Gravitational self-force: review/introduction

gravity meets Gravity.

UCD RELATIVITY GROUP

Chris Kavanagh SFI-IRC Pathway Research Fellow University College Dublin

• Part I The SF set-up: dealing with 'point' particles

• Part II Solving the field equation: Teukolsky and a 'closed form' Green function

• Part III Results: Self-force and reality • Part I The SF set-up: dealing with 'point' particles

• Part II Solving the field equation: Teukolsky and a 'closed form' Green function

• Part III Results: Self-force and reality

• Introduction: The problem of motion, post-Minkowskian/post-Newtonian

'Point particles' endowed with multipole moments, fields constrained by EFEs

$$g_{\mu\nu} = \eta_{\mu\nu} + Gh^{(1)}_{\mu\nu} + G^2h^{(2)}_{\mu\nu} + \dots$$

Explicitly calculate $h_{\mu\nu}^{(i)}$, then solve geodesic equation in $g_{\mu\nu}$

$$\Box^0 [h^i]_{\mu\nu} = S[h^{i-1}, \dots] \rightarrow G_{\text{flat}}(x, x')$$

Both approaches rely on delicate treatments of point particle limit (??)

Subtraction of singular terms which do not affect the motion via, 'counter terms' in the action, regularisation techniques...

• The problem of motion, BH spacetime

'Point particle' endowed with multipole moments + Exact Kerr BH

(2)
$$G_{\mu\nu}[g] = 8\pi T_{\mu\nu}$$
$$T_{\mu\nu} = m_2 \int d\tau \delta^4(x, z_2) u_\mu u_\nu$$
$$g_{\mu\nu} = \bar{g}_{\mu\nu} + \epsilon h^{(1)}_{\mu\nu} + \epsilon^2 h^{(2)}_{\mu\nu} + \dots$$
$$\epsilon = \frac{m_2}{m_2}$$

 m_1

Explicitly calculate $h^{(i)}_{\mu
u}$, solve geodesic equation

$$\begin{split} \bar{\nabla}^a \bar{\nabla}_a h^{(1)}_{\mu\nu} + 2\bar{R}^{\ a \ b}_{\mu \ \nu} h^{(1)}_{ab} &= 16\pi T_{\mu\nu} \\ \bar{\nabla}^a \bar{\nabla}_a h^{(2)}_{\mu\nu} + 2\bar{R}^{\ a \ b}_{\mu \ \nu} h^{(2)}_{ab} &= S[h^{(1)}_{\mu\nu}, h^{(1)}_{\mu\nu}] \end{split}$$

• The problem of motion, BH spacetime

'Point particle' endowed with multipole moments + Exact Kerr BH

• The problem of motion, BH spacetime

'Point particle' endowed with multipole moments + Exact Kerr BH

(2)
$$G_{\mu\nu}[g] = 8\pi T_{\mu\nu}$$

 $T_{\mu\nu} = m_2 \int d\tau \delta^4(x, z_2) u_\mu u_\nu$
 $g_{\mu\nu} = \bar{g}_{\mu\nu} + \epsilon h^{(1)}_{\mu\nu} + \epsilon^2 h^{(2)}_{\mu\nu} + \dots$
 $\epsilon = \frac{m_2}{m_1}$

Explicitly calculate $h^{(i)}_{\mu
u}$, solve geodesic equation

$$\bar{\nabla}^{a}\bar{\nabla}_{a}h^{(1)}_{\mu\nu} + 2\bar{R}^{a\ b}_{\mu\ \nu}h^{(1)}_{ab} = 16\pi T_{\mu\nu}$$
$$\bar{\nabla}^{a}\bar{\nabla}_{a}h^{(2)}_{\mu\nu} + 2\bar{R}^{a\ b}_{\mu\ \nu}h^{(2)}_{ab} = S[h^{(1)}_{\mu\nu}, h^{(1)}_{\mu\nu}]$$

$$u^{a} \bar{\nabla}_{a} u^{\mu} = -\frac{1}{2} (\bar{g}^{\mu\nu} - h^{\mu\nu}_{R}) (2h^{R}_{\nu\rho;\sigma} - h^{R}_{\rho\sigma;\nu}) u^{\rho} u^{\sigma}$$
$$h^{R}_{\mu\nu} = \epsilon h^{R,(1)}_{\mu\nu} + \epsilon^{2} h^{R,(2)}_{\mu\nu}$$

+

All small mass-ratio black hole binaries!

subtraction terms determined from matching

• Part I The SF set-up: dealing with 'point' particles

• Part II Solving the field equation: Teukolsky and a 'closed form' Green function

• Part III Results: Self-force and reality

Newman-Penrose

- Kerr spacetime two radial null vectors, typically written l^{μ} , n^{μ} : $l \cdot l = n \cdot n = 0$, $l \cdot n = -1$
- Rotational degrees of freedom captured by 2 *complex* null vectors m^{μ}, \bar{m}^{μ}

$$g_{ab} = l_{(a}n_{b)} - m_{(a}\bar{m}_{b)}$$

 $R_{abcd} = \Psi_0 n_a \bar{m}_b n_c \bar{m}_d + \Psi_1 n_a l_b n_c \bar{m}_d + \Psi_2 n_a \bar{m}_b m_c l_d + \Psi_3 n_a l_b m_c l_d + \Psi_4 l_a m_b l_c m_d$

Ψ_0 -	s = 2
Ψ_1 -	s = 1
Ψ_2 -	s = 0
Ψ_3-	s = -1
Ψ_4-	s = -2

Newman-Penrose

- Kerr spacetime two radial null vectors, typically written l^{μ} , n^{μ} : $l \cdot l = n \cdot n = 0$, $l \cdot n = -1$
- Rotational degrees of freedom captured by 2 *complex* null vectors m^{μ}, \bar{m}^{μ}

$$g_{ab} = l_{(a}n_{b)} - m_{(a}\bar{m}_{b)}$$

$$R_{abcd} = \Psi_{0}n_{a}\bar{m}_{b}n_{c}\bar{m}_{d} + \Psi_{1}n_{a}l_{b}n_{c}\bar{m}_{d} + \Psi_{2}n_{a}\bar{m}_{b}m_{c}l_{d} + \Psi_{3}n_{a}l_{b}m_{c}l_{d} + \Psi_{4}l_{a}m_{b}l_{c}m_{d}$$

$$\Psi_{2} = \frac{-1}{(r + ia\cos\theta)^{3}}$$

$$\Psi_{2} = \frac{-1}{(r + ia\cos\theta)^{3}}$$

Teukolsky 1973:

Perturbations : $\Psi_i + \epsilon \psi_i$

- ψ_0, ψ_4 -gauge invariant
- Capture all dynamics of the field
- Each satisfy there own field equation

$$O\psi_0 = T_0$$

$$\zeta^{-4}O\zeta^4\psi_4 = T_4 \qquad \qquad \zeta = r - ia\cos\theta$$

Newman-Penrose

- Kerr spacetime two radial null vectors, typically written l^{μ} , n^{μ} : $l \cdot l = n \cdot n = 0$, $l \cdot n = -1$
- Rotational degrees of freedom captured by 2 *complex* null vectors m^{μ}, \bar{m}^{μ}

$$g_{ab} = l_{(a}n_{b)} - m_{(a}\bar{m}_{b)}$$

$$R_{abcd} = \Psi_{0}n_{a}\bar{m}_{b}n_{c}\bar{m}_{d} + \Psi_{1}n_{a}l_{b}n_{c}\bar{m}_{d} + \Psi_{2}n_{a}\bar{m}_{b}m_{c}l_{d} + \Psi_{3}n_{a}l_{b}m_{c}l_{d} + \Psi_{4}l_{a}m_{b}l_{c}m_{d}$$

$$\Psi_{2} = \frac{-1}{(r + ia\cos\theta)^{3}}$$

$$\Psi_{2} = \frac{-1}{(r + ia\cos\theta)^{3}}$$

Teukolsky 1973:

Perturbations : $\Psi_i + \epsilon \psi_i$

- ψ_0, ψ_4 -gauge invariant
- Capture all dynamics of the field
- Each satisfy there own field equation

$$O\psi_0 = T_0$$
$$\zeta^{-4}O\zeta^4\psi_A = T_A$$

$$_2\psi = \psi_0 \quad _{-2}\psi = \zeta^4\psi_4$$

$$\zeta = r - ia\cos\theta$$

Teukolsky 1973:

- Perturbations : $\Psi_i + \epsilon \psi_i$ ψ_0, ψ_4 -gauge invariant Capture all dynamics of the field Each satisfy there own field equation

$$O\psi_0 = T_0$$
$$\zeta^{-4}O\zeta^4\psi_4 = T_4$$

$$\bar{\nabla}^a \bar{\nabla}_a h^{(1)}_{\mu\nu} + 2\bar{R}^{\ a\ b}_{\mu\ \nu} h^{(1)}_{ab} = 16\pi T_{\mu\nu}$$

O- separable differential operator!

or

Teukolsky 1973:

- Perturbations : $\Psi_i + \epsilon \psi_i$ ψ_0, ψ_4 -gauge invariant Capture all dynamics of the field Each satisfy there own field equation

$$O\psi_0 = T_0$$

$$\zeta^{-4}O\zeta^4\psi_4 = T_4$$

O- separable differential operator!

Teukolsky 1973:

Perturbations : $\Psi_i + \epsilon \psi_i$

- ψ_0, ψ_4 -gauge invariant
- Capture all dynamics of the field
- Each satisfy there own field equation

$$O\psi_0 = T_0$$
$$\zeta^{-4}O\zeta^4\psi_4 = T_4$$

O- separable differential operator!

Some facts:

- The field at infinity (e.g. outgoing radiation, scattering amplitudes) ψ_4 is sufficient
- also encode local conservative information:
 - can reconstruct full $h_{\mu\nu}$ from knowledge of $\psi_{0,4}$

$$h_{\mu\nu} = \nabla_a \zeta^4 \nabla_b C^a{}^b{}_{(\mu\nu)}[_s\psi] + \nabla_{(\mu}\xi_{\nu)} + \mathcal{N}T_{\mu\nu} + g_{\mu\nu}[\delta M, \delta a]$$

[Wald, Cohen & Kegeles, Chrzanowski, Steward 70s] [Price, Whiting; Acksteiner, Andersson, Backdahl ++; Green, Hollands, Zimmerman +; Dolan, CK, Wardell]

Following work by [Leaver 80s], Mano Suzuki and Takasugi [MST ~96] wrote down the homogeneous (vacuum) solutions

$$R_{lm\omega}^{\text{in}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} {}_2F_1(a, b, c, 1 - r/2M)$$
$$R_{lm\omega}^{\text{up}}(r) = C_{lm\omega}^{\text{up}} \sum_{n=-\infty}^{\infty} a_n^{\nu} U(d, e, r\omega)$$

$$G_{lm\omega}^{\text{ret}}(r,r') = \frac{R_{lm\omega}^{\text{in}}(r')R_{lm\omega}^{\text{up}}(r)}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r-r') + \frac{R_{lm\omega}^{\text{in}}(r)R_{lm\omega}^{\text{up}}(r')}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r'-r)$$

$$\psi = \int dr G_{lm\omega}^{\text{ret}}(r, r') T(r') \propto \{\partial_r^2 G_{lm\omega}^{\text{ret}}(r, r_p), \partial_r G_{lm\omega}^{\text{ret}}(r, r_p), G_{lm\omega}^{\text{ret}}(r, r_p)\}$$

Following work by [Leaver 80s], Mano Suzuki and Takasugi [MST ~96] wrote down the homogeneous (vacuum) solutions

$$R_{lm\omega}^{\text{in}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} {}_2F_1(a, b, c, 1 - r/2M)$$
$$R_{lm\omega}^{\text{up}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} U(a, b, r\omega)$$

$$G_{lm\omega}^{\text{ret}}(r,r') = \frac{R_{lm\omega}^{\text{in}}(r')R_{lm\omega}^{\text{up}}(r)}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r-r') + \frac{R_{lm\omega}^{\text{in}}(r)R_{lm\omega}^{\text{up}}(r')}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r'-r)$$

$$\psi = \int dr G_l^{\mathrm{I}}$$

Following work by [Leaver 80s], Mano Suzuki and Takasugi [MST ~96] wrote down the homogeneous (vacuum) solutions

$$R_{lm\omega}^{\text{in}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} {}_2F_1(a, b, c, 1 - r/2M)$$
$$R_{lm\omega}^{\text{up}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} U(a, b, r\omega)$$

$$G_{lm\omega}^{\text{ret}}(r,r') = \frac{R_{lm\omega}^{\text{in}}(r')R_{lm\omega}^{\text{up}}(r)}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r-r') + \frac{R_{lm\omega}^{\text{in}}(r)R_{lm\omega}^{\text{up}}(r')}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r'-r)$$

$$\psi = \int dr G_l^{\rm I} \qquad T = \mathcal{T}[T_{\mu\nu}] \propto \partial_r^2 [\delta(r - r_p)]$$

Following work by [Leaver 80s], Mano Suzuki and Takasugi [MST ~96] wrote down the homogeneous (vacuum) solutions

$$R_{lm\omega}^{\text{in}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} {}_2F_1(a, b, c, 1 - r/2M)$$
$$R_{lm\omega}^{\text{up}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} U(a, b, r\omega)$$

$$G_{lm\omega}^{\text{ret}}(r,r') = \frac{R_{lm\omega}^{\text{in}}(r')R_{lm\omega}^{\text{up}}(r)}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r-r') + \frac{R_{lm\omega}^{\text{in}}(r)R_{lm\omega}^{\text{up}}(r')}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r'-r)$$

$$\psi = \int dr G_l^{1} \qquad T = \mathcal{T}[T_{\mu\nu}] \propto \partial_r^2 [\delta(r - r_p)] \\ = \delta''(r - r_p) + \delta'(r - r_p) + \delta(r - r_p)$$

Following work by [Leaver 80s], Mano Suzuki and Takasugi [MST ~96] wrote down the homogeneous (vacuum) solutions

$$R_{lm\omega}^{\text{in}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} {}_2F_1(a, b, c, 1 - r/2M) \qquad a_n^{\nu} \sim (GM\omega)^{|n|}$$
$$R_{lm\omega}^{\text{up}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} U(a, b, r\omega)$$

$$G_{lm\omega}^{\text{ret}}(r,r') = \frac{R_{lm\omega}^{\text{in}}(r')R_{lm\omega}^{\text{up}}(r)}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r-r') + \frac{R_{lm\omega}^{\text{in}}(r)R_{lm\omega}^{\text{up}}(r')}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r'-r)$$

At 1SF

$$\psi = \int dr G_{lm\omega}^{\text{ret}}(r, r') T(r') \propto \{\partial_r^2 G_{lm\omega}^{\text{ret}}(r, r_p), \partial_r G_{lm\omega}^{\text{ret}}(r, r_p), G_{lm\omega}^{\text{ret}}(r, r_p)\}$$

–Valid to all orders in G (or 1/c)

Following work by [Leaver 80s], Mano Suzuki and Takasugi [MST ~96] wrote down the homogeneous (vacuum) solutions

$$R_{lm\omega}^{\text{in}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} {}_2F_1(a, b, c, 1 - r/2M) \qquad a_n^{\nu} \sim (GM\omega)^{|n|}$$
$$R_{lm\omega}^{\text{up}}(r) = C_{lm\omega}^{\text{in}} \sum_{n=-\infty}^{\infty} a_n^{\nu} U(a, b, r\omega)$$

$$G_{lm\omega}^{\text{ret}}(r,r') = \frac{R_{lm\omega}^{\text{in}}(r')R_{lm\omega}^{\text{up}}(r)}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r-r') + \frac{R_{lm\omega}^{\text{in}}(r)R_{lm\omega}^{\text{up}}(r')}{W[R_{lm\omega}^{\text{in}}(r), R_{lm\omega}^{\text{in}}(r)]}\theta(r'-r)$$

At 1SF

- Extensively used by PN-SF calculations [MST, Fujita, Bini, Damour, Munna, Evans, Hopper, CK, Ottewill, Wardell..]
- Basis used for only 1SF results for generic orbits in Kerr [van de Meent, Nasipak]
- Can provide 100-1000s digits of numerical accuracy [Shah+, Evans, Forseth, Hopper, Munna]
- useful for 2SF??

-Valid to all orders in G (or 1/c)

The work often is getting from spectral harmonics/ ω -domain to *t*-domain! (See Bautista, Friday afternoon)

• Part I The SF set-up: dealing with 'point' particles

• Part II Solving the field equation: Teukolsky and a 'closed form' Green function

• Part III Results: Self-force and reality

Scientific motivation: Extreme mass-ratio inspirals as a source for LISA

- mass ratios $10^{-4} < \epsilon < 10^{-6}$
- eccentricities $0 \le e < .9$?
- Kerr spin $0 \le a < .99$?
- linear order in secondary spin s
- arbitrary orientations of both spins
- $\sim 1/\epsilon$ orbital cycles

GW phase through an inspiral: $\phi = \frac{\phi_0}{\epsilon} + \frac{\phi_{1/2}}{\epsilon^{1/2}} + \phi_0 + O(\epsilon)$

 ϕ_0 : dissipative 1SF (e.g. fluxes)

 $\phi_{1/2}$: orbital resonances

 ϕ_1 : cons 1SF, diss 2SF + linear-in-spin fluxes

Bound orbit implies discrete frequency spectrum: $\omega = m\Omega_{\varphi} + n\Omega_{r} + k\Omega_{\theta}$ $\int d\omega \rightarrow \sum_{mnk}$

Scientific motivation: Extreme mass-ratio inspirals as a source for LISA

- mass ratios $10^{-4} < \epsilon < 10^{-6}$
- eccentricities $0 \le e < .9$?
- Kerr spin $0 \le a < .99$?
- linear order in secondary spin s
- arbitrary orientations of both spins
- $\sim 1/\epsilon$ orbital cycles

WHAT IS KNOWN

	Schwarzschild	Kerr
0SF	Analytic solutions for motion, with spin	Analytic solutions for motion, with spin
1SF	Numerics: Routine, high accuracy for both cons+diss Weak-field: extensive ~20 PN results +spin squared	Methods fairly well understood, best approach debated. Numerics : some data for generic orbits exists. With spin emerging Weak-field : dissipative PN results for generic, ~7-10PN conservative results.
2SF	 Full quasi-circular inspiral. Intriguing agreement with NR ** 	

Review Barack and Pound 2018 + many many references.. ** [next slide..]

Resolving gauge issues in Kerr spacetime [Barack, Merlin, Pound, van de Meent, Green, Hollands, Zimmerman, Toomani, Spiers, Pound; Dolan, CK, Wardell]

Numerical developments [Barack, van de Meent, Macedo, Leather, Warburton, Wardell, Zenginoğlu, Nasipak]

post-Newtonian self-force [Bini, Damour, Geralico, Steinhoff, Munna, Evans, Fujita, Wardell, CK, Ottewill]

Overlaps with EOB/PN [Khalil, Antonelli, Vines, Steinhoff, Bini, Damour, Geralico, Wardell, CK, Ottewill, Vines, Akcay, van de Meent]

2SF project [Pound, Miller, Warburton, Wardell, Moxon, Durkan, Upton, Spiers, Bonetto, Sam, Le Tiec]

Spinning secondary [Mathews, Wardell, Witzany, Drummond, Hughes, Piovano, Maselli, Pani, Skoupy, Lukes-Gerakopolous..]

Waveform generation and accelleration [Lynch, Warburton, van de Meent, Katz, Chua, Speri, Hughes]

Resonances [Nasipak, van de Meent, Speri, Gair, Hughes, Lynch]

Regularisation [Heffernan, Upton, Pound]

Scientific motivation: Extreme mass-ratio inspirals as a source for LISA

- mass ratios $10^{-4} < \epsilon < 10^{-6}$
- eccentricities $0 \le e < .9$?
- Kerr spin $0 \le a < .99$?
- linear order in secondary spin s
- arbitrary orientations of both spins
- $\sim 1/\epsilon$ orbital cycles

WHAT IS MISSING?

	Schwarzschild	Kerr
0SF		
1SF	 Generic spin orientations higher multipole moments on secondary Scattering? Numerics emerging, see next talk 	 Full understanding of gauge issues using Teukolsky Dealing with large computation times of generic case Full treatment of resonances Conservative post-Newtonian information in more interesting cases + spinning secondary.
2SF	 Teukolsky approach efficient non-linear source more regular gauges? analytic results (PN) transition to plunge eccentric orbits Conservative gauge invariants 	Everything

• Recent 2SF results: not just extreme mass-ratios

Flux comparison with numerical relativity

Figure 1 [Pound, Wardell, Warburton, Miller, Durkan]

 $m_1: m_2 = 1: 10$

Series of papers, also including explicit waveform comparisons [Pound, Wardell, Warburton, Miller; + Durkan; + Durkan, Le Tiec; +Durkan, Albertini, Nagar] • Advertisements:

Black Hole Perturbation Toolkit: bhptoolkit.org.

- Teukolsky solvers: homogeneous + point particle, *Mathematica*, *c*++ implementations
- SpinWeightedSpheroidalHarmonics package
- Kerr Geodesics
- data repositories, numerical data, post-Newtonian series (redshifts, fluxes, gauge invariants..)
- Fast inspiral models

Capra Conference on Radiation Reaction in General Relativity -July 3-7 Copenhagen, Niels Bohr Institute 2023 (<u>caprameeting.org</u>)