Kite and Triangle diagrams through Symmetries of Feynman Integrals

האוניברסיםוה העבריח בירושלים HE HEBREW UNIVERSITY OF JERUSALEM

Kite Feynman Diagram

Associated Feynman Integral

$$
\begin{aligned}
& I\left(p^{2} ; x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)= \\
& =\int_{\left(l_{1}^{2}-x_{1}\right)\left(l_{2}^{2}-x_{2}\right)\left(\left(l_{1}+p\right)^{2}-x_{3} l_{3}\right)\left(d^{l_{2}}\left(p+l_{2}\right)^{2}-x_{4}\right)\left(\left(l_{1}-l_{2}\right)^{2}-x_{5}\right)}^{.} .
\end{aligned}
$$

Applications: e.g. e-Field Strength Renormalization in QED

SFI Equation Set
SFI is Symmetries of Feynman Integrals. The Feynman Integral is shown to satisfy the following set of partial differential equations
where

$$
c^{a} I+T x_{j}^{a} \partial^{j} I+J^{a}=0
$$

$$
X=\left(x_{1}, \ldots, x_{6}\right)=\left(m_{1}^{2}, \ldots, m_{5}^{2}, p^{2} .\right.
$$

and

The sources J^{a} depends on simpler diagrams, namely

Idea is to solve system of partial differential equation set instead of direct evaluation of I

Barak Kol and Subhajit Mazumdar
Based on Phys.Rev.D 99 (2019) 4. 045018 and JHEP 03 (2020) 156

Triangle Results

SFI Equation Set (of 7 equations) is obtained. SFI Group - Upper Triangular Group T_{12}

Two important quantities

Singular Solution. At
$0=B_{3}=x_{1} x_{4}\left(x_{1}+x_{4}\right)+x_{2} x_{3}\left(x_{2}+x_{3}\right)+x_{5} x_{6}\left(x_{5}+x_{6}\right)+$
$+x_{1} x_{2} x_{5}+x_{1} x_{3} x_{6}+x_{2} x_{4} x_{6}+x_{3} x_{4} x_{5}+$
$-\left(x_{1} x_{4}\left(x_{2}+x_{3}+x_{5}+x_{6}\right)+x_{2} x_{3}\left(x_{1}+x_{4}+x_{5}+x_{6}\right)\right.$

At this locus of parameters the kite is given by linear combination of Figure 8 and Propagator Seagull diagram

This method generalizes the massless case K. G. Chetyrkin and F. V. Tkachov (1981) And also "Diamond Rule" B. Ruijl et. all (2015).

Triangle Feynman Diagram

sociated Feynman Integra

$$
I=\int \frac{d^{d} l}{\prod_{i=1}^{3}\left(k_{i}{ }^{2}-m_{i}{ }^{2}\right)}
$$

and
$B_{3}=x_{1}{ }^{2} x_{4}+x_{1} x_{4}{ }^{2}+x_{2}{ }^{2} x_{5}+x_{2} x_{5}{ }^{2}+x_{3}{ }^{2} x_{6}+x_{3} x_{6}$ $+x_{1} x_{2} x_{6}+x_{1} x_{3} x_{5}+x_{2} x_{3} x_{4}+x_{4} x_{5} x_{6}$
$\left(x_{2} x_{5}\left(x_{1}+x_{3}+x_{4}+x_{6}\right)+x_{3} x_{6}\left(x_{1}+x_{2}+x_{4}+x_{5}\right)+x_{1} x_{4}\left(x_{2}+x_{3}+x_{5}+x_{6}\right)\right.$
Novel Derivation of Triangle Feynman Integral.

$$
I=\frac{c_{\Delta}}{\sqrt{\left|\lambda_{\infty}\right| / 4}}\left[F\left(h^{2}, c_{1}^{2}, a_{2}^{2}\right)+F\left(h^{2}, c_{1}^{2}, a_{3}^{2}\right)+c y c .\right]
$$

where,

$$
\begin{aligned}
c_{\Delta} & :=-i \pi^{\frac{d}{2}} \Gamma\left(\frac{6-d}{2}\right) ; \\
F\left(h^{2}, c^{2}, a^{2}\right) & :=\int_{\Delta_{a, c}} d^{2} q\left(h^{2}+q^{2}\right)^{\frac{d-6}{2}} \\
\int_{\Delta_{a, c}} d^{2} q & :=\int_{0}^{|a|} d q_{y} \int_{0}^{\left\lvert\, \frac{b}{a} q_{y}\right.} d q_{x}
\end{aligned}
$$

and

$$
h^{2}=\frac{B_{3}}{\lambda_{\infty}} ; \quad c_{1}^{2}=x_{1}-\frac{B_{3}}{\lambda_{\infty}} ; \quad a_{1}^{2}=-\frac{\left(\partial_{1} B_{3}\right)^{2}}{4 x_{4} \lambda_{\infty}}=-\frac{\lambda_{a}}{4 x_{4}}-\frac{B_{3}}{\lambda_{\infty}}
$$

The singular locus is identified and the diagram's value on the locus's two components $\lambda_{\infty}=0$ and $B_{3}=0$) is expressed as a linear combination of descendant bubble diagrams.

Massless Triangle and the associated Magic Connection are revisited.

