + Layer 3 + Layer 2 + Layer 1 All Weights
Trainable Weights

0.78
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Conclusions

e Use of CNNs for neutrino event classification is now well-established

* Transfer learning looks to be a promising approach
- Can perform very well with small training samples
- Reduces number of required training examples
- Reduced bias for smaller training samples
- Training process seems more stable

- The first convolutional layers from networks trained on photographs can extract all of
the required low-level features
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Thank you... any questions?




