Momentum kernel and Numerators

Momentum Kernel from Shapovalov form

https：／／liṇk．springer．com／book／9789811947506
 Work in collaboration with Chih－hao Fu

In our recent proceeding paper，we present a natural way to construct momentum kernel from Shapovalov form．

Momentum Kernel

1．Notations

The momentum Kernel appears as the transition matrix of amplitudes and numerators，the inverse The momentum Kernel appears as the transition matrix of amplitudes and berends－Giele current，and the paring coefficients of the double copy relation．It is a
matrix of
function of the indendent external monta $\{k\} i=1$

Or more specifically a function of the Mandelstam variables $s_{i j}=k_{i} \cdot k_{j}, s_{A}=\sum_{s i j}, A \subset\{1, \ldots, n\}$
2．Expression
The explicit expression for momentum kernel is a polynomial of Mandelstam variables depending on two permutations of the indices．Such dependence and the fact that it serves as a a transition matrix between
amplitudes and numerators implies the bilinear structure of momentum kernel
$S\left[\sigma(2), \ldots, \sigma(n) k_{1}, \tau(2), \ldots, \tau(n) \|_{k_{1}}=\Pi \prod_{1}\left(s_{1 \sigma(t)}+\sum_{n}^{\theta} \theta(\sigma(t), \sigma(q)) s_{\sigma(t)(\tau)}\right), \quad \theta(\sigma(t), \sigma(q))= \begin{cases}1 & (\sigma(t)-\sigma(q))\left(\sigma \tau^{-1}(t)-\sigma \tau^{-1}(q)\right)<0 \\ 0 & (\sigma(t)-\sigma(q))\left(\sigma \tau^{-1}(t)-\sigma \tau^{-1}(q)\right)>0\end{cases}\right.$

3．Examples

Here we list the explicit expression for the first a few simple cases of momentum kernel for simple
comparison with the Shapovalov forms

$$
\begin{aligned}
S[23,23]_{k_{1}} & =\left(s_{23}+s_{13}\right) \\
S[23,323]_{13} & =s_{13} \\
S[234,234]_{1} & =-s_{34}+s_{24}
\end{aligned}
$$

$S[234,234]_{k 1}=-\left(s_{34}+s_{24}+s_{14}\right)\left(s_{23}+s_{13}\right) s_{12}$

4．String KLT kernel

As the string－lift of momentum kernel，the string KLT kernel can be identified with the q－deformed
version of Shapovalov form．The following example is a demonstration for this identification
$\mathcal{S}_{\alpha^{\prime}}[234 \mid 423]_{k_{1}}=\sin \left(\pi \alpha^{\prime} s_{12}\right) \sin \left(\pi \alpha^{\prime}\left(s_{13}+s_{23}\right)\right) \sin \left(\pi \alpha^{\prime}\left(s_{14}+s_{24}+s_{34}\right)\right)$

Shapovalov Form

1．Underlying Algebra
The Shapovalov form is a bilinear form defined on Lie algebra．To construct momentum kernel for n－pt
amplitudes，we need the underlying algebra G to have a simple amplitudes，we need the underlying algebra G to have a simple root system that reproduces the
Mandelstam variables．We define algebra G to be the Lie algebra with generators implementing th Mandelstam variables．
following Lie－bracket

2．Definition：
The Shapovalov form is a bilinear form defined recursively on G by the following rules
$\left\langle E_{i}, E_{j}\right\rangle=\delta_{i j},\left\langle E_{i}, X\right\rangle=0, \quad i, j \in\{1, \ldots, n\}, X \in G, X \notin \operatorname{Span}\left(\left\{E_{1}, \ldots, E_{n-1}\right\}\right)$ $\left\langle\left[E_{i}, X\right], Y\right\rangle=\langle X,| F_{i}, Y| \rangle, \quad i, j \in\{1, \ldots, n\}, X, Y \in G$

3．Example

The following expressions for the first a few nontrivial cases of Shapovalov form can be derived recursively by repetitive application of the defining property of Shapovalov form，the Lie brackets $\left.\left.\left.\left.\left\langle\left\langle E_{3},\right| E_{2}, E_{1}\right|\right\rfloor,\left|E_{3},\right| E_{2}, E_{1}\right]\right\rangle\right\rangle=\left(s_{23}+s_{13}\right) s$
$\left\langle\left[E_{3},\left[E_{2}, E_{1}\right]\right],\left[E_{2},\left[E_{3}, E_{1}\right]\right]\right\rangle=s_{13} s_{12}$
4．q－deformed Shapovalov form
The Shapovalov form naturally generalizes to the modules over q－deformation of G ．The explicit
expression can be calculated following similar approach expression can be calculated following similar approach．The result turns out to be the q－deformation of
the classical one in the sense that each term in the multiplication is replaced by its q－defromation for the classic
example：
$\left\langle e_{4} e_{3} e_{2} v_{1}, e_{3} e_{2} e_{4} v_{1}\right\rangle_{q}=-\left[s_{14}\right]_{q}\left[s_{13}+s_{23}\right]_{q}\left[s_{12}\right]_{q} \quad[z]_{q}=q^{z}-q^{-z}$
This formula can be identified with the KLT kernel when $q \rightarrow e^{i \pi \alpha^{\prime}}$

As the inversion of momentum kernel，the Berends－Giele current can be naturally identified as the Shapovalov form between two dual elements of the half－ladder basis or coefficients in the expression of Shapovalov dual of half ladder basis when spanning by half ladder basis，as in the following example．

$$
\begin{aligned}
\left(\left[E_{4},\left[E_{3},\left[E_{2}, E_{1}\right]\right]\right]\right)^{*} & =\frac{1}{s_{1234} s_{123} s_{12}}\left[E_{4},\left[E_{3},\left[E_{2}, E_{1}\right]\right]\right]+\frac{1}{s_{1234} s_{12} s_{34}}\left[\left[\left[E_{4}, E_{3}\right], E_{2}\right], E_{1}\right] \\
& +\frac{1}{s_{1234} s_{234} s_{34}}\left[\left[\left[E_{4}, E_{3}\right], E_{2}\right], E_{1}\right]+\frac{1}{s_{1234} s_{234} s_{23}}\left[\left[E_{4},\left[E_{3}, E_{2}\right]\right], E_{1}\right] \\
& +\frac{1}{s_{1234} s_{123} s_{23}}\left[\left[E_{4},\left[E_{3}, E_{2}\right]\right], E_{1}\right]
\end{aligned}
$$

This identification combined with the recursive property of Shapovalov dual elements leads to an alternative proof for the inversion relation between momentum kernel and Berends Giele currents．This proof also has a q－deformed version for the KLT kernel and twisted intersection numbers．

Numerators as Shapovalov Forms

Nonlinear Sigma Model

work in progress

Yang－Mills Theory

work in progress with Chih－hao Fu

Root system for algebraic construction of Yang－Mills numerators
The root system used was proposed in P．Goddard and D．I．Olive，DAMTP－83／22．For a n－point amplitude the root system is generated by 2 n－ simple roots and the underlying Lie algebra is defined by the following Lie brackets：

$$
\left[E_{k_{i}-\epsilon_{i}}, E_{\epsilon_{i}}\right]=E_{\left\{\epsilon_{i}, k_{i}\right\}}^{\text {gluon }}, \quad\left[H_{\mu}, E_{\left\{\epsilon_{i}, k_{i}\right\}}^{\text {gluon }}\right]=k_{\mu} E_{\left\{\epsilon_{i}, k_{i}\right\}}^{\text {gluon }}
$$

where

The onshell condition $\quad k_{i}^{2}=0$ and the gauge invariance $\epsilon_{i} \cdot k_{i}=0$ follows naturally from the normalization of the simple roots．

Jacobi－manifest reperesentation for Yang－mills numerators
The n－point Yang－Mills numerators can be written as the Shapovalov form on a universeral vector and a nested Lie bracket of $E_{\{\{, k, k\}\}}^{\text {flimen }}$

$$
N(12 \ldots n)=\left\langle U_{n}, r\left(\left[E_{\epsilon_{1}}, E_{k_{1}-\epsilon_{1}}\right], \ldots,\left[E_{\epsilon_{n-1}}, E_{k_{n-1}-\epsilon_{n-1}}\right], E_{\epsilon_{n}}\right)\right\rangle
$$

For example，the 4 －point numerator takes the following form

$$
N(1234)=\left\langle U_{4},\left[\left[E_{\epsilon_{1}}, E_{k_{1}-\epsilon_{1}}\right],\left[\left[E_{\epsilon_{2}}, E_{k_{2}-\epsilon_{2}}\right],\left[\left[E_{\epsilon_{3}}, E_{k_{3}-\epsilon_{3}}\right], E_{\epsilon_{4}}\right]\right]\right]\right\rangle
$$

