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Physics with Accelerator Neutrinos (in a nutshell)

e Neutrinos (v’s) are produced by collisions of accelerated protons (10’s GeV)
on solid targets (e.g. graphite) and detected by massive particle detectors

e Search for violation of CP symmetry in v oscillations, new sterile v states, etc.
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Detection of Accelerator Neutrinos

e Neutrinos are neutral = detect charged particles produced by v interactions

e Several detector technologies: Cherenkov light, liquid argon time projection
chamber (LArTPC), segmented plastic scintillator, and multi-detector systems

= Our focus today is on “/maging” neutrino detectors
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Detection of Accelerator Neutrinos

e Neutrinos interact weakly hence experiments require massive detectors
(from a few tonnes to several kilotons) to collect enough data

+ A compromise between the detector mass and the tracking resolution
(i.e. # of readout channels) is necessary

Example of the new
3D segmented
plastic scintillator in
T2K experiment
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A. Precisely identify and reconstruct the
kinematics of outgoing lepton ( or
electron), pions, , heutrons

- characteristic patterns for different particles

B. “Invisible” particles deposit a cluster of
energy around the v interaction vertex
(in jargon “vertex activity”)

The goals is to identify the type of neutrino,
identify the final state topology and
reconstruct the kinematics of the interaction

— high dimensional problems !
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What information is stored in a neutrino image
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Generating a MC sample of neutrino interactions require the simulation of:
+ Neutrino interaction process (what has to be measured)

+ Propagation of each single particle in the detector
— not always very accurate (e.q. neutrons, pion/proton inelastic interactions)

+ Detector response (geometry, scintillation, photosensor, readout electronics,...)
Time consuming. To be tuned with data (beam tests and/or small experiments)
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Reconstructing the image of a neutrino interaction

Combine the different 2D views and reconstruct the 3D image

e [Remove ambiqguities by fitting Eiess in each channel

o Pattern recognition: clustering (e.g. DBSCAN, Minimum Spanning Tree, hit
ordering), cluster growth and track construction = list of clusters and tracks
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Reconstructing the kinematics of a neutrino interaction

Irack Fitting, i.e. reconstruct the position of the particle along the track
signature left in the detector (e.g. Bayesian Particle Filters, Kalman Filters)
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Reconstruct the particle range, direction, curvature in magnetic field
and its Eioss in each point of the track (in different detectors)
— obtain its full kinematics !

Capability of parametrising efficiently such hyper-dimensional space is
crucial to maximise the reconstruction performance
IPA-ML workshop
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Reconstructing the kinematics of a neutrino interaction

Often Boosted
Decision Trees are
used to parametrize

the outputs of the
previous analysis steps

Not trivial to

parametrize the full
parameter space
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Reconstructing the kinematics of a neutrino interaction

Measure the calorimetric energy deposited by low-energy particles
stopping near the neutrino interaction vertex - “Vertex Activity”
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Some of the main challenges: background and PID

It's crucial to obtain a high purity sample of v, interactions

o forevery v, we have ~100 U, Interactions, which can produce = Yy

= sensitive to background even with a very high rejection factor !
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Some of the main challenges: v interaction kinematics
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Improving the resolution to the transverse momentum of the neutrino
interaction final state is key to better infer the different interaction models
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The overlap between particles can vary between different neutrino MC generators
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Where Deep Learning can be useful ?

e Fast simulations and full reconstruction of the neutrino interaction final state
v Pattern recognition, track fitting, PID, energy reconstruction, etc.

v An accurate simulation for the required level of detalls is key to deal
with systematics = data independent from the physics measurement

¥ Training on a simulation that does not depend on the arbitrary choice
of the neutrino interaction generator is also key = avoid to bias the results

¢ Enhancing the experiment performance would highly impact the outcome of
the current and future neutrino experiments

e Some other applications
v Tuning of neutrino generators for systematic studies

v Speed up parameter inference, e.g. to set confidence/credible intervals

Deep learning can help to boost the sensitivity to neutrino oscillations
as well as the searches for new physics Beyond the Standard Model
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A possible approach: factorise the neutrino event

¢ |n principle single-particle data are reproducible with precision in beam tests
= training is safer when it relies on single-particle simulations as they can

be unambiguously compared to beam test data

e Factorize a neutrino interaction into single-particle objects
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The Neutrino session

Break

HIT E 51, ETH Zurich 10:20 - 10:50
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