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• Introduction: The problem of motion, post-Minkowskian/post-Newtonian 

‘Point particles’ endowed with multipole moments, fields constrained by EFEs

m1 m2

x

t

zμ
1 (t)

z μ
2 (t)

(1) S = SM[mi] + SGR[g]

See everyone’s talks..

(2) Gμν[g] = 8πTμν

Tμν = ∑
i=1,2

mi ∫ dτδ4(x, zi)ui
μui

ν

Explicitly calculate , then solve geodesic equation in h(i)
μν gμν

□0 [hi]μν = S[hi−1, . . . ] → Gflat(x, x′ )

Both approaches rely on delicate treatments of point particle limit (??)
Subtraction of singular terms which do not affect the motion via, ‘counter terms’ in the action, regularisation techniques.. 

gμν = ημν + Gh(1)
μν + G2h(2)

μν + …



• The problem of motion, BH spacetime

‘Point particle’ endowed with multipole moments + Exact Kerr BH
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Point particle divergence (UV)

(1) Define a singular potential 


•  is finite


•  is causal 


•  produces no net force

-Detweiler-Whiting singular field 

[Detweiler, Whiting 2003]

hS
μν

lim
x→z(τ)

hret
μν − hS

μν

hS
μν

hS
μν

(2) 

m2

z μ
2 (τ)

ḡµ⌫ = ḡ0µ,⌫ + h̄µ,⌫

Match effective global field to a local expansion of Kerr+tidal field

• Determines subtraction term in effective field + self-force

[Mino, Sasaki & Tanaka 1997 (1SF), Pound++ 2016…(2SF)]
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+

subtraction terms determined from matching
All small mass-ratio black hole binaries!
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gab = l(anb) − m(am̄b)

Rabcd = Ψ0nam̄bncm̄d + Ψ1nalbncm̄d + Ψ2nam̄bmcld + Ψ3nalbmcld + Ψ4lamblcmd

Ψ0− s = 2
Ψ1− s = 1
Ψ2− s = 0
Ψ3− s = − 1
Ψ4− s = − 2

• Teukolsky approach — Lightcone structure & ‘gauge invariance’

Newman-Penrose 
• Kerr spacetime two radial null vectors, typically written :    

• Rotational degrees of freedom captured by 2 complex null vectors 

lμ, nμ l ⋅ l = n ⋅ n = 0, l ⋅ n = − 1
mμ, m̄μ
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• -gauge invariant

• Capture all dynamics of the field
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- separable differential operator!O
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• The field at infinity (e.g. outgoing radiation, scattering amplitudes)  is sufficient


• also encode local conservative information:

ψ4

sψ = ∑
lm

∫ dωe−iωt
sRlmω(r) sSlm(θ, ϕ; aω)

hμν = ∇aζ4 ∇bCa
(μ

b
ν)[sψ] + ∇(μξν) + 𝒩T μν + gμν[δM, δa]

[Wald, Cohen & Kegeles, Chrzanowski, Steward 70s]

[Price, Whiting; Acksteiner, Andersson, Backdahl ++; Green, Hollands, Zimmerman +; Dolan, CK, Wardell] 

- can reconstruct full  from knowledge of hμν ψ0,4

• -gauge invariant

• Capture all dynamics of the field

• Each satisfy there own field equation

ψ0, ψ4

Oψ0 = T0

Perturbations : Ψi + ϵψi

Teukolsky 1973:

- separable differential operator!O

ζ−4Oζ4ψ4 = T4

Just need to solve

a radial ODE

Some facts:



• How do we calculate Teukolsky solutions? e.g. a free field with physical boundary conditions?

Following work by [Leaver 80s], Mano Suzuki and Takasugi [MST ~96] wrote down the homogeneous (vacuum) solutions
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• Extensively used by PN-SF calculations [MST, Fujita, Bini, Damour, Munna, Evans, Hopper, CK, Ottewill, Wardell..]

• Basis used for only 1SF results for generic orbits in Kerr [van de Meent, Nasipak]

• Can provide 100-1000s digits of numerical accuracy [Shah+, Evans, Forseth, Hopper, Munna]

• useful for 2SF??

The work often is getting from spectral harmonics/ -domain to -domain!  ( See Bautista, Friday afternoon)ω t

aν
n ∼ (GMω)|n|

Following work by [Leaver 80s], Mano Suzuki and Takasugi [MST ~96] wrote down the homogeneous (vacuum) solutions
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• Status report: Where is self-force at

Scientific motivation: Extreme mass-ratio inspirals as a source for LISA

• mass ratios 


• eccentricities 


• Kerr spin 


• linear order in secondary spin 


• arbitrary orientations of both spins


•  orbital cycles 

10−4 < ϵ < 10−6

0 ≤ e < .9?

0 ≤ a < .99?

s

∼ 1/ϵ

GW phase through an inspiral:    ϕ =
ϕ0

ϵ
+

ϕ1/2

ϵ1/2
+ ϕ0 + O(ϵ)

 dissipative 1SF (e.g. fluxes)ϕ0 :

 orbital resonancesϕ1/2 :

 cons 1SF, diss 2SF + linear-in-spin fluxesϕ1 :

Bound orbit implies discrete frequency spectrum:

ω = mΩφ + nΩr + kΩθ

∫ dω → ∑
mnk



• Status report: Where is self-force at

Schwarzschild Kerr

0SF Analytic solutions for motion, with spin Analytic solutions for motion, with spin

1SF

Methods fairly well understood, best approach debated.

Numerics: some data for generic orbits exists. 

With spin emerging

Weak-field: dissipative PN results for generic, ~7-10PN 
conservative results. 

2SF
• Full quasi-circular inspiral. Intriguing agreement with NR **

• …. —————

Numerics: Routine, high accuracy for both cons+diss

Weak-field: extensive ~20 PN results

+spin squared 

WHAT IS KNOWN

Review Barack and Pound 2018 + many many references.. 

** [next slide..]

Scientific motivation: Extreme mass-ratio inspirals as a source for LISA

• mass ratios 


• eccentricities 


• Kerr spin 


• linear order in secondary spin 


• arbitrary orientations of both spins


•  orbital cycles 

10−4 < ϵ < 10−6

0 ≤ e < .9?

0 ≤ a < .99?

s

∼ 1/ϵ



• Status report: Where is self-force at

Review Barack and Pound 2018 + many many references.. 

** [next slide..]

Resolving gauge issues in Kerr spacetime [Barack, Merlin, Pound, van de Meent, Green, Hollands, Zimmerman, Toomani, Spiers, Pound; 
Dolan, CK, Wardell]

Numerical developments  [Barack, van de Meent, Macedo, Leather, Warburton, Wardell, Zenginoğlu, Nasipak]

post-Newtonian self-force [Bini, Damour, Geralico, Steinhoff, Munna, Evans, Fujita, Wardell, CK, Ottewill]

Overlaps with EOB/PN [Khalil, Antonelli, Vines, Steinhoff, Bini, Damour, Geralico, Wardell, CK, Ottewill, Vines, Akcay, van de Meent]

2SF project [Pound, Miller, Warburton, Wardell, Moxon, Durkan, Upton, Spiers, Bonetto, Sam, Le Tiec]

Spinning secondary [Mathews, Wardell, Witzany, Drummond, Hughes, Piovano, Maselli, Pani, Skoupy, Lukes-Gerakopolous..]

Waveform generation and accelleration [Lynch, Warburton, van de Meent, Katz, Chua, Speri, Hughes]

Resonances [Nasipak, van de Meent, Speri, Gair, Hughes, Lynch]

Regularisation [Heffernan, Upton, Pound]



• Status report: Where is self-force at

Schwarzschild Kerr

0SF

1SF

• Generic spin orientations

• higher multipole moments on secondary

• Scattering? Numerics emerging, see next talk

• Full understanding of gauge issues using Teukolsky

• Dealing with large computation times of generic case

• Full treatment of resonances

• Conservative post-Newtonian information in more interesting 

cases + spinning secondary.


2SF

• Teukolsky approach 

• efficient non-linear source

• more regular gauges?

• analytic results (PN)

• transition to plunge

• eccentric orbits

• Conservative gauge invariants

Everything..

WHAT IS MISSING?

Scientific motivation: Extreme mass-ratio inspirals as a source for LISA

• mass ratios 


• eccentricities 


• Kerr spin 


• linear order in secondary spin 


• arbitrary orientations of both spins


•  orbital cycles 

10−4 < ϵ < 10−6

0 ≤ e < .9?

0 ≤ a < .99?

s

∼ 1/ϵ



• Recent 2SF results: not just extreme mass-ratios

Series of papers, also including explicit waveform comparisons

[Pound, Wardell, Warburton, Miller; + Durkan; + Durkan, Le Tiec; +Durkan, Albertini, Nagar]  

Gravitational-wave energy flux for compact binaries through
second order in the mass ratio

Niels Warburton,1 Adam Pound,2 Barry Wardell,1 Jeremy Miller,3 and Leanne Durkan1

1
School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland, D04 V1W8

2
School of Mathematical Sciences and STAG Research Centre,

University of Southampton, Southampton, United Kingdom, SO17 1BJ
3
Department of Physics, Ariel University, Ariel 40700, Israel

(Dated: October 12, 2021)

Within the framework of self-force theory, we compute the gravitational-wave energy flux through
second order in the mass ratio for compact binaries in quasicircular orbits. Our results are consistent
with post-Newtonian calculations in the weak field and they agree remarkably well with numerical-
relativity simulations of comparable-mass binaries in the strong field. We also find good agreement
for binaries with a spinning secondary or a slowly spinning primary. Our results are key for accu-
rately modelling extreme-mass-ratio inspirals and will be useful in modelling intermediate-mass-ratio
systems.

Introduction. Advances in gravitational wave (GW)
astronomy will come from the development of experi-
mental apparatus, data analysis algorithms, and theoret-
ical waveform templates. For the inspiral and merger of
compact binaries, the latter necessitates solving the two-
body problem in general relativity. Over the decades,
various approaches have been developed to do so by ob-
taining approximate solutions to the Einstein field equa-
tions. Post-Newtonian (PN) theory applies in the weak
field, making it valid early in the inspiral, when the ob-
jects are far apart [1]. E↵ective-one-body theory extends
PN theory’s domain of validity and allows for calibration
with strong-field data in the late inspiral, close to merger
[2]. In the strong field no analytic approximations su�ce
and usually one must turn to numerical relativity (NR)
simulations [3, 4]. Though these provide an exact result
(modulo numerical error), their high computational bur-
den means they are restricted to near-comparable-mass
binaries and a few tens to hundreds of GW cycles.

When the ratio of the mass of the smaller (secondary)
object to that of the primary is small, it is natural to
turn to the gravitational self-force (GSF) approach and
black hole perturbation theory (BHPT) [5, 6]. Within
this method the binary’s spacetime metric is expanded in
powers of the (small) mass ratio around that of the pri-
mary, larger object. Traditionally, the GSF approach has
been used to model extreme-mass-ratio inspirals (EM-
RIs): binaries where a compact object inspirals into a
supermassive black hole with a mass ratio of 1 : 105 or
smaller. These systems are key sources for the future
Laser Interferometer Space Antenna, LISA [7].

In order to extract EMRI signals from the LISA data
stream, and to enable precision tests of general relativ-
ity [8], GSF calculations must be carried through to sec-
ond order in the mass ratio [9]. The calculation of first-
order GW fluxes has been possible since the 1970s [10]
and has enabled the computation of adiabatic inspirals.
Within the last two decades, post-adiabatic corrections
have been formulated and computed. These include first-

NR
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FIG. 1. The gravitational-wave flux (normalized by its leading
Newtonian behaviour) for a nonspinning binary as a function
of the inverse orbital separation. Shown is the (l,m) = (2, 2)
mode for a mass ratio 10:1 binary computed using the PN,
NR and GSF approaches. The solid, oscillating (blue) curve
shows the NR flux computed from SXS:BBH:1107 [18]. The
numbers along the top axis count the cycles before the peak
amplitude in the NR waveform. The solid (red) curve shows
the result from our second-order GSF (2SF) calculation. This
agrees remarkably well with the NR result until very close
to merger, where the GSF contributions diverge as the two-
timescale approximation breaks down. In the weak field the
second-order self-force data agrees with the 3.5PN series [19],
shown by the (orange) dash-dotted curve. We also show
the first-order self-force (1SF) result with the (green) dashed
curve. The vertical, dashed (gray) line marks the location of
the (geodesic) innermost stable circular orbit.

order conservative corrections to the dynamics [5, 11, 12],
formulations at second order [13–16], and a lone calcula-
tion of a second-order quantity [17].

In this Letter we report the first calculation of a key
physical observable that characterises a binary’s post-
adiabatic evolution: the flux of energy in GWs radiated
to future null infinity (hereafter referred to as “the flux”)
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Flux comparison with numerical relativity

Figure 1 [Pound, Wardell, Warburton, Miller, Durkan]



• Advertisements:

Black Hole Perturbation Toolkit: bhptoolkit.org. 

• Teukolsky solvers: homogeneous + point particle, Mathematica, c++ implementations

• SpinWeightedSpheroidalHarmonics package

• Kerr Geodesics

• data repositories, numerical data, post-Newtonian series (redshifts, fluxes, gauge invariants..)

• Fast inspiral models
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