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 Introduction: The problem of motion, post-Minkowskian/post-Newtonian

‘Point particles’ endowed with multipole moments, fields constrained by EFEs
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Explicitly calculate hlgly) then solve geodesic equation in 8w
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Both approaches rely on delicate treatments of point particle limit (?7?)
Subtraction of singular terms which do not affect the motion via, ‘counter terms’ in the action, regularisation techniques..




e The problem of motion, BH spacetime

‘Point particle’ endowed with multipole moments + Exact Kerr BH

) G,lgl =8xT,,
z;(7) -
T, =m drs*(x, 2)u,l,
— 1 21,2
: gﬂy=gﬂy+€hﬁy)+€ h;ly)+
. m m2

€:
ny

Explicitly calculate hﬁ? solve geodesic equation
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e The problem of motion, BH spacetime

‘Point particle’ endowed with multipole moments + Exact Kerr BH

(2) G,lgl = 8aT,,

f

Point particle divergence (UV)

. lim A — k) is finite
x—27(7)

S
. h,, is causal

o h;fy produces no net force

[Detweiler, Whiting 2003]

Explicitly

(1) Define a singular potential hﬂy

-Detweiler-Whiting singular field

z5()

guv = gg,u + Bu,v

Match effective global field to a local expansion of Kerr+tidal field
» Determines subtraction term in effective field + self-force

[Mino, Sasaki & Tanaka 1997 (1SF), Pound++ 2016...(2SF)]
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e The problem of motion, BH spacetime

‘Point particle’ endowed with multipole moments + Exact Kerr BH

Explicitly calculate hﬁ? solve geodesic equation
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» All small mass-ratio black hole binaries!
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» Teukolsky approach — Lightcone structure & ‘gauge invariance’

Newman-Penrose
« Kerr spacetime two radial null vectors, typically written [#,n*: [-l=n-n=0, [-n=-1
 Rotational degrees of freedom captured by 2 complex null vectors m*, m*
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Teukolsky 1973:

Perturbations : ¥; + ey

* Yy, YWy-gauge invariant
« Capture all dynamics of the field
« Each satisfy there own field equation

C_4OC4W4= T4 {=r—iacos@
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* Yy, YWy-gauge invariant
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« Each satisfy there own field equation
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Spheroidal wave functions
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Teukolsky 1973:

Perturbations : WW; + ey,

* Yy, YWy-gauge invariant

« Capture all dynamics of the field

« Each satisfy there own field equation
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O- separable differential operator!

. —iwt . Just need to solve
W = Z [da)e slea)(r) SSlm(e’ ¢’ aa)) a radial ODE
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Some facts:

« The field at infinity (e.g. outgoing radiation, scattering amplitudes) y; is sufficient

e also encode local conservative information:
- can reconstruct full 71, from knowledge of y 4

h,ul/ — Vaé/4 VbCCl by)[sw] + V(Iugy) + ‘/VT g,uy[éMa 561]

[Wald, Cohen & Kegeles, Chrzanowski, Steward 70s]
[Price, Whiting; Acksteiner, Andersson, Backdahl ++; Green, Hollands, Zimmerman +; Dolan, CK, Wardell]



« How do we calculate Teukolsky solutions? e.g. a free field with physical boundary conditions?

Following work by [Leaver 80s], Mano Suzuki and Takasugi [MST ~96] wrote down the homogeneous (vacuum) solutions
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ALISE 1, Extensively used by PN-SF calculations [MST, Fuijita, Bini, Damour, Munna, Evans, Hopper, CK, Ottewill, Wardell..]

» Basis used for only 1SF results for generic orbits in Kerr [van de Meent, Nasipak]
« Can provide 100-1000s digits of numerical accuracy [Shah+, Evans, Forseth, Hopper, Munna]
 useful for 2SF??

\_ J

—Valid to all orders in G (or 1/¢)

The work often is getting from spectral harmonics/w-domain to --domain! ( See Bauftista, Friday afternoon)
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« Status report: Where is self-force at

Scientific motivation: Extreme mass-ratio inspirals as a source for LISA

« mass ratios 1074 < ¢ < 107°

eccentricities 0 < e < .97

Kerr spin 0 < a < .99?

linear order in secondary spin s

arbitrary orientations of both spins

~ 1/€ orbital cycles

bo  Pin

GW phase through an inspiral: ¢ = +
€ cl/2

@, : dissipative 1SF (e.g. fluxes)

¢, : orbital resonances

¢, : cons 1SF, diss 2SF + linear-in-spin fluxes

+ ¢y + O(e)

Bound orbit implies discrete frequency spectrum:

w = ml, + nQ, + kL,

da)—>z

~




« Status report: Where is self-force at

Scientific motivation: Extreme mass-ratio inspirals as a source for LISA

e mass ratios 107% < ¢ < 107°

eccentricities 0 < e < .97

Kerrspin 0 < a < .99?

linear order in secondary spin s

arbitrary orientations of both spins

~ 1/€ orbital cycles

WHAT IS KNOWN

Schwarzschild

Kerr

OSF | Analytic solutions for motion, with spin

Analytic solutions for motion, with spin

Numerics: Routine, high accuracy for both cons+diss

1SF | weak-field: extensive ~20 PN results
+spin squared

Methods fairly well understood, best approach debated.
Numerics: some data for generic orbits exists.

With spin emerging

Weak-field: dissipative PN results for generic, ~7-10PN
conservative results.

« Full quasi-circular inspiral. Intriguing agreement with NR **

Review Barack and Pound 2018 + many many references..
** [next slide..]




« Status report: Where is self-force at

Resolving gauge issues in Kerr spacetime [Barack, Merlin, Pound, van de Meent, Green, Hollands, Zimmerman, Toomani, Spiers, Pound;
Dolan, CK, Wardell]

Numerical developments [Barack, van de Meent, Macedo, Leather, Warburton, Wardell, Zenginoglu, Nasipak]

post-Newtonian self-force [Bini, Damour, Geralico, Steinhoff, Munna, Evans, Fujita, Wardell, CK, Ottewill]

Overlaps with EOB/PN [Khalil, Antonelli, Vines, Steinhoff, Bini, Damour, Geralico, Wardell, CK, Ottewill, Vines, Akcay, van de Meent]
2SF project [Pound, Miller, Warburton, Wardell, Moxon, Durkan, Upton, Spiers, Bonetto, Sam, Le Tiec]

Spinning secondary [Mathews, Wardell, Witzany, Drummond, Hughes, Piovano, Maselli, Pani, Skoupy, Lukes-Gerakopolous..]
Waveform generation and accelleration [Lynch, Warburton, van de Meent, Katz, Chua, Speri, Hughes]

Resonances [Nasipak, van de Meent, Speri, Gair, Hughes, Lynch]

Regularisation [Heffernan, Upton, Pound]

Review Barack and Pound 2018 + many many references..
** [next slide..]



« Status report: Where is self-force at

Scientific motivation: Extreme mass-ratio inspirals as a source for LISA

e mass ratios 107% < ¢ < 107°

« eccentricities 0 < e < .97

o Kerrspin0 <a < .99?

* linear order in secondary spin s

 arbitrary orientations of both spins

~ 1/€ orbital cycles

WHAT IS MISSING?

Schwarzschild

Kerr

OSF
Generic spin orientations  Full understanding of gauge issues using Teukolsky
higher multipole moments on secondary » Dealing with large computation times of generic case
1SF Scattering? Numerics emerging, see next talk  Full treatment of resonances
« Conservative post-Newtonian information in more interesting
cases + spinning secondary.
Teukolsky approach
efficient non-linear source
more regular gauges?
2SF analytic results (PN) Everything..

transition to plunge
eccentric orbits
Conservative gauge invariants




* Recent 2SF results: not just extreme mass-ratios

Flux comparison with numerical relativity

40 -20 -10 -6 -4 -3 = -2
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0.05 0.10 0.15
= (Mw)2/3

m;:m,=1:10

Series of papers, also including explicit waveform comparisons
[Pound, Wardell, Warburton, Miller; + Durkan; + Durkan, Le Tiec; +Durkan, Albertini, Nagar]

Figure 1 [Pound, Wardell, Warburton, Miller, Durkan]



e Advertisements:
Black Hole Perturbation Toolkit: bhptoolkit.org.

Teukolsky solvers: homogeneous + point particle, Mathematica, c++ implementations
SpinWeightedSpheroidalHarmonics package
Kerr Geodesics

data repositories, numerical data, post-Newtonian series (redshifts, fluxes, gauge invariants..)
Fast inspiral models

Capra Conference on Radiation Reaction in General Relativity
-July 3-7 Copenhagen, Niels Bohr Institute 2023 (caprameeting.org)
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