Tidal effects in a Worldline Quantum Field Theory

Benjamin Sauer

Humboldt-Universität zu Berlin

based on work with: Jan Plefka, Gustav Mogull, Gustav Jakobsen

Worldline Quantum Field Theory

Tidal Feynman Rules

The point particle action neglects finite size effects, which are needed for an accurate description of neutron star scattering. To include **quadrupole** tidal effects in the WQFT a tidal action must be added to the point particle action:

Leading Order Waveform

Conservative Deflection

or M M M

Þ

A pure conservative scattering can be calculated by an evaluation of the appearing loop integrals in the so called **potential region**, which prevents propagators to go on-shell and excludes radiative effects. The kinematic of the bodies gets simplified: $(p_i + \Delta p_i)^2 = \Delta p_i^2, \quad \Delta p_1^\mu = -\Delta p_2^\mu$

(14)

Figure 1: Deformation of a neutron star in an external tidal field

The Worldline-QFT[1] describes a scattering of two massive bodies, which leads to a deflection of the bodies and an emission of gravitational waves as shown in Fig.2. It works in an **EFT framework** in which a black hole is described as a **point particle** coupled to GR and neglects finite size effects: $S_{pm} = -\frac{m}{2} \int d\tau (g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} + 1) \quad (1)$ $S_{tidal} = \int d\tau_a c_{E^2}^{(a)} E_{\mu\nu} E^{\mu\nu} + c_{B^2}^{(a)} B_{\mu\nu} B^{\mu\nu}$ (7)

with: $E_{\mu\nu} = R_{\alpha\mu\beta\nu}\dot{x}_a^{\alpha}\dot{x}_a^{\beta}$, $B_{\mu\nu} = R^*_{\alpha\mu\beta\nu}\dot{x}_a^{\alpha}\dot{x}_a^{\beta}(8)$ • Love numbers, which encode the tidal properties of the body, are incorporated in the action as Wilson coefficients c_{E^2/B^2}

Action gives rise to new vertices. These are marked with a square in Feynman diagrams and emit two or more gravitons from the worldline as in Fig.3 and can emit an arbitrary number of z^μ fields
Love numbers vanish for

Figure 3: The two diagrams contributing to tidal effects to the leading order waveform

The waveform in the WQFT is given by a Fourier transformation of the expectation value of a single graviton: $f(u, \hat{x}) = \frac{8}{\kappa} G \int_{\Omega} e^{-ik \cdot x} \epsilon^{\mu\nu} k^2 \langle h_{\mu\nu}(k) \rangle$

• Tidal effects do **not contribute to the wave memory** at leading order:

 $\Delta f_{tidal} = f|_{u=-\infty}^{\infty} = 0 \qquad (10)$

- Tidal effects do not contribute to radiation of angular momentum at leading order
- The waveform can also be used to calculate the radiated Momentum

where $f = f_{ij} \epsilon^{ij}$.

part of the higher order deflection can be calculated by lower orders in the PM expansion Δp^μ_i = Σ_n Gⁿp^{(n)μ}
the i0 prescription of propagators can be neglected in all calculations
self-interaction diagrams do not contribute

Radiative Effects

The whole action of a two body scattering is given by the point particle actions of the bodies, the Einstein-Hilbert action and a gauge fixing term:

$$S = S_{EH} + S_{gf} + \sum_{i} S_{pm}^{(i)}$$
 (2)

In a Post-Minkowskian expansion the **graviton** $h_{\mu\nu}$ is the first quantized field:

$$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$$

(3)

The second quantized field is given by the **deflection** z^{μ} from the unperturbed trajectory:

$$x_{i}^{\mu}(\tau) = b_{i}^{\mu} + v_{i}^{\mu}\tau + z_{i}^{\mu}(\tau) \quad (4)$$

$$\underbrace{\bigvee_{1}}_{WWWWWW} \quad \underbrace{\bigvee_{2}}_{WWWWWW} \quad (4)$$

non-spinning black holes and tidal effects play no role for non-spinning black holes

(in a
$$v$$
 expansion)

$$P^{\mu}_{\rm rad} = \frac{1}{32\pi G} \int du \sigma [\dot{f}_{ij}]^2 \rho^{\mu} \quad (11)$$

Radiated Momentum

$$P_{\text{rad,tidal}}^{\mu} = \frac{G^3 \pi m_1^2 m_2^2}{|b|^7} \left[\left(c_{E^2}^{(1)} \mathcal{A}_{E^2} + c_{E^2}^{(2)} \mathcal{B}_{E^2} + c_{B^2}^{(1)} \mathcal{A}_{B^2} + c_{B^2}^{(2)} \mathcal{B}_{B^2} \right) \frac{\gamma v_2^{\mu} - v_1^{\mu}}{\sqrt{\gamma^2 - 1}} + (1 \leftrightarrow 2) \right] (12)$$

In-In-Formalism [2]

Taking into account a classical system obeys causality, it is required to use the so called in-in-formalism [3], rather than the usual in-out-formalism. In this formalism fields propagate from time $t = -\infty$ to $t = \infty$ and propagate then back to $t = -\infty$. For the calculation in a WQFT this is simply done by replacing Feynman propagators by retarded propagators, which point from cause to action. The WQFT provides a very direct access to observables through the calculation of expectation values via Feynman diagrams. To take the classical limit it is enough to consider **only tree level** diagrams.

Figure 4: Example graphs contributing to finite size effects of $\Delta p_1^{(3)}$

Figure 5: A graph with a radiative contribution. The graviton propagator which can go on shell is marked red

In the WQFT radiative effects are easily incorporated by the **usage of retarded propagators** pointing from cause to action. Additional to the conservative deflection it gives also the radiated momentum

 $P_{rad}^{\mu} = p_1^{\mu} + p_2^{\mu}, \qquad (15)$

which is given in eq.(12) in agreement with previous results. In comparison to other common formalisms the advantage of the WQFT is that this is all done in a single calculation, and there is **no need to differ between con**servative and radiative effects. The result is consistent with the leading order waveform result. **References**

Figure 2: Scattering of two neutron stars with initial velocities v_i

 $\begin{aligned} \mathcal{A}_{x} = & a_{1,x} + a_{2,x} \log\left(\frac{\gamma+1}{2}\right) + a_{3,x} \frac{\operatorname{arccosh}\gamma}{\sqrt{\gamma^{2}-1}}, \\ a_{1,E^{2}} = & \frac{15}{128(\gamma-1)(\gamma+1)^{4}} \left(937\gamma^{9} + 1551\gamma^{8} - 2463\gamma^{7} - 5645\gamma^{6} + 20415\gamma^{5} \right. \\ & + 65965\gamma^{4} - 349541\gamma^{3} + 535057\gamma^{2} - 360356\gamma + 92160\right), \\ a_{1,B^{2}} = & \frac{15}{256(\gamma+1)^{4}} \left(1559\gamma^{8} + 3716\gamma^{7} - 1630\gamma^{6} - 11660\gamma^{5} + 28288\gamma^{4} \right. \\ & + 155292\gamma^{3} - 543442\gamma^{2} + 535212\gamma - 180775\right), \\ a_{2,E^{2}} = & 22532 \left(21\gamma^{4} - 14\gamma^{2} + 9\right), \\ a_{2,B^{2}} = & 157532 \left(3\gamma^{4} - 2\gamma^{2} - 1\right), \\ a_{3,x} = & -\frac{\gamma \left(2\gamma^{2} - 3\right)}{1600}a_{2,x}. \end{aligned}$

$$\mathcal{B}_{E^2} = \frac{45(\gamma - 1)}{64(\gamma + 1)^4} \left(42\gamma^8 + 210\gamma^7 + 315\gamma^6 - 105\gamma^5 - 944\gamma^4 - 1528\gamma^3 + 22011\gamma^2 - 33201\gamma + 16272 \right),$$
$$\mathcal{B}_{B^2} = -\frac{45(\gamma - 1)^2 \left(105\gamma^5 + 630\gamma^4 + 1840\gamma^3 + 3690\gamma^2 - 17769\gamma + 1598\gamma^2 - 164(\gamma + 1)^4 \right)}{64(\gamma + 1)^4}$$

The WQFT provides a **direct computation of the deflection via the** z^{μ} -field

 $\Delta p_1^{\mu} = -m_1 \omega^2 \langle z_1^{\mu}(\omega) \rangle |_{\omega=0}$ (13) and is computed by Feynman diagrams with an outgoing z_1^{μ} -field, as in Fig. 4. The leading order in finite size effects is given by diagrams with a single tidal vertex. [1] Gustav Mogull, Jan Plefka, and Jan Steinhoff.

Classical black hole scattering from a worldline quantum field theory. JHEP, 02:048, 2021.

[2] L. V. Keldysh.

Diagram technique for nonequilibrium processes.

Zh. Eksp. Teor. Fiz., 47:1515–1527, 1964.

[3] Gustav Uhre Jakobsen, Gustav Mogull, Jan Plefka, and Benjamin Sauer.
All Things Retarded: Radiation-Reaction in Worldline Quantum Field Theory. JHEP, 10:128, 2022.