

Neutrino Event Classification: CNNs and Transfer Learning

Leigh Whitehead

University of Cambridge

IPA-ML 2023, ETH Zürich, March 2023

Introduction

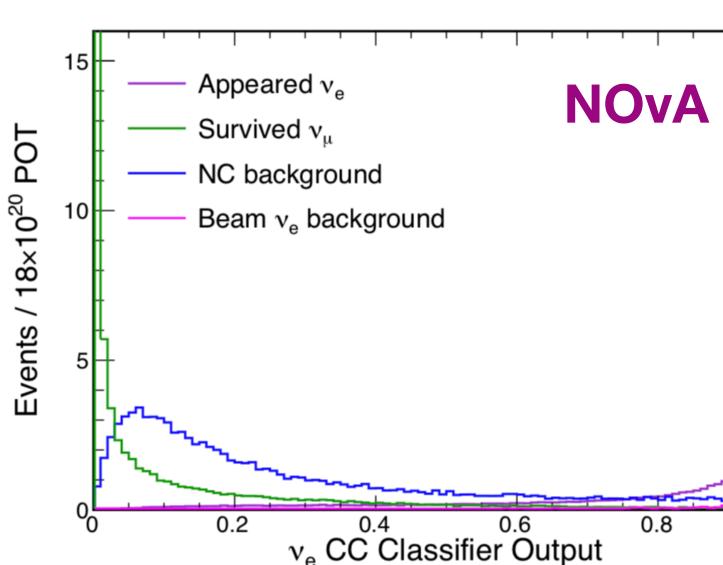
- I will briefly discuss the use of CNNs in neutrino event classification
 - With a focus on the DUNE algorithm
 - Well-established technique

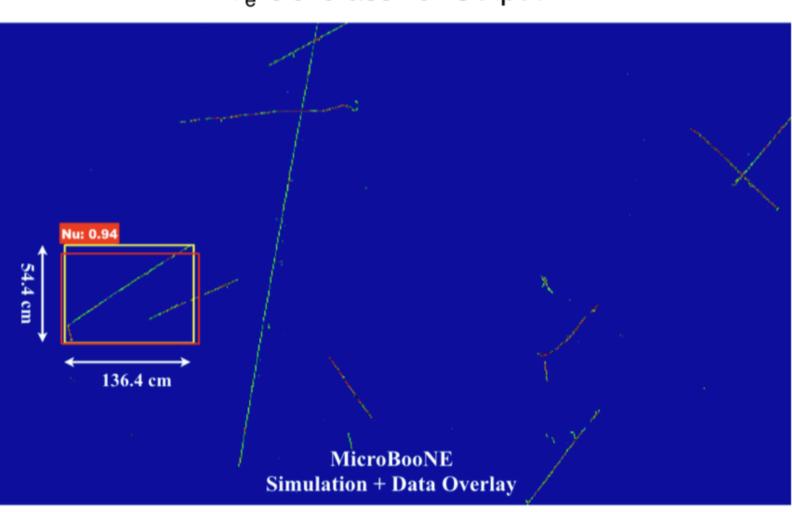
- I will move on to discussing a recent study on transfer learning
 - I hope this will have applications outside of neutrino physics

CNNs in neutrino physics

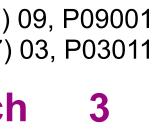
- The NOvA experiment was the first to use a CNN^[1]
 - Used for event classification
 - 40% increase in efficiency with no loss of purity for their main CC v_e analysis

- MicroBooNE: first LArTPC experiment to use a CNN^[2]
 - Used for region of interest finding and event classification



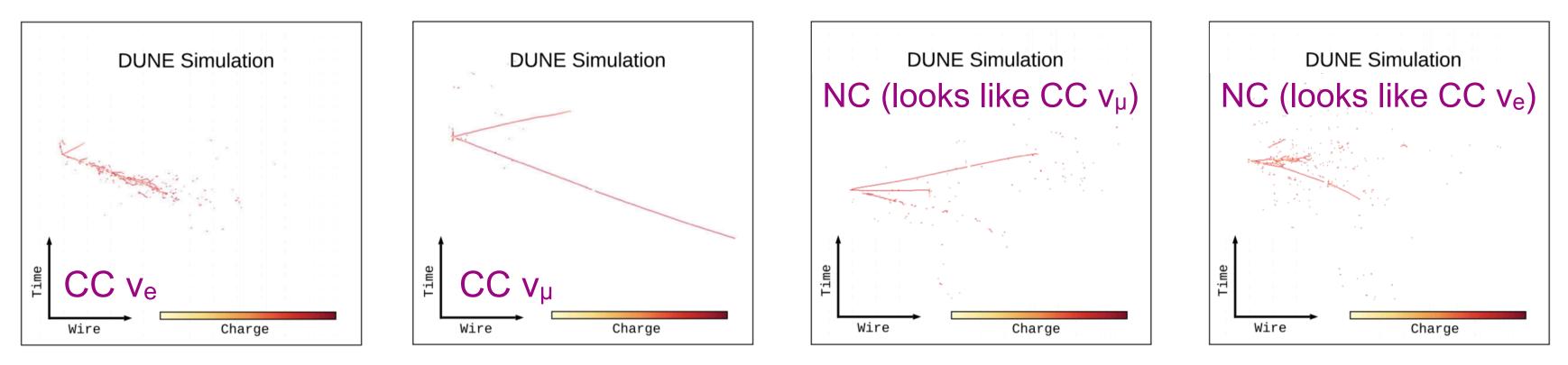


[1] A. Aurisano, et al., A convolutional neural network neutrino event classifier, Journal of Instrumentation 11 (2016) 09, P09001 [2] MicroBooNE Collaboration, Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber, JINST 12 (2017) 03, P03011



DUNE

- The Deep Underground Neutrino Experiment (DUNE) is a next generation neutrino oscillation experiment
 - Uses liquid argon time projection chamber technology (LArTPC)
 - Three 2D projections of each interaction sharing one common coordinate
- DUNE CVN^[1] aims to classify events as CC v_{μ} , CC v_{e} , CC v_{τ} , and NC
 - CC v_T are rare and hard to classify, so I won't discuss them further

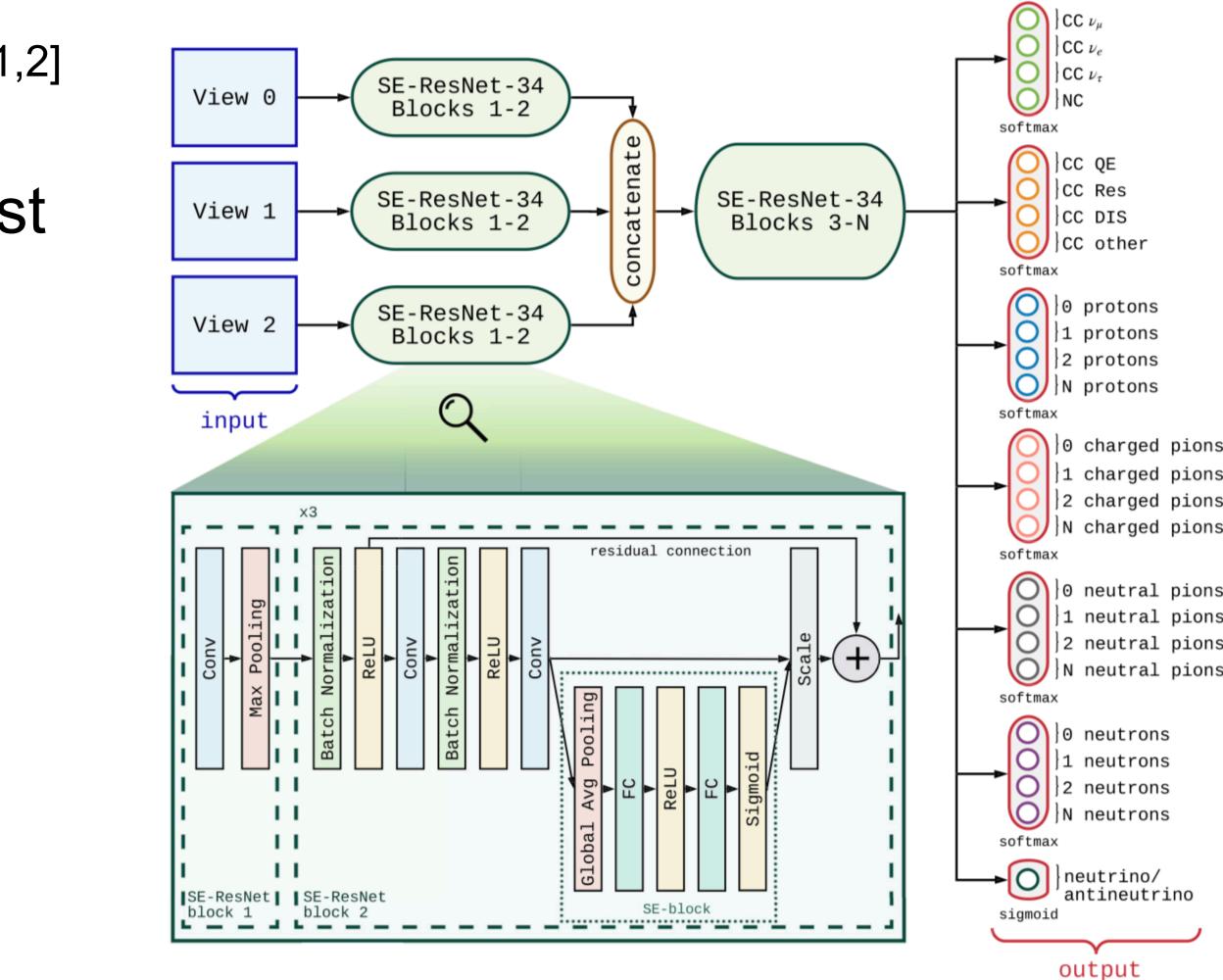


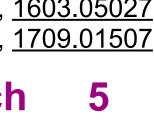
[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003. [2] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos III Madrid (2021)

DUNE CVN

- Architecture based on SE-ResNet-34^[1,2]
- Inputs processed separately for the first few blocks and then merged
- Main output is the flavour classifier The top one shown in the figure
- Other particle counting outputs will be further studied in the future
- Trained on over 3 million events

[1] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 1512.03385; K. He, X. Zhang, S. Ren, and J. Sun, Identity Mappings in Deep Residual Networks, 1603.05027 [2] J. Hu, L. Shen, and G. Sun, Squeeze-and-Excitation Networks, 1709.01507



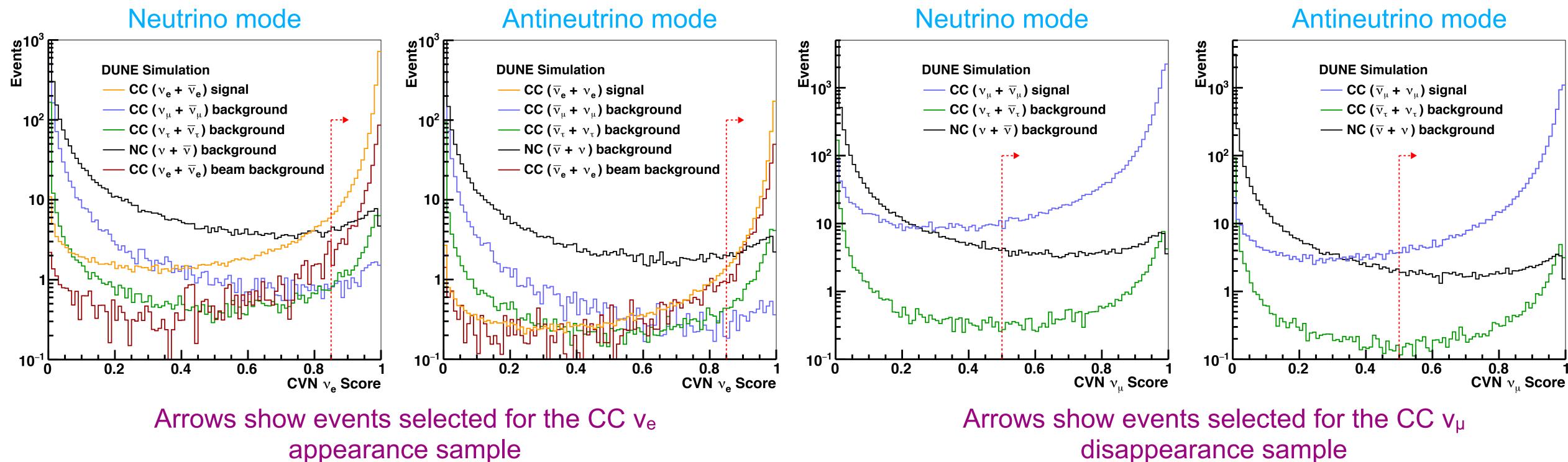


al	pions
al	pions
al	pions
a 1	pions

Ju	prons
ed	pions
ed	pions
ed	pions

DUNE CVN

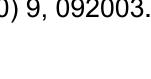
See very good signal background separation



appearance sample

[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003.

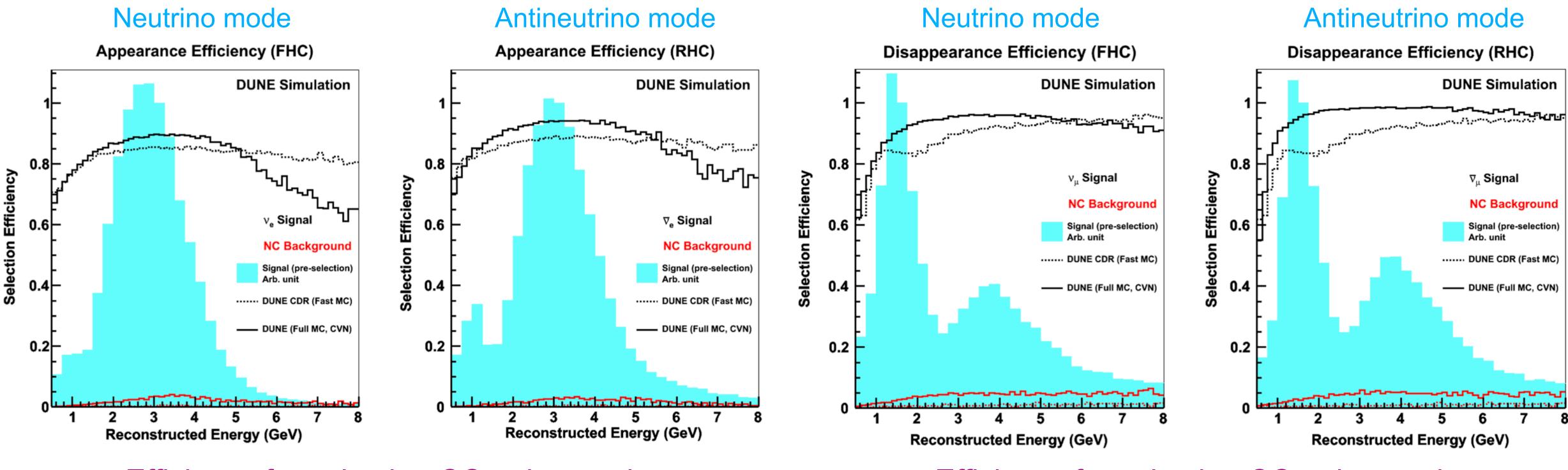
Dr Leigh Whitehead - IPA-ML 2023, ETH Zürich



6

DUNE CVN

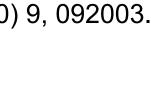
We obtain highly efficiency analyses from the CVN event selection



Efficiency for selecting CC v_e interactions

[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003.

Efficiency for selecting CC v_{μ} interactions

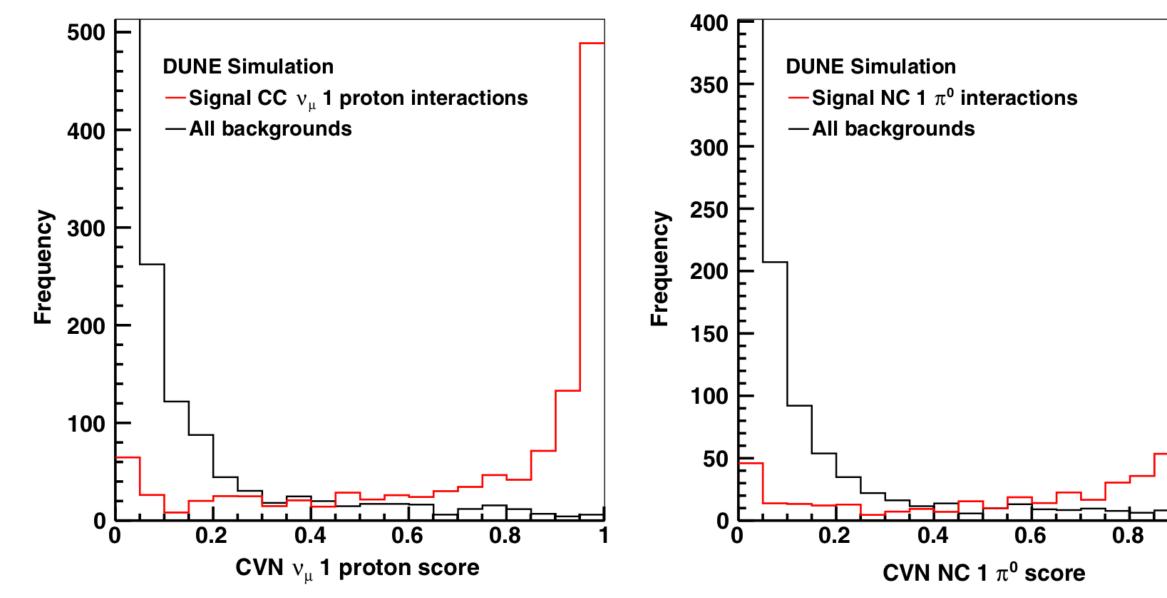


DUNE CVN - Particle counting

- We tested some of the particle counting outputs
 - Proof of principle of using the CVN for exclusive final state selections
- Multiply together different scores:
 - CC v_μ, 1p, 0π[±], 0π⁰
 - NC, 0p, 0π[±], 1π⁰

- Clearly these would need to be strongly validated before use on data
 - Much more likely to be biased by the choice of event generator

[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 (2020) 9, 092003.



Transfer Learning

- Transfer learning makes use of previously trained networks
 - Allows you to fine tune a pre-trained network for your task
 - Can be useful if you don't have much data
 - The idea dates back to the early days of perceptrons^[1]
- I will discuss a recent study we performed on using transfer learning in neutrino event classification

[1] S. Bozinovski, A. Fulgosi, The influence of pattern similarity and transfer learning upon the training of a base perceptron b2. In: Proceedings of Symposium Informatica, Bled, Slovenia (1976) p. 3–1215.

Eur. Phys. J. C (2022) 82:1099 https://doi.org/10.1140/epjc/s10052-022-11066-6

Regular Article - Experimental Physics

Application of transfer learning to neutrino interaction classification

Andrew Chappell^{2,a}, Leigh H. Whitehead^{1,b}

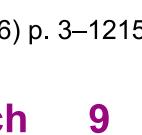
¹ Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK

² Department of Physics, University of Warwick, Coventry CV4 7AL, UK

https://link.springer.com/article/10.1140/epjc/s10052-022-11066-6

Dr Leigh Whitehead - IPA-ML 2023, ETH Zürich

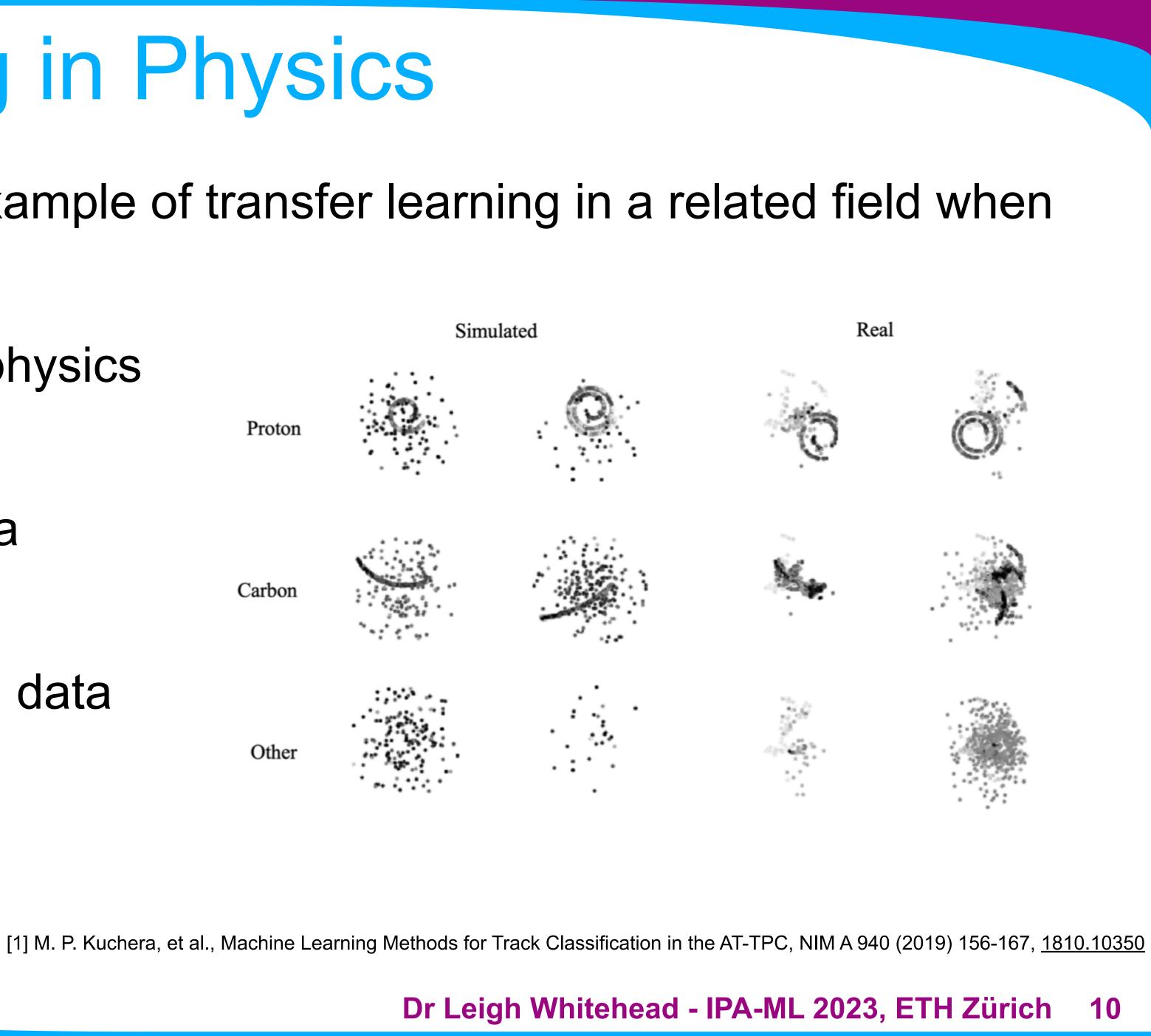
THE EUROPEAN **PHYSICAL JOURNAL C**



Transfer Learning in Physics

- we started this work
- The AT-TPC^[1] was a nuclear physics experiment
- Used transfer learning due to a small simulation dataset
- Also used some hand-labelled data due to poor simulation quality

• I was only able to find once example of transfer learning in a related field when



Transfer Learning in LArTPCs

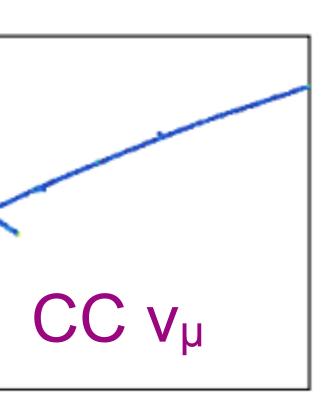
- Can we use transfer learning to reduce the number of training examples?
 - Simulations are time consuming and GPUs need a lot of power
- Conveniently, LArTPC detectors, such as DUNE, have three readout planes - We get three images of a given interaction

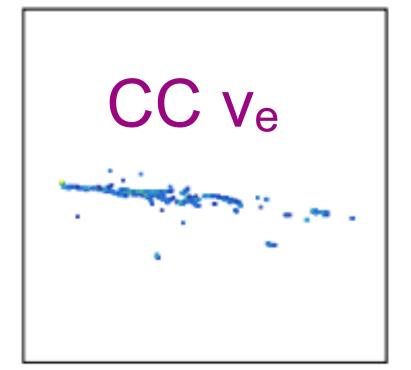
 - Photographic images have depth three (red, green and blue channels)
- Can we use a network trained on photographs for our event classification?
 - There are plenty of networks trained on photograph-based challenges -
 - Use these networks as a starting point and fine tune the weights

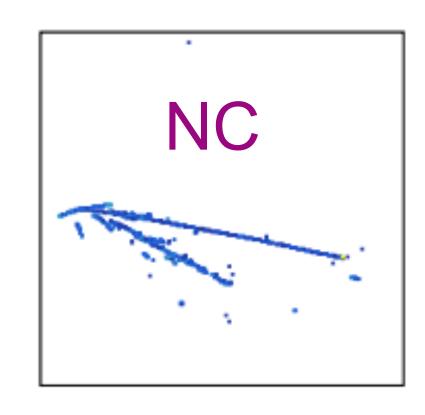
TL: Event Sample

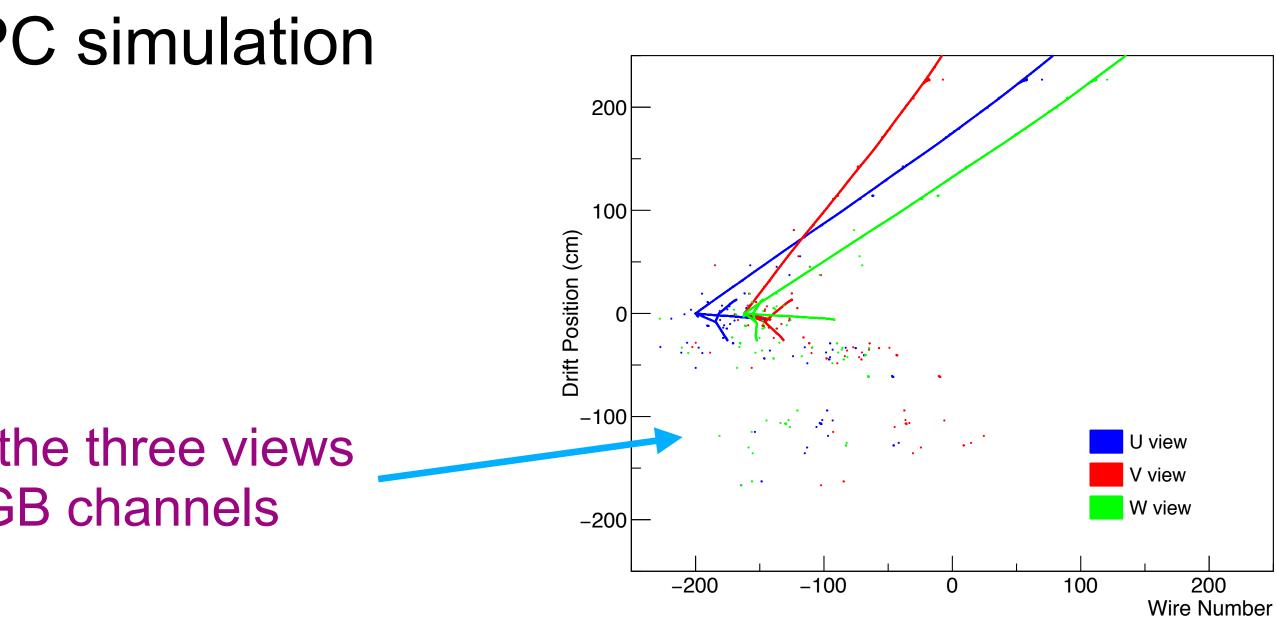
- GENIE neutrino events:
 - CC v_µ, CC v_e and NC
 - 50,000 of each type
- Events passed through simple LArTPC simulation
 - Outputs three images of each event
 - Three projections of the (y,z) plane

 $CC v_{\mu}$ event with the three views overlaid as RGB channels









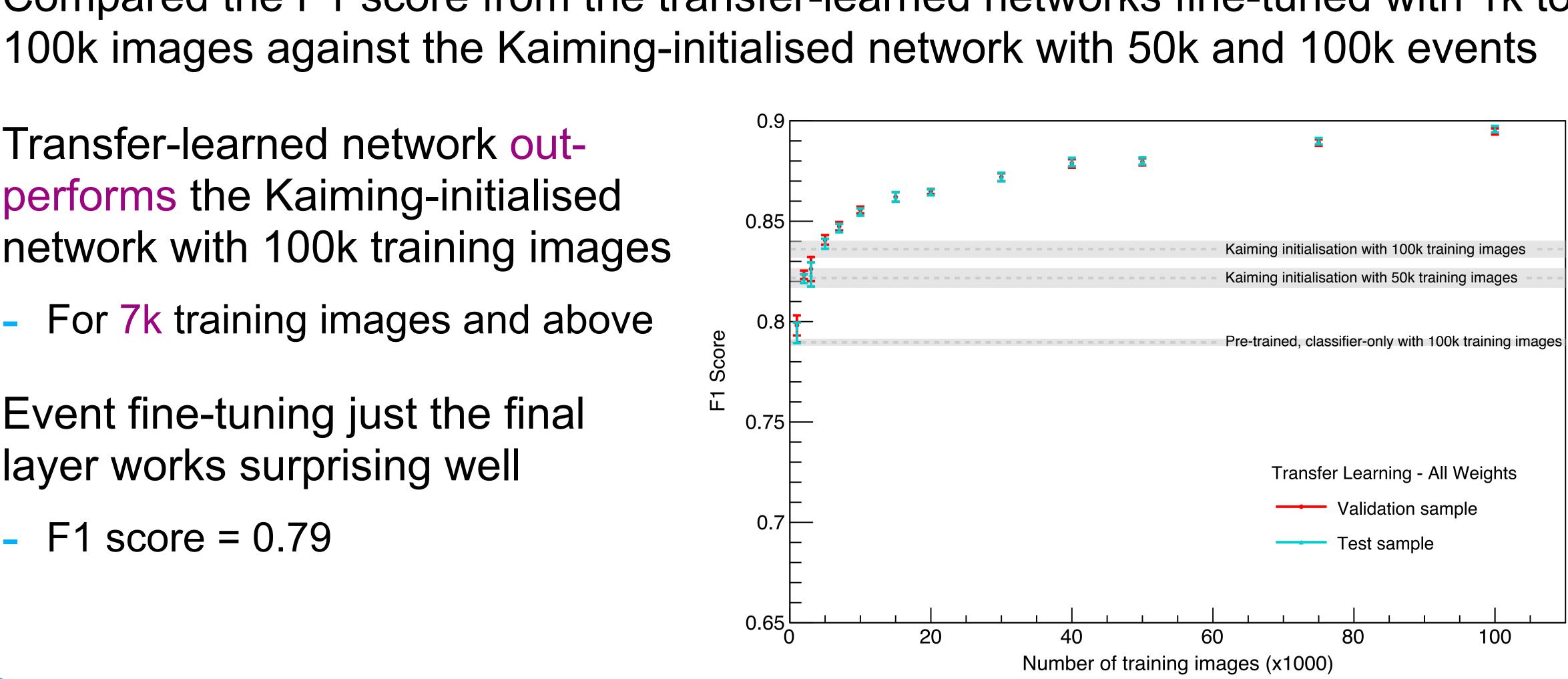
TL: Architecture and Training

- We chose to use the Pytorch implementation of ResNet18
 - Small depth was chosen since this study involved training over 1000 networks
- The pre-trained version of ResNet18 was trained on ImageNet
 - We had to change the final layer from 1000 to 3 classes: CC v_{μ} , CC v_{e} and NC
- Trained a series of networks with:
 - Kaiming (He) randomly initialised weights
 - Weights from the pre-trained ImageNet network
 - Various numbers of training events from 1,000 to 100,000
 - Trained each network 25 times to give an estimate of the uncertainty

Results: TF vs random initialisation

- Transfer-learned network outperforms the Kaiming-initialised network with 100k training images
 - For 7k training images and above
- Event fine-tuning just the final layer works surprising well
 - F1 score = 0.79

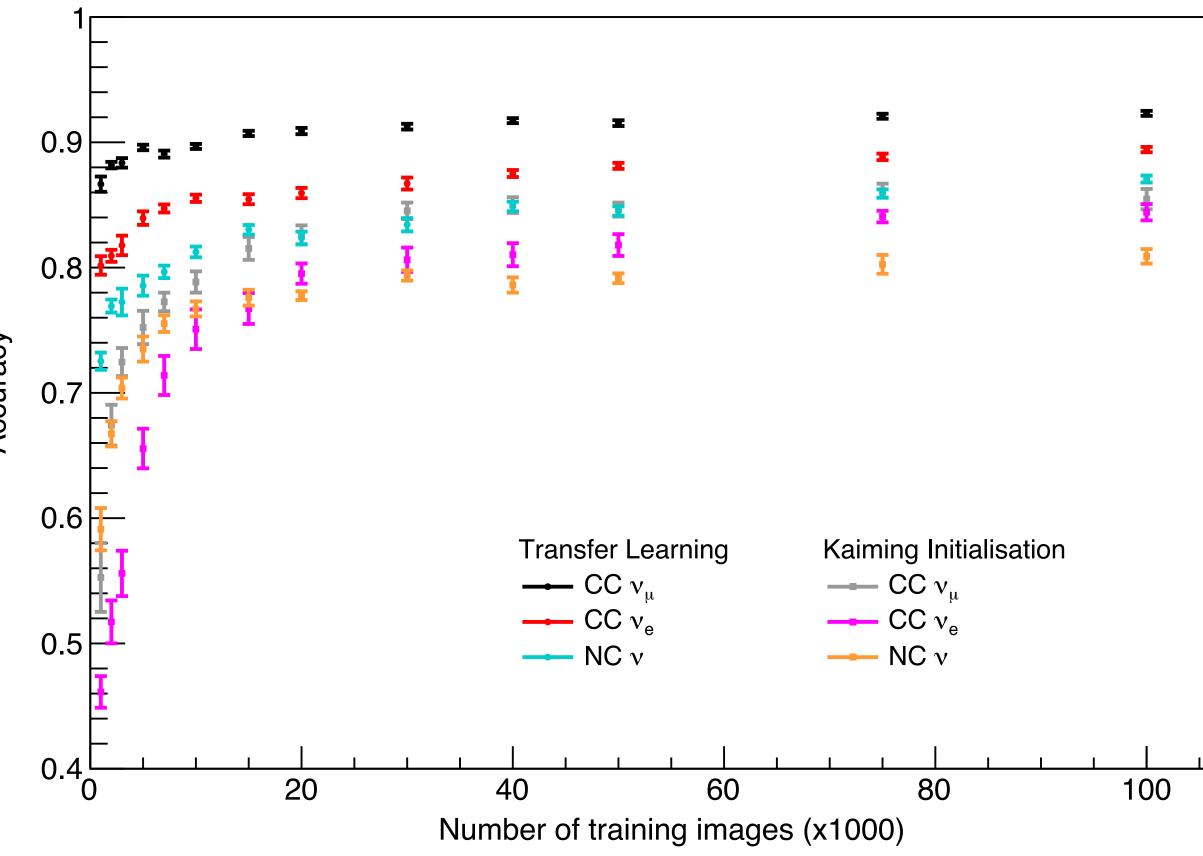
Compared the F1 score from the transfer-learned networks fine-tuned with 1k to



Results: TF vs random initialisation

- Improvement is seen in all three classes (not just overall)

 Compared the F1 score from the transfer-learned networks fine-tuned with 1k to 100k images against the Kaiming-initialised network with 50k and 100k events



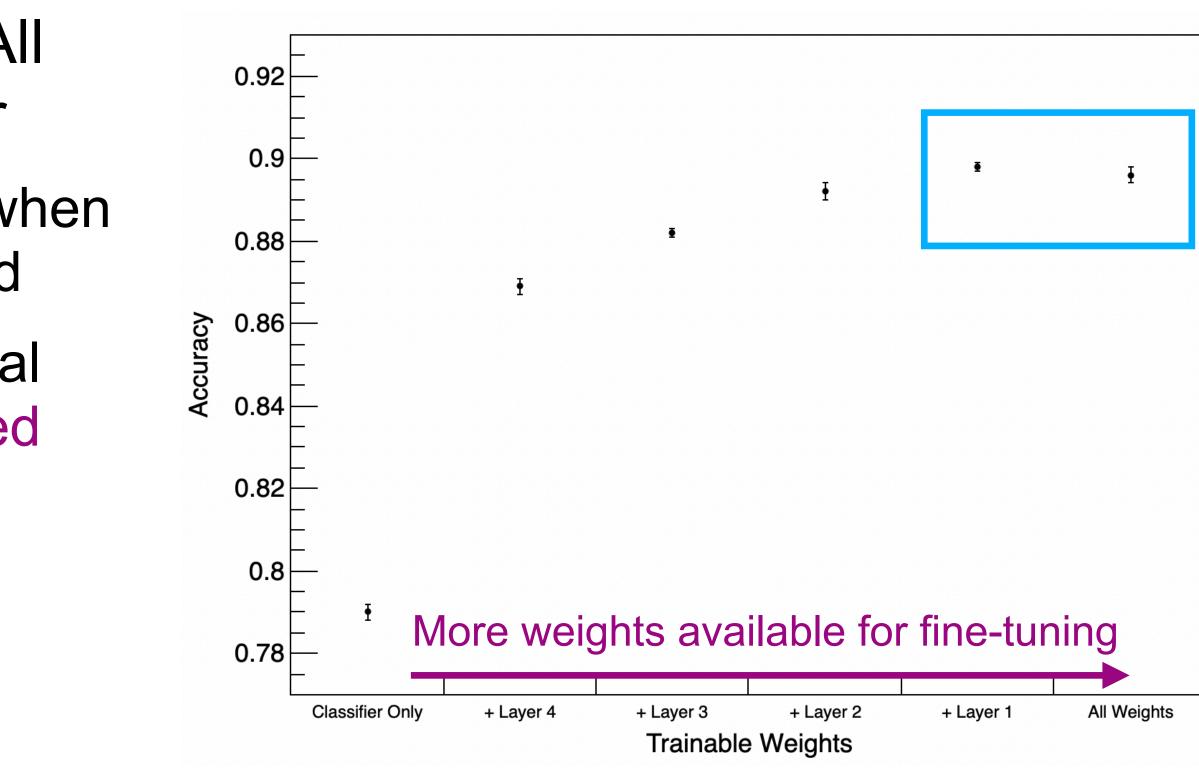
Transfer Learning in LArTPCs

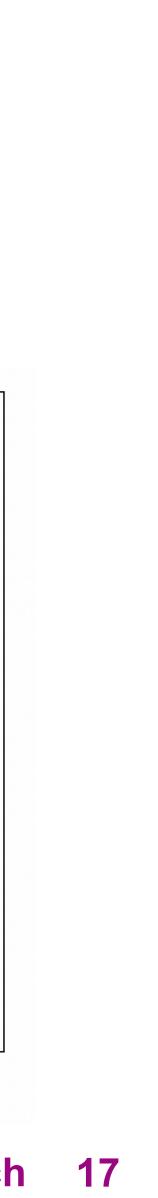
- We also looked for potential biases between classes and as a function of energy
 - See reduced bias in both cases using transfer learning
 - Plots show examples from training with 100k events



Transfer Learning in LArTPCs

- Also looked at the effect of freezing different layer weights
 - Layers 1 to 4 here correspond to the ResNet blocks
 - As a minimum we have to train the classifier (dense layer)
 - The difference between Layer 1 and All Weights is the first convolutional layer
 - No difference in performance is seen when the first layer weights can be fine-tuned
 - The ImageNet-trained first convolutional layer extracts all the information needed to classify our neutrino events





Conclusions

- Use of CNNs for neutrino event classification is now well-established
- Transfer learning looks to be a promising approach
 - Can perform very well with small training samples
 - Reduces number of required training examples
 - Reduced bias for smaller training samples
 - Training process seems more stable
 - the required low-level features

The first convolutional layers from networks trained on photographs can extract all of

Thank you... any questions?

