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Introduction to 
HEP Data analysis and ML 

What you will see:

•A new programming paradigm

•Classifiers as test statistics

•Significance / Power

•Type I / II Errors

•ROC Curves 

•Best classifier (Neyman Pearson lemma)

•Algorithms:


• Histograms

• KDE

• KNN

• Curse of dimensionality

• Decision Trees for classification and 
regression


• Boosting

• Bagging


• HEP examples
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Artificial Intelligence (AI)


        Machine Learning


The automation of activities that we associate with human 
thinking, activities such as decision-making, problem 
solving, learning, …

2

A new programming paradigm

Machine learning is the technology of getting computers 

to act without being explicitly programmed.

(see Russel Norvig)

input

algorithm
output

input

output
algorithm

Standard programming Machine Learning
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The big picture
Artificial Intelligence (AI)


        Machine Learning


              Supervised Learning         Unsupervised Learning  


           “Classification problems”                “Clustering”

Supervised:     you instruct the algorithm using a sample where you give the correct classification

Unsupervised: you let the algorithm find out what are the characteristics of the data and define the classes

The automation of activities that we associate with human 
thinking, activities such as decision-making, problem 
solving, learning, …

Machine learning is the technology of getting computers 

to act without being explicitly programmed.

Classification:  you assign each member of a data sample to a discrete number of categories

Regression:     you assign each member of a data sample to a continuous value

(see Russel Norvig)



Mauro Donegà ETHZ                                                           IPA workshop on Machine Learning for particle physics and astrophysics 2023 4

Define the problem

Suppose we collect events at a collider and we want to separate signal (e.g. Higgs) from 
background (e.g. QCD). For each event we measure a number of observables:

 = (x1, x2, x3,.., xn) = (#jets, tracks pT, , MET, tracks dE/dX, #jets, b-tag, …)


Each event  lives in a n-dimensional phase space / feature space (where n can be >> 1)


If signal and noise populate different regions of phase space, we can try to separate them.

⃗x η, ϕ
⃗x

Translated with some statistics jargon: 

  follows some n-dimensional joint probability 

distribution pdf( |Hi) depending on event hypothesis:

H0, null-hypothesis, the event is background  

H1, alternative-hypothesis, the event is signal  


The goal is to separate the events in the two classes 
(sig / bkg) taking advantage of the information carried 
by the observables in .

Build a classifier using ML (Multi Variate Analysis)

⃗x
⃗x

⃗x

There are many ways to approach ML (CS, statistics, etc..). 

I will show some interesting link between ML and Statistics

[Cowan]
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Classifier as a test statistic
You can separate the different classes in several ways by choosing an appropriate 
boundary

“Cut based”

(leading to Decision Trees)

Linear discriminant

(Fisher discriminant)

Non-linear discriminant

(Neural Networks, BDTs)

The classifier y is a function of the data ”Test Statistic”  that allows to reduce the problem 
dimensionality. Often from n down to 1 ! 

Typically real number (0<— bkg sig—>1) or even binary (0 = bkg, 1= sig)


The separation between categories is then achieved setting a “decision boundary” as

                                                     y( ) = constant⃗x

Is there an “optimal way”  to separate sig/ bkg ?

[Cowan]
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Hypothesis testing
H0 = null hypothesis            = background-only

H1 = alternative hypothesis = signal + background

                                                (…there is no signal-only hypothesis,

                                                  the background is always there)


To discover a signal you exclude the background only hypothesis.

We will never be able to say that we have discovered the SM Higgs boson in 2012, 

we can only exclude that it is NOT the SM Higgs boson.



Mauro Donegà ETHZ                                                           IPA workshop on Machine Learning for particle physics and astrophysics 2023 7

Significance of a test
P (x|H1)

1� �

P (x|H0)

x

↵

accept H0 reject H0

P (x)

P(x| H0) 


if x > cut you reject the H0  (bkg HP)

  = significance of the test : you have a probability  to reject H0 when true.


Type I Error: reject a true hypothesis     (loss, false negative) 


NB: You decide the cut, you decide the significance . Typical values are 5%, 1%, 

        we also say a test has a significant level of 1-α  (typically 95%, 99% level)

α α

α

cut 

decision boundary
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Power of a test
P (x|H1)

1� �

P (x|H0)

x

↵

accept H0 reject H0

P (x)

cut 

decision boundary

P(x| H1) 


the probability to accept the null hp H0 when H1 is true 

1-  = power of the test


Type II Error: accept a false hypothesis (contamination, false positive)

β =
β

The “separation” between signal and bkg is given by the choice of your classifier.

Then by choosing a threshold on the signal efficiency (Type I error) you will get a 
background rejection (Type II error)
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Error types
A good classifier (test statistic) is the one with both α and β small, 

i.e. high significance and high power

i.e. H0 and H1 very different: “large separation”

Misinterpreting the data

Type I  error: reject a true hypothesis     (loss,                 false negative)

Type II error: accept a false hypothesis (contamination, false positive)


Example: You see a new bump in your data (H0 = bkg only, H1 = sig+bkg) 

Type I : there’s really no resonance, you reject H0 and you announce a non existing discovery

Type II: there is a real resonance, you accept H0 and you miss the Nobel prize

high significance 

high power low significance 


low power 
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https://www.geogebra.org/m/tza5dudu
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Background efficiency = 1-α (a test is significant at a level 1-α %) 

    α = probability of a type I error = background rejection


Signal efficiency = β = probability of a type II error 

   1-β = power of the test = signal inefficiency


Purity = probability for an event to be signal, once we have accepted it as signal 

(#signal evts passing the selection / #total eats passing the selection)

In practice…

Very often we use ROCs (Receiver Operators Curves) to show the performance of a classifier

NB: depending on what 
you plot the curve will be 
flipped

https://www.geogebra.org/m/tza5dudu

Build the pdfs under H0(H1) by throwing toy data distributed as H0(H1) and fill an 
histogram with the values of the classifier. The cut leaves  fraction of events in the tail 
of pdf(x|H0) and   fraction of events in the tail of pdf(x|H1)

α
β

si
g 

ef
f

bkg eff

https://www.geogebra.org/m/tza5dudu
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Choice of the critical region (reject H0): 
c is determined by the desired 
significance (α) —> c = c(α)


LR > c(α)

11

The “best” test is the one that makes both α and β as small as possible. 

Such a test can be found if-and-only-if  the hypothesis and the alternative are fully specified 
(simple hp).

Best classifier ?

Neyman-Pearson lemma: given α (the significance you decided to have) the test statistic 
that maximises the power against the alternative hp H1 is the likelihood ratio 

r =
g(t|H0)

g(t|H1)
LR

1� � ↵

accept H0 reject H0

c(  )↵
P(LR |H)

P(LR |H0) P(LR |H1)

LR

At this point whatever is the 
value of , NP guarantees you 
that is the smallest you can 
get, meaning that whatever 
other test statistic you can 
build, it will have a larger β.

β
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Machine Learning
NP: the optimal discriminating function is given by the likelihood ratio:

Writing explicitly the likelihoods is often impossible and the best we can do is to 

approximate it.


The algorithms that will see can be used to “learn” the LR using (typically) simulated data.

r =
g(t|H0)

g(t|H1)
LR

On using MC to train a classifier: data/mc disagreement.

ML uses almost always MC samples to train algorithms: if the MC does not reproduce 
correctly in data distribution in the n-dimensional phase space / feature space (i.e. each 
dimension and all correlations) you may get a biased performance !


—> see Massimiliano Galli talk on Data/MC matching



Mauro Donegà ETHZ                                                           IPA workshop on Machine Learning for particle physics and astrophysics 2023
13

Algorithms
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Brute force: Histograms

This is the simplest non-parametric model: 

“brute force” approach

“Pro” : once the histogram is computed, the data 
can be discarded. 

“Con”: discontinuities at bin edges, bad scaling 
with dimensionality.

pdf

Fill histograms from MC sig/bkg samples to build the pdfs for the Likelihood Ratio y(x)

The size of the bin has to be chosen to catch the structure of the pdf.

“true distribution”
[Cowan]
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Given any point x you have to classify it as orange or blue (this is how you build the 
boundary)


Consider a small volume V centred about x = (x1, ..., xD). 

Suppose from N total events we find K inside the volume V. 


Take as estimate for p(x)


To optimize the classifier performance you can: 


     Fix K and determine V from data   → K-nearest neighbour 

     Fix V and determine K from data   → Kernel Density Estimators

To construct the pdf at x = (x1, ..., xD) we can count the 
number of events in some local neighbourhood of x (requires 
definition of “local”, i.e., a distance) and then do a “majority 
vote”


The distance definition needs some care if you have variables 
with different ranges and units.

KDE and K-nearest neighbours

[Hastie]

https://hastie.su.domains/Papers/ESLII.pdf
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K-nearest neighbors 

Fix the number of  events K and find the 
volume V such that V contains K events.

smoothing parameter

Kernel Density Estimator
example for Gaussian estimator:

e.g: place a Gaussian “kernel” of standard deviation h 
centred about each data point; At a given x, add up the 
contribution from all the Gaussians and divide by N.

pdf
Large K means small stat error, but large volume, 

i.e. less local

Fix the volume V and find the number of events K:

what volume ? e.g. gaussian or a cube in n-dimensions

KDE and K-nearest neighbours

“true distribution”
[Cowan]
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Curse of dimensionality

We need to find a smarter way to sample the phase space

Suppose our data are uniformly distributed in a D-dimensional unit cube.  

Sample an interval in 1D with 100 points: distance between points 10-2


To sample a region in 2D with a distance between points of 10-2 you need 102 x 102 pts 

In a typical HEP classifier/regression with o(50) dimensions (102)50 = 10100  pts


Flip the argument: if you fix the number of points and you grow the number of dimensions, 
they become very sparse, i.e. you are not able to properly model the classifier 

All algorithm suffers one way or another from 
the curse of dimensionality !

 

BDTs will cope with it by boxing the phase 
space in a smart way, for NNs one of the hp is 
that they learn the manifold over which the 
data are distributed

https://www.deeplearningbook.org/

The volume grows exponentially, data points 
become very sparse and flat MC sampling 
becomes unfeasible

https://www.deeplearningbook.org/
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Learning algorithm

Training sets

Learning Algorithm

h

training

(input and output)

hypothesis
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Learning algorithm

Training sets

Learning Algorithm

h
hypothesis

input output

training

Prediction

data never seen

during training
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Decision trees: classification
Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x1

b
s

classes

You might have non-numerical 

values for the coordinates:

             tight / loose identification flag

The idea is to separate the classes using placing simple cuts 

(i.e. binary splits of the data xi < value or  xi > value)

Strategy is to minimize the misclassification at each step

[ML - mm]

https://www.youtube.com/watch?v=p17C9q2M00Q&list=PLD0F06AA0D2E8FFBA&index=7
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Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

21

s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x1

1.5
b
s

classes

Choose the variable that provides the greatest increase in the separation measured in 
the two daughter nodes relative to the parent. 

(The same variable may be used at several nodes or ignored)

This is maximum for P = 0.5 (no separation / random guess) and zero for P = 0 or 1. 
(having purity of 0 or 1 is the same, you always have max separation)

Define  a metric for the separation: 

the “Gini index”       Gini = P(1-P) Where P =purity:

Decision trees: classification
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x12.0

1.5

Strategy is to minimize the 
misclassification at each leaf

Decision trees: classification
Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.0

1.5

Decision trees: classification
Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes

Strategy is to minimize the 
misclassification at each leaf
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.0

1.5

2.1

Decision trees: classification
Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes

Strategy is to minimize the 
misclassification at each leaf
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.01.6

1.5

2.1

Decision trees: classification
Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes

Strategy is to minimize the 
misclassification at each leaf
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.01.6

1.5

2.1
Repeat until every region

(leaf) contains a “minimum” 
number of points.

Decision trees: classification
Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes

Strategy is to minimize the 
misclassification at each leaf
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.01.6

1.5

Build a binary tree:

x2 >1.5

2.1

Decision trees: classification
Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes

Strategy is to minimize the 
misclassification at each leaf
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.01.6

1.5

Build a binary tree:

x2 >1.5

x1 >2.0 2.1

Decision trees: classification
Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes

Strategy is to minimize the 
misclassification at each leaf
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.01.6

1.5

x2 >1.5

x1 >2.0 2.1

3,0

leaf 

number of points in each class

Decision trees: classification

Strategy is to minimize the 
misclassification at each leaf

Build a binary tree:

Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.01.6

1.5

x2 >1.5

x1 >2.0 2.1

3,0x1 >1.5

Decision trees: classification

Strategy is to minimize the 
misclassification at each leaf

Build a binary tree:

Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.01.6

1.5

x2 >1.5

x1 >2.0 2.1

3,0x1 >1.5

0,33,1

Decision trees: classification

Strategy is to minimize the 
misclassification at each leaf

Build a binary tree:

Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.01.6

1.5

x2 >1.5

x1 >2.0 2.1x1 >2.1

3,0x1 >1.5

0,33,1

1,3x1 >1.6

3,11,2

Decision trees: classification

Strategy is to minimize the 
misclassification at each leaf

Build a binary tree:

Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.01.6

1.5

x2 >1.5

x1 >2.0 2.1x1 >2.1

3,0x1 >1.5

0,33,1

1,3x1 >1.6

3,11,2

Now you have to choose how to classify the leaves: Majority vote


Decision trees: classification

Strategy is to minimize the 
misclassification at each leaf

Build a binary tree:

Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes
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s
s s

s

ss s
s

s
s

s

bb

b
b

b
bb

bb

b

x2

x11.5 2.01.6

1.5

x2 >1.5

x1 >2.0 2.1x1 >2.1

3,0x1 >1.5

0,33,1

1,3x1 >1.6

3,11,2

Now you have to choose how to classify the leaves: Majority vote

It’s like writing a function piece wise constant over the regions

Decision trees: classification

Strategy is to minimize the 
misclassification at each leaf

Build a binary tree:

Training sample ∈ℜ2

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

b
s

classes
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x2

x11.5 2.01.6

1.5

x2 >1.5

x1 >2.0 2.1x1 >2.1

x1 >1.5 x1 >1.6

X

is classified as s

Apply the DT to your data set

(x11,x21)

...

(x1i,x2i)

...

(x1n,x2n)

X
data

Decision trees: classification
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Training sample ∈ℜ

(x1,y1)

...

(xi,yi)

...

(xn,yn)

x

continuous

target

y
Decision trees: regression
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x2.5

y

Strategy is to minimize the 

error at each leaf

Decision trees: regression
Training sample ∈ℜ

(x1,y1)

...

(xi,yi)

...

(xn,yn)

continuous

target
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x2.0 2.5

y
Decision trees: regression
Training sample ∈ℜ

(x1,y1)

...

(xi,yi)

...

(xn,yn)

continuous

target

Strategy is to minimize the 

error at each leaf
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x2.0 2.5

y

3.0

Decision trees: regression
Training sample ∈ℜ

(x1,y1)

...

(xi,yi)

...

(xn,yn)

continuous

target

Strategy is to minimize the 

error at each leaf
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x2.0 2.5

y

1.0 3.0

Decision trees: regression
Training sample ∈ℜ

(x1,y1)

...

(xi,yi)

...

(xn,yn)

continuous

target

Strategy is to minimize the 

error at each leaf
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x2.0 2.5

y

1.0 3.0 4.1

Decision trees: regression
Training sample ∈ℜ

(x1,y1)

...

(xi,yi)

...

(xn,yn)

continuous

target

Strategy is to minimize the 

error at each leaf
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x2.0 2.5

y

1.0 3.0 4.1

Strategy is to minimize the 

error at each leaf

Average of the points in each region

R1 R2 R3 R4 R5 R6

0.5
0.7
1.0
1.3
2.0

Repeat until every region 
(leaf) contains a “minimum” 
number of points

i.e. given x predict y

Decision trees: regression
Training sample ∈ℜ

(x1,y1)

...

(xi,yi)

...

(xn,yn)

continuous

target
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x >2.5

x >2.0 x >3.0

x >1.0 x >4.1

Build a binary tree

2.0 2.5

y

1.0 3.0 4.1

Strategy is to minimize the 

error at each leaf

Average of the points in each region

R1 R2 R3 R4 R5 R6

0.5
0.7
1.0
1.3
2.0

1.32.0

1.00.7

0.5 1.0

x

Decision trees: regression
Training sample ∈ℜ

(x1,y1)

...

(xi,yi)

...

(xn,yn)

continuous

target
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x >2.5

x >2.0 x >3.0

x >1.0 x >4.1

Build a binary tree

2.0 2.5

y

1.0 3.0 4.1

Strategy is to minimize the 

error at each leaf

Average of the points in each region

R1 R2 R3 R4 R5 R6

0.5
0.7
1.0
1.3
2.0

1.32.0

1.00.7

0.5 1.0

x

Again it’s like writing a real function piece wise constant 
over the variables’ space

Decision trees: regression
Training sample ∈ℜ

(x1,y1)

...

(xi,yi)

...

(xn,yn)

continuous

target
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Decision Trees tend to be very sensitive to statistical 
fluctuations of the training sample:


1- The variables and the order are chosen on the 
base of separation. If you change the training 
sample you might get different trees.


2- Whatever variable is the most discriminating it will 
influence the rest of the tree !


3- They are very sensitive to overtraining: 

learn the noise of the particular sample used for 
training, but miss the general structure. Poor 
performance when applied on another sample.


Decision trees are too unstable to be used safely.

Bad news: decision trees are not usable…
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These techniques can be applied to classification and regression (and to any kind of 
algorithm not only DT).

Decision trees are not usable…

The breakthrough came with aggregation techniques: aggregate copies of the same 
(or similar) tree


Among the two most used are BAGGING and BOOSTING.


A simple way to make a decision tree more stable is to  “re-group” or remove branches 
(regions) of your tree: pruning


This is a special case of a general process called “regularisation”
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Bagging: Bootstrapping AGGregation

x

y
Consider a regression problem:

(given x predict y) truth relation


y=f(x)

x

y

training data
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x

y

x

y

x

y

Idea: take N datasets 

independently drawn from the training

sets and improve the prediction by 

aggregating the trees: averaging

How do we create N datasets ?

resampling

In general the resampling 
technique used is the bootstrap 

(hence the name of the technique)

Bagging: Bootstrapping AGGregation

Consider a regression problem:

(given x predict y)

(For a classification you average the prediction of the bootstrapped samples)



Mauro Donegà ETHZ                                                           IPA workshop on Machine Learning for particle physics and astrophysics 2023 49

Boosting
Sequentially training a model learning from the errors of the previous 
ones.

s
s s

s
s
s b

b
b

b
b

x2

x1

b

s

1 level decision tree

s
s s

s
s
s b

b
b

b
b

x2

x1

b

s wrong

wrong

Focus on the 4 wrong ones

The idea is to create modifications that give smaller error rates than those of the preceding classifiers.

training data

[Ihler]

https://www.youtube.com/watch?v=ix6IvwbVpw0
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s
s s

s
s
s b

b
b

b
b

x2

x1

b

s

s
s s

s
s
s b

b
b

b
b

x2

x1

b

s wrong

wrong

s
s s

s b
b

b

b
b

x2

x1

b

s

ss

s
s s

s b
b

b

b
b

x2

x1

b

s

ss
it is “more important” to 

make this three “S” right

than the other wrong

Right classification:   

	 	 	 decrease weight


Wrong classification: 

                increase weight

Sequentially training a model learning from the errors of the previous 
ones. The idea is to create modifications that give smaller error rates than those of the preceding classifiers.

1 level decision tree

training data

Boosting
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s
s s

s
s
s b

b
b

b
b

x2

x1

b

s

1 level decision tree

s
s s

s
s
s b

b
b

b
b

x2

x1

b

s wrong

wrong

s
s s

s b
b

b

b
b

x2

x1

b

s

ss

s
s s

s b
b

b

b
b

x2

x1

b

s

ss

s
s s

s
b

b
b

b
b

x2

x1

b

s

s
s

s
s s

s
b

b
b

b
b

x2

x1

b

s

s
s

Sequentially training a model learning from the errors of the previous 
ones. The idea is to create modifications that give smaller error rates than those of the preceding classifiers.

training data

Boosting
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In practice: 

 assign numerical values to the two classes: b = +1 s =-1

s
s s

s
s
s b

b
b

b
b

x2

x1

b

s s
s s

s b
b

b

b
b

x2

x1

b

s

ss
s

s s

s
b

b
b

b
b

x2

x1

b

s

s
s0.33 +0.57 +0.42

s
s s

s
b

b
b

b
b

x2

x1

b

s

s
s=

assign a weight to each of the trees and sum them

<

> 0


(see next how to set the weight)

Boosting
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 w = train    (x,y)

y    = predict (w, x)

 

      e = w * ( y ==y )  


53

Boosting: assign the weights
Adaptive Boost: Adaboost (one of many algorithms)

correct (s,s) or (b,b) ⇒ “+ sign”down-weighted

wrong  (s,b) or (b,s) ⇒ “- sign” up-weighted

(true,predict)

X

i

�i predict(c(i), x)final classifier/tree =

^

^

initially set all weights to 1, then evolve them

c(i) = classifier/tree (i)

x = vector of variables in

y = vector of class/target out

w = vector of weights

e = scalar error = 

              vector of weights * vector of 0s and 1s 

                                                       correct/wrong

→

→
→
→

→ → →

Set �i =
1
2

log
✓

1� e

e

◆
α at the step i

For i = 1.. Nboost
{

}
�w = �w/

X
(�w) normalize by the sum of all weights

 Compute the vector of errors

→

→→→

→

Update weights wj ! wje
�↵i(yj ·ŷj)
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Comments on BDTs:
Overtraining: it is “easy” to control using the parameters of the BDT:


• number of trees

• max depth of the tree

• how many events in the leaves

• (+various parameters of the specific boosting algorithm)


Correlated variables:

• adding correlated variables will not degrade the  performance of the BDT because 

the less discriminating will be automatically de-weighted e.g. Gini index)


——————————————————————————


BDT packages:

• (root) TMVA 

• scikit learn

• XGBOOST


https://root.cern/manual/tmva/
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
https://xgboost.readthedocs.io/en/stable/
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Examples in HEP:

MiniBooNE, B. Roe et al., NIM 543 (2005) 577

The analysis is set up to 
distinguish electrons / muon / π0 
events based on PMT hits, 
reconstructed energy, Radius of 
the ring

First BDT application in HEP
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μ event

e event

π0 event

MiniBoone SuperK
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Examples: BDTs in H→γγ search
= BDT
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Electron energy regression

Examples:

Z → e+e−

CMS-EGM-11-001

https://cms-results.web.cern.ch/cms-results/public-results/publications/EGM-11-001/index.html
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Examples:
CMS-HIG-16-040

Validation with data Standard candle

(T&P electrons in data and MC)

Classify photons from jets faking photons

https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-16-040/index.html
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Examples:
CMS-HIG-17-018

ttH → ττ

https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-17-018/index.html
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More material
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Fisher discriminant
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Linear test statistics (I): 

Fisher discriminant
The easiest case is to model the likelihood ratio test statistics with a linear model

The goal is to choose the weights wi to maximize the “separation” between the pdf(y|sig), 
pdf(y|bkg)

Fisher definition of separation:

So the goal becomes writing the means τ and the covariances Σ in terms of the weights and 
then find the weights values that maximize J

     separation between classes

     separation(spread) within classesJ =

Reminder: here we want to 
approximate the test statistics 
with a multivariate discriminant

[Cowan]
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Linear test statistics (II)

2

the input to the

discriminant

the output of the

discriminant
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Linear test statistics (III)

w.r.t 

widths

means
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The maximum of J is found by solving 

giving the Fisher discriminant:

The red straight line represents a

n-1 hyperplane in the n-dimensional space.

You can see the separation by projecting the 
points orthogonally to the plane

We need to find the coefficients wi :  “training”

Linear test statistics (IV)
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For non linear problems, sometimes you can come up with a non 
linear map of the input variables and then apply a linear test-
statistics 

Linear test statistics (V)


