Spinning compact objects using EFTs Raj Patil

MPI for Gravitational Physics (AEI) and Humboldt University

Multipole Sources

 $\lambda \approx \frac{r}{r}$

Post-Newtonian framework / separation of scales

In the inspiral phase of the binary coalescence of compact objects, the velocities are non-relativistic (slow velocity $\mathbf{v}/\mathbf{c} \ll \mathbf{1}$) and objects are far apart (weak field $\mathbf{g}_{\mu\nu} = \eta_{\mu\nu} + \mathbf{h}_{\mu\nu}$).

Compact object Bound state S^µ m_1 m_2

Computational Algorithm

 \ll \ll R_{s}

Hence, we have a hierarchy of scale and EFTs exactly fo the job of explaining the simplest framework that captures the essential physics at these scales R_s , r and λ .

Effective action for compact objects

A spinning compact object could be approximated by a point particle with internal structure at large scales as compared to R_s , using the action [1],

$$S_{pp(a)} = \sum_{a=1,2} \int d\tau \left(-m_{(a)} c \sqrt{u_{(a)}^2} - \frac{1}{2} S_{(a)\mu\nu} \Omega_{(a)}^{\mu\nu} - \frac{S_{(a)\mu\nu} u_{(a)}^{\nu}}{u_{(a)}^2} \frac{du_{(a)}^{\mu}}{d\tau} + \mathcal{L}_{(a)}^{(R)} + \mathcal{L}_{(a)}^{(R^2)} + \dots \right)$$

The non-minimal couplings relevant upto 5PN and upto quadratic in spin are,

$$\mathcal{L}_{(a)}^{(R)} = -\frac{1}{2m_{(a)}c} C_{\mathrm{ES}^{2}(\mathrm{a})} \frac{E_{\mu\nu}}{u_{(a)}} \Big[S_{(a)}^{\mu} S_{(a)}^{\nu} \Big]_{\mathrm{STF}} + \dots$$
$$\mathcal{L}_{(a)}^{(R^{2},S^{0})} = \frac{1}{2} C_{\mathrm{E}^{2}(\mathrm{a})} \frac{G_{N}^{4} m_{(a)}^{5}}{c^{7}} \frac{E_{\alpha\beta} E^{\alpha\beta}}{u_{(a)}^{3}} + \dots$$
$$\mathcal{L}_{(a)}^{(R^{2},S^{2})} = \frac{1}{2} C_{\mathrm{E}^{2}\mathrm{S}^{2}(\mathrm{a})} \frac{G_{N}^{2} m_{(a)}}{c^{5}} \frac{E_{\mu\alpha} E_{\nu}^{\alpha}}{u_{(a)}^{3}} \Big[S_{(a)}^{\mu} S_{(a)}^{\nu} \Big]_{\mathrm{STF}} + \dots$$

where the willson coefficients $C_{(a)}$ are function of the constants of the conservative system $m_{(a)}$ and $S_{(a)}$. We can extract the explicity dependence on the spin by expanding the coefficients as follows

$$C_{(a)} = C_{(a)}^{(0)} + C_{(a)}^{(2)} \left(\frac{S_{(a)}^2 c^2}{G_N^2 m_{(a)}^4} \right) + C_{(a)}^{(4)} \left(\frac{S_{(a)}^2 c^2}{G_N^2 m_{(a)}^4} \right)^2 + \cdots$$

Master Integrals

The coefficient $C_{ES^2}^{(0)}$ starts contributing from 2PN (LO S² sector), whereas the other two coefficients $C_{E^2}^{(2)}$ and $C_{E^2S^2}^{(0)}$ contribute for the first time at 5PN. Out of them, $C_{ES^2}^{(0)}$ is related to the spin-induced quadruple moment of the compact object: for Kerr black holes, it is known to be 1 and for neutron stars its value ranges within 2-8. The other two coefficients, $C_{E^2}^{(2)}$ and $C_{E^2S^2}^{(0)}$, encode quadrupolar deformations, due to an external field and spin-square effects, and are unknown for particular compact objects.

Diagramatic approach for bound state dynamics

Method of regions: Gravitational interactions can be separated into potential gravitons $(H_{\mu\nu})$ and radiation gravitons $(\bar{h}_{\mu\nu})$ which scale as

$$m{H}_{\mu
u}
ightarrow (m{k}_0,m{k}) \equiv (1/r,m{v}/r) \qquad ar{m{h}}_{\mu
u}
ightarrow (m{k}_0,m{k}) \equiv (m{v}/r,m{v}/r)$$

The conservative effective potential for the point particles can then be computed by integrating out the potential gravitons (with $\bar{h}_{\mu\nu} = 0$) for the action,

$$S_{\text{eff}} = S_{\text{EH}} + S_{\text{pp}(1)} + S_{\text{pp}(2)}$$

where,

$$S_{
m EH}=-rac{c^4}{16\pi G_N}\int d^4x\sqrt{g}\;R[g_{\mu
u}]+rac{c^4}{32\pi G_N}\int d^4x\sqrt{g}\;g_{\mu
u}\Gamma^\mu\Gamma^
u$$

The generated Feynman diagrams can be understood as two-point multi-loop Feynman diagrams with all internal lines mass-less and the external momentum, identified with the momentum transferred between two sources as

State-of-the-art results at NNNLO

Spin-orbit coupling at **4.5PN** [2, 3]: analogous to the fine structure correction of hydrogen atom $(S_{(a)}.L)$

Observables - Binding Energy

Binding energy vs orbital frequency: Here we plot the gauge invariant binding energy for binary black hole systems as a function of orbital frequency for different orders in PN approximation.

▶ point-particle, spin-orbit and quadratic in spin contributions upto 2PN (brown), 3PN (orange) and 4PN

relativity [6] (dashed black line).

point-particle and quadratic in spin contributions upto 4PN and spin-orbit contributions upto 4.5PN [2] (Red) exact solution using numerical

References

- [1] Michele Levi and Jan Steinhoff. Spinning gravitating objects in the effective field theory in the post-Newtonian scheme.
- [2] Manoj K. Mandal, Pierpaolo Mastrolia, Raj Patil, and Jan Steinhoff. Gravitational Spin-Orbit Hamiltonian at NNNLO in the post-Newtonian framework.

[3] Jung-Wook Kim, Michèle Levi, and Zhewei Yin. N³LO Spin-Orbit Interaction via the EFT of Spinning Gravitating Objects.

[4] Manoj K. Mandal, Pierpaolo Mastrolia, Raj Patil, and Jan Steinhoff Gravitational Quadratic-in-Spin Hamiltonian at NNNLO in the post-Newtonian framework. [5] Jung-Wook Kim, Michèle Levi, and Zhewei Yin. N³LO Quadratic-in-Spin Interactions for Generic Compact Binaries.

[6] Serguei Ossokine, Tim Dietrich, Evan Foley, Reza Katebi, and Geoffrey Lovelace. Assessing the Energetics of Spinning Binary Black Hole Systems *Phys. Rev. D*, 98(10):104057, 2018

