Efficiently evaluating loop integrals in the EFTofLSS using QFT integrals with massive propagators

Diogo Bragança
w/ Babis Anastasiou, Leonardo Senatore, Henry Zheng
QCD meets Gravity

16-12-2022

Outline

1. Intro: density perturbations in cosmology

$$
\delta \rightarrow[\delta]_{\wedge}(x)=\int d y W_{\wedge}(x-y) \delta(y)
$$

2. Why the Effective Field Theory of Large-Scale Structure?
3. How to calculate loop corrections in the EFTofLSS?
4. Results from data analysis
5. All N-point functions at 1-loop

$$
\begin{aligned}
{\left[-2 \rho_{4}-\frac{1}{2}\right.} & \left.\sum_{i, j=1}^{3}\left(\rho_{i}-\rho_{4}\right) \Pi_{i j}\left(\rho_{j}-\rho_{4}\right)\right] \int d^{D} q \frac{1}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}}
\end{aligned}=, ~(\epsilon)
$$

Density perturbations in cosmology

Why are they important?

How do the primordial inhomogeneities evolve up until today?
Size of perturbations: $\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}$
History of the Universe

How do the primordial inhomogeneities evolve up until today?
Size of perturbations: $\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}$

How do the primordial inhomogeneities evolve up until today?
Size of perturbations: $\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}$

History of the Universe

How do the primordial inhomogeneities evolve up until today?
Size of perturbations: $\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}$

History of the Universe

How do the primordial inhomogeneities evolve up until today?
Size of perturbations: $\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}$

History of the Universe

0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$\delta \sim 10^{-5}$

The standard solution: perturbation theory

3 equations:

- Continuity equation (conservation of mass)
- Euler equation
- Poisson equation

$$
\begin{aligned}
& \partial_{t} \rho=-\nabla_{\boldsymbol{r}} \cdot(\rho \boldsymbol{u}) \\
& \left(\partial_{t}+\boldsymbol{u} \cdot \nabla_{r}\right) \boldsymbol{u}=-\frac{\nabla_{r} P}{\rho}-\nabla_{\boldsymbol{r}} \Phi \\
& \nabla_{\boldsymbol{r}}^{2} \Phi=4 \pi G \rho
\end{aligned}
$$

Assumptions:

- Only consider cold dark matter (CDM)
- It is a perfect fluid (no pressure)

The standard solution: perturbation theory

3 equations:

- Continuity equation (conservation of mass)

$$
\begin{aligned}
& \partial_{t} \rho=-\nabla_{\boldsymbol{r}} \cdot(\rho \boldsymbol{u}) \\
& \left(\partial_{t}+\boldsymbol{u} \cdot \nabla_{\boldsymbol{r}}\right) \boldsymbol{u}=-\frac{\nabla_{\boldsymbol{r}} P}{\rho}-\nabla_{\boldsymbol{r}} \Phi \\
& \nabla_{\boldsymbol{r}}^{2} \Phi=4 \pi G \rho
\end{aligned}
$$

- Poisson equation

$$
H \equiv \frac{\dot{a}}{a} \quad \boldsymbol{r}=a(t) \boldsymbol{x}
$$

Assumptions:

- Only consider cold dark matter (CDM)
- It is a perfect fluid (no pressure)

$$
\begin{aligned}
& \frac{\partial \bar{\rho}}{\partial t}+3 H \bar{\rho}=0 \\
& \partial_{t} \delta=-\frac{1}{a} \nabla \cdot \boldsymbol{v} \\
& \left(\partial_{t}+H\right) \boldsymbol{v}=-\frac{\nabla \delta \bar{P}}{a \bar{\rho}}-\frac{1}{a} \nabla \delta \Phi \\
& \nabla^{2} \delta \Phi=4 \pi G a^{2} \bar{\rho} \delta
\end{aligned}
$$

$\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}$

The standard solution: perturbation theory

3 equations:

- Continuity equation (conservation of mass)

$$
\begin{aligned}
& \partial_{t} \rho=-\nabla_{\boldsymbol{r}} \cdot(\rho \boldsymbol{u}) \\
& \left(\partial_{t}+\boldsymbol{u} \cdot \nabla_{r}\right) \boldsymbol{u}=-\frac{\nabla_{r} P}{\rho}-\nabla_{\boldsymbol{r}} \Phi \\
& \nabla_{\boldsymbol{r}}^{2} \Phi=4 \pi G \rho
\end{aligned}
$$

$$
H \equiv \frac{\dot{a}}{a} \quad \boldsymbol{r}=a(t) \boldsymbol{x}
$$

Assumptions:

- Only consider cold dark matter (CDMM)
- $0^{\text {th }}$ order $\quad \frac{\partial \bar{\rho}}{\partial t}+3 H \bar{\rho}=0$
- $1^{\text {st }}$ order

$$
\partial_{t} \delta=-\frac{1}{a} \nabla \cdot \boldsymbol{v}
$$

$$
\left(\partial_{t}+H\right) \boldsymbol{v}=-\frac{\nabla \delta P}{/ a \bar{\rho}}-\frac{1}{a} \nabla \delta \Phi
$$

- It is a p pressur

Linear system is easy to solve

$$
\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}
$$

Why the Effective Field Theory of Large-Scale Structure?

How does it solve the naïve perturbation theory shortcomings?

The standard solution: perturbation theory
Linear solution: $\quad \delta^{(1)}(a, k) \propto a \propto t^{2 / 3}$
Size of perturbations: $\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}$

The standard solution: perturbation theory

Linear solution: $\quad \delta^{(1)}(a, k) \propto a \propto t^{2 / 3}$

Size of perturbations: $\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}$

Non-linear equations:

- Continuity equation (conservation of mass) $\partial_{t} \delta=-\frac{1}{a} \nabla \cdot((1+\delta) \boldsymbol{v})$
- Euler equation
- Poisson equation

$$
\begin{aligned}
& \left(\partial_{t}+H\right) \boldsymbol{v}+\frac{1}{a}(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}=-\frac{1}{a} \nabla \delta \Phi \\
& \nabla^{2} \delta \Phi=4 \pi G a^{2} \bar{\rho} \delta
\end{aligned}
$$

The standard solution: perturbation theory

Linear solution: $\quad \delta^{(1)}(a, k) \propto a \propto t^{2 / 3}$

Size of perturbations: $\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}$

Non-linear equations:

- Continuity equation (conservation of mass) $\partial_{t} \delta=-\frac{1}{a} \nabla \cdot((1+\delta) \mathbf{v})$
- Euler equation
- Poisson equation
$\left(\partial_{t}+H\right) \boldsymbol{v}+\frac{1}{a}(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}=-\frac{1}{a} \nabla \delta \Phi$
$\nabla^{2} \delta \Phi=4 \pi G a^{2} \bar{\rho} \delta$

The standard solution: perturbation theory
Linear solution: $\quad \delta^{(1)}(a, k) \propto a \propto t^{2 / 3}$

Size of perturbations: $\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}$

Non-linear equations:

- Continuity equation (conservation of mass) $\partial_{t} \delta=-\frac{1}{a} \nabla \cdot((1+\delta) \boldsymbol{v})$
- Euler equation
$\left(\partial_{t}+H\right) \boldsymbol{v}+\underset{a}{f}(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}=-\frac{1}{a} \nabla \delta \Phi$
- Poisson equation

$$
\nabla^{2} \delta \Phi=4 \pi G a^{2} \bar{\rho} \delta
$$

$$
\begin{aligned}
\delta(a, \vec{k}) & =\sum_{n=1}^{\infty} a^{n} \delta^{(n)}(\vec{k}) \\
\delta^{(n)}(\vec{k}) & =\int_{\overrightarrow{q_{1}} \ldots \overrightarrow{q_{n}}} \delta_{D}\left(\vec{k}-\sum \overrightarrow{q_{i}}\right) F_{n}\left(\overrightarrow{q_{1}}, \ldots, \overrightarrow{q_{n}}\right) \delta^{(1)}\left(\overrightarrow{q_{1}}\right) \ldots \delta^{(1)}\left(\overrightarrow{q_{n}}\right)
\end{aligned}
$$

Problems with perturbation theory

General solution:

$$
\begin{aligned}
& \delta(a, \vec{k})=\sum_{n=1}^{\infty} a^{n} \delta^{(n)}(\vec{k}) \\
& \delta^{(n)}(\vec{k})=\int_{\vec{q}_{1} \ldots q_{n}} \delta_{D}\left(\vec{k}-\sum \overrightarrow{q_{i}}\right) F_{n}\left(\overrightarrow{q_{1}}, \ldots, \overrightarrow{q_{n}}\right) \delta^{(1)}\left(\overrightarrow{q_{1}}\right) \ldots \delta^{(1)}\left(\overrightarrow{q_{n}}\right)
\end{aligned}
$$

Problems:

1. Integral can diverge in general!
2. Perturbations are not small. Is PT even valid?

Problems with perturbation theory

General solution:

$$
\begin{aligned}
& \delta(a, \vec{k})=\sum_{n=1}^{\infty} a^{n} \delta^{(n)}(\vec{k}) \\
& \delta^{(n)}(\vec{k})=\int_{\vec{q}_{1} \ldots q_{n}} \delta_{D}\left(\vec{k}-\sum \overrightarrow{q_{i}}\right) F_{n}\left(\overrightarrow{q_{1}}, \ldots, \overrightarrow{q_{n}}\right) \delta^{(1)}\left(\overrightarrow{q_{1}}\right) \ldots \delta^{(1)}\left(\overrightarrow{q_{n}}\right)
\end{aligned}
$$

Problems:

1. Integral can diverge in general!
2. Perturbations are not small. Is PT even valid?

Try smoothing: $\delta \rightarrow[\delta]_{\wedge}(x)=\int d y W_{\wedge}(x-y) \delta(y)$

Problems with perturbation theory

General solution:

$\delta(a, \vec{k})=\sum_{n=1}^{\infty} a^{n} \delta^{(n)}(\vec{k})$
$\delta^{(n)}(\vec{k})=\int_{\overrightarrow{q_{1}} \ldots \overrightarrow{q_{n}}} \delta_{D}\left(\vec{k}-\sum \overrightarrow{q_{i}}\right) F_{n}\left(\overrightarrow{q_{1}}, \ldots, \overrightarrow{q_{n}}\right) \delta^{(1)}\left(\overrightarrow{q_{1}}\right) \ldots \delta^{(1)}\left(\overrightarrow{q_{n}}\right)$

Problems:

1. Integral can diverge in general!
2. Perturbations are not small. Is PT even valid?

Try smoothing: $\delta \rightarrow[\delta]_{\Lambda}(x)=\int d y W_{\Lambda}(x-y) \delta(y)$

- Good expansion parameter (small)
- Short scale interactions induce an effective cosmological fluid with pressure and viscosity (Baumann et al. arXiv:1004.2488)
- Parameters of effective fluid exactly provide the counterterms to renormalize the standard theory (Carrasco et al. arXiv:1206.2926)
- Parameters can be fitted to simulations and/or observations

Problems with perturbation theory

General solution:

$\delta(a, \vec{k})=\sum_{n=1}^{\infty} a^{n} \delta^{(n)}(\vec{k})$
$\delta^{(n)}(\vec{k})=\int_{\overrightarrow{q_{1}} \ldots \overrightarrow{q_{n}}} \delta_{D}\left(\vec{k}-\sum \overrightarrow{q_{i}}\right) F_{n}\left(\overrightarrow{q_{1}}, \ldots, \overrightarrow{q_{n}}\right) \delta^{(1)}\left(\overrightarrow{q_{1}}\right) \ldots \delta^{(1)}\left(\overrightarrow{q_{n}}\right)$

Problems:

1. Integral can diverge in general!
2. Perturbations are not small. Is PT even valid?

Try smoothing: $\delta \rightarrow[\delta]_{\Lambda}(x)=\int d y W_{\Lambda}(x-y) \delta(y)$

- Good expansion parameter (small)
- Short scale interactions induce an effective cosmological fluid with pressure and viscosity (Baumann et al. arXiv:1004.2488)
- Parameters of effective fluid exactly provide the counterterms to renormalize the standard theory (Carrasco et al. arXiv:1206.2926)
- Parameters can be fitted to simulations and/or observations

How to use EFTofLSS efficiently? $\left\langle\delta^{(i)}\left(k_{1}\right) \delta^{(j)}\left(k_{2}\right)\right\rangle=(2 \pi)^{3} \delta^{3}\left(k_{1}+k_{2}\right) P_{i j}\left(k_{1}\right)$

Need statistics to compare with data

Power spectrum
$\left\langle\delta\left(k_{1}\right) \delta\left(k_{2}\right)\right\rangle=(2 \pi)^{3} \delta^{3}\left(k_{1}+k_{2}\right) P\left(k_{1}\right)$

Bispectrum

$$
\left\langle\delta\left(k_{1}\right) \delta\left(k_{2}\right) \delta\left(k_{3}\right)\right\rangle=(2 \pi)^{3} \delta^{3}\left(k_{1}+k_{2}+k_{3}\right) B\left(k_{1}, k_{2}, k_{3}\right)
$$

How to use EFTofLSS efficiently?
Need statistics to compare with data

$$
\begin{gathered}
\text { Power spectrum } \\
\left\langle\delta\left(k_{1}\right) \delta\left(k_{2}\right)\right\rangle=(2 \pi)^{3} \delta^{3}\left(k_{1}+k_{2}\right) P\left(k_{1}\right) \\
\text { At 1-loop: } \\
P(k)=P_{\operatorname{lin}}(k)+P_{13}(k)+P_{22}(k)+P_{\mathrm{ct}}(k) \\
\text { Loop diagrams } \\
P_{22}(k)=2 \int_{q}\left[F_{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q})\right]^{2} P_{\operatorname{lin}}(q) P_{\operatorname{lin}}(|\boldsymbol{k}-\boldsymbol{q}|) \\
P_{13}(k)=6 P_{\operatorname{lin}}(k) \int_{q} F_{3}(\boldsymbol{q},-\boldsymbol{q}, \boldsymbol{k}) P_{\operatorname{lin}}(q),
\end{gathered}
$$

Bispectrum

$$
\left\langle\delta\left(k_{1}\right) \delta\left(k_{2}\right) \delta\left(k_{3}\right)\right\rangle=(2 \pi)^{3} \delta^{3}\left(k_{1}+k_{2}+k_{3}\right) B\left(k_{1}, k_{2}, k_{3}\right)
$$

How to use EFTofLSS efficiently?

Need statistics to compare with data

Power spectrum

$\left\langle\delta\left(k_{1}\right) \delta\left(k_{2}\right)\right\rangle=(2 \pi)^{3} \delta^{3}\left(k_{1}+k_{2}\right) P\left(k_{1}\right)$ At 1-loop:
$P(k)=P_{\operatorname{lin}}(k)+P_{13}(k)+P_{22}(k)+P_{\mathrm{ct}}(k)$
Loop diagrams
$P_{22}(k)=2 \int_{q}\left[F_{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q})\right]^{2} P_{\operatorname{lin}}(q) P_{\operatorname{lin}}(|\boldsymbol{k}-\boldsymbol{q}|)$ $P_{13}(k)=6 P_{\operatorname{lin}}(k) \int_{q} F_{3}(\boldsymbol{q},-\boldsymbol{q}, \boldsymbol{k}) P_{\operatorname{lin}}(q)$,

Bispectrum
$\left\langle\delta\left(k_{1}\right) \delta\left(k_{2}\right) \delta\left(k_{3}\right)\right\rangle=(2 \pi)^{3} \delta^{3}\left(k_{1}+k_{2}+k_{3}\right) B\left(k_{1}, k_{2}, k_{3}\right)$
At 1-loop:
$B\left(k_{1}, k_{2}, k_{3}\right)=B_{\text {tree }}+B_{321}^{\prime}+B_{321}^{\prime \prime}+$ $B_{411}+B_{222}+B_{c t}$

$$
\begin{aligned}
& B_{222}\left(k_{1}, k_{2}, k_{3}\right)=8 \int_{\boldsymbol{q}} F_{2}\left(\boldsymbol{q}, \boldsymbol{k}_{1}-\boldsymbol{q}\right) F_{2}\left(\boldsymbol{k}_{1}-\boldsymbol{q}, \boldsymbol{k}_{2}+\boldsymbol{q}\right) F_{2}\left(\boldsymbol{k}_{2}+\boldsymbol{q},-\boldsymbol{q}\right) \\
& \quad \times P_{\operatorname{lin}}(q) P_{\operatorname{lin}}\left(\left|\boldsymbol{k}_{1}-\boldsymbol{q}\right|\right) P_{\operatorname{lin}}\left(\left|\boldsymbol{k}_{2}+\boldsymbol{q}\right|\right) \\
& B_{321}^{I}\left(k_{1}, k_{2}, k_{3}\right)=6 P_{\operatorname{lin}}\left(k_{1}\right) \int_{\boldsymbol{q}} F_{3}\left(-\boldsymbol{q},-\boldsymbol{k}_{2}+\boldsymbol{q},-\boldsymbol{k}_{1}\right) F_{2}\left(\boldsymbol{q}, \boldsymbol{k}_{2}-\boldsymbol{q}\right) P_{\operatorname{lin}}(q) P_{\operatorname{lin}(}\left(\left|\boldsymbol{k}_{2}-\boldsymbol{q}\right|\right) \\
& \quad+5 \text { perms } \\
& B_{321}^{I I}\left(k_{1}, k_{2}, k_{3}\right)=F_{2}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) P_{\operatorname{lin}}\left(k_{1}\right) P_{13}\left(k_{2}\right)+5 \text { perms } \\
& B_{411}\left(k_{1}, k_{2}, k_{3}\right)=12 P_{\operatorname{lin}}\left(k_{1}\right) P_{\operatorname{lin}}\left(k_{2}\right) \int_{\boldsymbol{q}} F_{4}\left(\boldsymbol{q},-\boldsymbol{q},-\boldsymbol{k}_{1},-\boldsymbol{k}_{2}\right) P_{\operatorname{lin}}(q)+2 \text { cyclic perms . }
\end{aligned}
$$

Calculating the loop integrals - example with power spectrum

$P(k)=P_{\text {lin }}(k)+P_{13}(k)+P_{22}(k)+P_{c t}(k)$

The following strategy is adopted:

$$
\begin{aligned}
& P_{22}(k)=2 \int_{q}\left[F_{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q})\right]^{2} P_{\operatorname{lin}}(q) P_{\operatorname{lin}}(|\boldsymbol{k}-\boldsymbol{q}|) \\
& P_{13}(k)=6 P_{\operatorname{lin}}(k) \int_{q} F_{3}(\boldsymbol{q},-\boldsymbol{q}, \boldsymbol{k}) P_{\operatorname{lin}}(q),
\end{aligned}
$$

Decompose $P_{\text {lin }}$ into sum of predetermined basis functions

- Basis functions are cosmology independent.
- Cosmology dependence is encoded in the coefficients of each basis function.

Calculating the loop integrals - example with power spectrum

$P(k)=P_{\text {lin }}(k)+P_{13}(k)+P_{22}(k)+P_{\mathrm{ct}}(k)$

The following strategy is adopted:

Decompose $P_{\text {lin }}$ into sum of predetermined basis functions

Calculate the loops for each combination of basis functions, obtaining tensors

$$
\begin{aligned}
& P_{22}(k)=2 \int_{q}\left[F_{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q})\right]^{2} P_{\operatorname{lin}}(q) P_{\operatorname{lin}}(|\boldsymbol{k}-\boldsymbol{q}|) \\
& P_{13}(k)=6 P_{\operatorname{lin}}(k) \int_{q} F_{3}(\boldsymbol{q},-\boldsymbol{q}, \boldsymbol{k}) P_{\operatorname{lin}}(q),
\end{aligned}
$$

- Basis functions are cosmology independent.
- Cosmology dependence is encoded in the coefficients of each basis function.
- Tensor rank depends on the specific diagram.
- Tensors are cosmology independent.

Calculating the loop integrals - example with power spectrum

$P(k)=P_{\text {lin }}(k)+P_{13}(k)+P_{22}(k)+P_{\mathrm{ct}}(k)$

The following strategy is adopted:

$$
\begin{aligned}
& P_{22}(k)=2 \int_{q}\left[F_{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q})\right]^{2} P_{\operatorname{lin}}(q) P_{\operatorname{lin}}(|\boldsymbol{k}-\boldsymbol{q}|) \\
& P_{13}(k)=6 P_{\operatorname{lin}}(k) \int_{q} F_{3}(\boldsymbol{q},-\boldsymbol{q}, \boldsymbol{k}) P_{\operatorname{lin}}(q),
\end{aligned}
$$

- Basis functions are cosmology independent.
- Cosmology dependence is encoded in the coefficients of each basis function.
- Tensor rank depends on the specific diagram.
- Tensors are cosmology independent.
- This directly gives the integral.
- Instead of a numerical integration we are doing a matrix multiplication.

Calculating the loop integrals - previous method

FFTLog
 Simonovic et al. arXiv:1708.0813

$\bar{P}_{\operatorname{lin}}\left(k_{n}\right)=\sum_{m=-N / 2}^{m=N / 2} c_{m} k_{n}^{\nu+i \eta_{m}}$

Coefficients are quicky calculated using FFTLog

Calculating the loop integrals - previous method

Calculating the loop integrals - previous method

- Works well for 1-loop power spectrum

However:

- ~50 basis functions required (matrices become very heavy in bispectrum)
- Analytically very challenging past 1-loop power spectrum (dependence in k is not analytic)
- So far, a parameter inference using FFTLog with full 1-loop bispectrum in real data has not been done (see Philcox et al. arXiv:2206.02800 for an approximation using simulations)

Calculating the loop integrals - previous method

$$
\begin{gathered}
\begin{array}{c}
\text { Decompose } P_{\text {lin }} \text { into sum of } \\
\text { predetermined basis functions }
\end{array}
\end{gathered} \bar{P}_{\mathrm{lin}}\left(k_{n}\right)=\sum_{m=-N / 2}^{m=N / 2} c_{m} k_{n}^{\nu+i \eta_{m}}
$$

Coefficients are quicky calculated using FFTLogCalculate the loops for each combination of basis functions, obtaining tensors

$$
\left.\int_{\boldsymbol{q}} \frac{1}{q^{2 \nu_{1}}|\boldsymbol{k}-\boldsymbol{q}|^{2 \nu_{2}}} \equiv k^{3-2 \nu_{12}} \right\rvert\,\left(\nu_{1}, \nu_{2}\right)
$$

$$
\bar{P}_{22}(k)=k^{3} \sum_{m_{1}, m_{2}} c_{m_{1}} k^{-2 \nu_{1}} \cdot M_{22}\left(\nu_{1}, \nu_{2}\right) \cdot c_{m_{2}} k^{-2 \nu_{2}}
$$

- Works well for 1-loop power spectrum

However:

- ~50 basis functions required (matrices become very heavy in bispectrum)

Calculating the loop integrals - new method (this talk)

Analytic decomposition

w/ Anastasiou, Senatore, Zheng arXiv:2212.07421
$f\left(k^{2}, k_{\text {peak }}^{2}, k_{\mathrm{UV}}^{2}, i, j\right) \equiv \frac{\left(k^{2} / k_{k}^{2}\right)^{i}}{\left(1+\frac{\left(k^{2}-k_{\text {pek }}^{2}\right)^{2}}{k_{\mathrm{UV}}^{\mathrm{tan}}}\right)}$

Decompose $P_{\text {lin }}$ into sum of predetermined basis functions

$$
P_{\mathrm{fit}}(k)=\frac{\alpha_{0}}{1+\frac{k^{2}}{k_{\mathrm{UV}, 0}^{2}}}+\sum_{n=1}^{N-1} \alpha_{n} f\left(k^{2}, k_{\mathrm{peak}, n}^{2}, k_{\mathrm{UV}, n}^{2}, i_{n}, j_{n}\right)=\sum_{n=0}^{N-1} \alpha_{n} f_{n}\left(k^{2}\right)
$$

Calculate the loops for each combination of basis functions, obtaining tensors

Contract the tensors with the cosmology-dependent coefficients

Calculating the loop integrals - new method (this talk)

Analytic decomposition

w/ Anastasiou, Senatore, Zheng arXiv:2212.07421
$f\left(k^{2}, k_{\text {peak }}^{2}, k_{\mathrm{UV}}^{2}, i, j\right) \equiv \frac{\left(k^{2} / k_{k}^{2}\right)^{i}}{\left(1+\frac{\left(k^{2}-k_{\text {pek }}^{2}\right)^{2}}{k_{\mathrm{UV}}^{2}}\right)}$

Decompose $P_{\text {lin }}$ into sum of predetermined basis functions

$$
P_{\mathrm{fit}}(k)=\frac{\alpha_{0}}{1+\frac{k^{2}}{k_{\mathrm{UV}, 0}^{2}}}+\sum_{n=1}^{N-1} \alpha_{n} f\left(k^{2}, k_{\mathrm{peak}, n}^{2}, k_{\mathrm{UV}, n}^{2}, i_{n}, j_{n}\right)=\sum_{n=0}^{N-1} \alpha_{n} f_{n}\left(k^{2}\right)
$$

Calculate the loops for each combination of basis functions, obtaining tensors

Contract the tensors with the cosmology-dependent coefficients

Calculating the loop integrals - new method (this talk)

Analytic decomposition

w/ Anastasiou, Senatore, Zheng arXiv:2212.07421
$f\left(k^{2}, k_{\text {peak }}^{2}, k_{\mathrm{UV}}^{2}, i, j\right) \equiv \frac{\left(k^{2} / k_{k}^{2}\right)^{i}}{\left(1+\frac{\left(k^{2}-k_{\text {pek }}^{2}\right)^{2}}{k_{\mathrm{UV}}^{2}}\right)}$

> Decompose $P_{\text {lin }}$ into sum of predetermined basis functions

$$
P_{\mathrm{fit}}(k)=\frac{\alpha_{0}}{1+\frac{k^{2}}{k_{\mathrm{UV}, 0}^{2}}}+\sum_{n=1}^{N-1} \alpha_{n} f\left(k^{2}, k_{\text {peak }, n}^{2}, k_{\mathrm{UV}, n}^{2}, i_{n}, j_{n}\right)=\sum_{n=0}^{N-1} \alpha_{n} f_{n}\left(k^{2}\right)
$$

Calculate the loops for each combination of basis functions, obtaining tensors

Contract the tensors with the cosmology-dependent coefficients

$$
L_{B}\left(n_{1}, d_{1}, n_{2}, d_{2}, k^{2}, M_{1}, M_{2}\right) \equiv \int_{q} \frac{|\boldsymbol{k}-\boldsymbol{q}|^{2 n_{1}} q^{2 n_{2}}}{\left(|\boldsymbol{k}-\boldsymbol{q}|^{2}+M_{1}\right)^{d_{1}}\left(q^{2}+M_{2}\right)^{d_{2}}}
$$

$$
\bar{P}_{22}(k)=\boldsymbol{\alpha}^{T} M^{(22)}\left(k^{2}\right) \boldsymbol{\alpha}
$$

- Works well for 1-loop power spectrum and 1-loop bispectrum
- 16 basis functions required (matrices are much more amenable)
- Differential equation techniques can be used for 2-loop power spectrum (see Samuel's talk yesterday)
- Parameter inference using this method with full 1-loop bispectrum in real data has already been done (see D'Amico et al. arXiv:2206:08327)

First step: one must have a decent fit

Analytic decomposition w/ Anastasiou, Senatore, Zheng arXiv:2212.07421	
	Decompose $P_{\text {lin }}$ into sum of predetermined basis functions

$P_{\mathrm{fit}}(k)=\frac{\alpha_{0}}{1+\frac{k^{2}}{k_{\mathrm{UV}, 0}^{2}}}+\sum_{n=1}^{N-1} \alpha_{n} f\left(k^{2}, k_{\text {peak }, n}^{2}, k_{\mathrm{UV}, n}^{2}, i_{n}, j_{n}\right)=\sum_{n=0}^{N-1} \alpha_{n} f_{n}\left(k^{2}\right)$
$f\left(k^{2}, k_{\text {peak }}^{2}, k_{\mathrm{UV}}^{2}, i, j\right) \equiv \frac{\left(k^{2} / k_{0}^{2}\right)^{i}}{\left(1+\frac{\left(k^{2}-k_{\text {peak }}^{2}\right)^{2}}{k_{\mathrm{UV}}^{p}}\right)^{j}}$

Next: Loop integral computation strategy

Calculate the loops for each combination of basis functions, obtaining tensors

GGoal: general expression for

$$
\begin{aligned}
& L\left(n_{1}, d_{1}, n_{2}, d_{2}, n_{3}, d_{3}, k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, M_{1}, M_{2}, M_{3}\right) \equiv \\
& \quad \int_{q} \frac{\left|\boldsymbol{k}_{1}-\boldsymbol{q}\right|^{2 n_{1}} q^{2 n_{2}}\left|\boldsymbol{k}_{2}+\boldsymbol{q}\right|^{2 n_{3}}}{\left(\left|\boldsymbol{k}_{1}-\boldsymbol{q}\right|^{2}+M_{1}\right)^{d_{1}}\left(q^{2}+M_{2}\right)^{d_{2}}\left(\left|\boldsymbol{k}_{2}+\boldsymbol{q}\right|^{2}+M_{3}\right)^{d_{3}}}
\end{aligned}
$$

\square Strategy:

- IBP to get master integrals (triangle, bubble, tadpole)
- Evaluate master integrals

\square Key differences with QCD:

- 3d instead of 4d - simpler integrals
- Complex masses in general - need to be careful with branch cuts

Bubble master integral

- Integral given by

$$
B_{\text {master }}\left(k^{2}, M_{1}, M_{2}\right)=\int \frac{d^{3} \boldsymbol{q}}{\pi^{3 / 2}} \frac{1}{\left(q^{2}+M_{1}\right)\left(|\boldsymbol{k}-\boldsymbol{q}|^{2}+M_{2}\right)}
$$

[^0]
Bubble master integral

- Integral given by

$$
B_{\text {master }}\left(k^{2}, M_{1}, M_{2}\right)=\int \frac{d^{3} \boldsymbol{q}}{\pi^{3 / 2}} \frac{1}{\left(q^{2}+M_{1}\right)\left(|\boldsymbol{k}-\boldsymbol{q}|^{2}+M_{2}\right)}
$$

$$
\begin{aligned}
& \text { Use Schwinger parametrization } \\
& \frac{i}{A}=\int_{0}^{\infty} d s(1+i \epsilon) \exp (i A(1+i \epsilon) s)
\end{aligned}
$$

- Calculation depends on relative sign of the imaginary part of the masses

Bubble master integral

- Integral given by

$$
B_{\text {master }}\left(k^{2}, M_{1}, M_{2}\right)=\int \frac{d^{3} \boldsymbol{q}}{\pi^{3 / 2}} \frac{1}{\left(q^{2}+M_{1}\right)\left(|\boldsymbol{k}-\boldsymbol{q}|^{2}+M_{2}\right)}
$$

$$
\begin{aligned}
& \text { Use Schwinger parametrization } \\
& \frac{i}{A}=\int_{0}^{\infty} d s(1+i \epsilon) \exp (i A(1+i \epsilon) s)
\end{aligned}
$$

- Calculation depends on relative sign of the imaginary part of the masses
Same sign $\longrightarrow=\sqrt{\pi} \int_{0}^{1} d x \frac{1}{\sqrt{x(1-x) k^{2}+M_{1} x+M_{2}(1-x)}}$

$$
\begin{aligned}
& B_{\text {master }}\left(k^{2}, M_{1}, M_{2}\right)= \\
& \begin{aligned}
& \frac{\sqrt{\pi}}{k}\left[i \log \left(2 \sqrt{x(1-x)+m_{1} x+m_{2}(1-x)}+i\left(m_{1}-m_{2}-2 x+1\right)\right)\right]_{x=0}^{x=1} \\
& \quad-\text { discontinuities }
\end{aligned}
\end{aligned}
$$

$$
m_{1}=M_{1} / k^{2} \quad m_{2}=M_{2} / k^{2}
$$

Numerically tricky to evaluate: how to know the branch cut was crossed?

Bubble master integral - branch cuts

$$
\begin{aligned}
& B_{\text {master }}\left(k^{2}, M_{1}, M_{2}\right)= \\
& \begin{array}{c}
\frac{\sqrt{\pi}}{k}\left[i \log \left(2 \sqrt{x(1-x)+m_{1} x+m_{2}(1-x)}+i\left(m_{1}-m_{2}-2 x+1\right)\right)\right]_{x=0}^{x=1} \\
\quad \quad \text { discontinuities, }
\end{array}
\end{aligned}
$$

- Define argument of the log $A\left(x, m_{1}, m_{2}\right) \equiv 2 \sqrt{x(1-x)+m_{1} x+m_{2}(1-x)+i\left(m_{1}-m_{2}-2 x+1\right)}$

Bubble master integral - branch cuts

$$
\begin{aligned}
& B_{\text {master }}\left(k^{2}, M_{1}, M_{2}\right)= \\
& \frac{\sqrt{\pi}}{k}\left[i \log \left(2 \sqrt{x(1-x)+m_{1} x+m_{2}(1-x)}+i\left(m_{1}-m_{2}-2 x+1\right)\right)\right]_{x=0}^{x=1} \\
& \quad-\text { discontinuities, }
\end{aligned}
$$

- Define argument of the log $A\left(x, m_{1}, m_{2}\right) \equiv 2 \sqrt{x(1-x)+m_{1} x+m_{2}(1-x)+i\left(m_{1}-m_{2}-2 x+1\right)}$

$$
\begin{aligned}
& \text { There is one branch cut } \\
& \Leftrightarrow \Im\left(A\left(1, m_{1}, m_{2}\right)\right)>0 \text { and } \Im\left(A\left(0, m_{1}, m_{2}\right)\right)<0
\end{aligned}
$$

$$
\begin{aligned}
& B_{\text {master }}\left(k^{2}, M_{1}, M_{2}\right)=\frac{\sqrt{\pi}}{k} i\left[\log \left(A\left(1, m_{1}, m_{2}\right)\right)-\log \left(A\left(0, m_{1}, m_{2}\right)\right)\right. \\
&\left.-2 \pi i H\left(\operatorname{Im} A\left(1, m_{1}, m_{2}\right)\right) H\left(-\operatorname{Im} A\left(0, m_{1}, m_{2}\right)\right)\right]
\end{aligned}
$$

- For opposite sign, the exact same expression is obtained!

- Extremely efficient to evaluate numerically.

Matter power spectrum: comparison with numerical integration

Matter power spectrum: comparison with numerical integration

Triangle master integral

- Integral given by

$$
\begin{aligned}
& T_{\text {master }}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, M_{1}, M_{2}, M_{3}\right)= \\
& \qquad \int \frac{d^{3} \boldsymbol{q}}{\pi^{3 / 2}} \frac{1}{\left(q^{2}+M_{1}\right)\left(\left|\boldsymbol{k}_{1}-\boldsymbol{q}\right|^{2}+M_{2}\right)\left(\left|\boldsymbol{k}_{2}+\boldsymbol{q}\right|^{2}+M_{3}\right)} \\
& \hline
\end{aligned}
$$

Use Schwinger parametrization
$\frac{1}{A}=\int_{0}^{\infty} d s \exp (-A s)$

Triangle master integral

- Integral given by

$$
\begin{aligned}
& T_{\text {master }}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, M_{1}, M_{2}, M_{3}\right)= \\
& \qquad \int \frac{d^{3} \boldsymbol{q}}{\pi^{3 / 2}} \frac{1}{\left(q^{2}+M_{1}\right)\left(\left|\boldsymbol{k}_{1}-\boldsymbol{q}\right|^{2}+M_{2}\right)\left(\left|\boldsymbol{k}_{2}+\boldsymbol{q}\right|^{2}+M_{3}\right)}
\end{aligned}
$$

Use Schwinger parametrization $\frac{1}{A}=\int_{0}^{\infty} d s \exp (-A s)$

- Calculation depends on relative sign of the imaginary part or of the real part of the masses.
- Choosing masses with positive real part dramatically simplifies the derivation

Triangle master integral

- Integral given by

$$
\begin{aligned}
& T_{\text {master }}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, M_{1}, M_{2}, M_{3}\right)= \\
& \qquad \int \frac{d^{3} \boldsymbol{q}}{\pi^{3 / 2}} \frac{1}{\left(q^{2}+M_{1}\right)\left(\left|\boldsymbol{k}_{1}-\boldsymbol{q}\right|^{2}+M_{2}\right)\left(\left|\boldsymbol{k}_{2}+\boldsymbol{q}\right|^{2}+M_{3}\right)}
\end{aligned}
$$

Use Schwinger parametrization

$$
\frac{1}{A}=\int_{0}^{\infty} d s \exp (-A s)
$$

- Calculation depends on relative sign of the imaginary part or of the real part of the masses.
- Choosing masses with positive real part dramatically simplifies the derivation

$$
T_{\text {master }}=\left[c_{1} F_{\mathrm{int}}\left(R_{2}, z_{+}, z_{-}, x_{+}\right)+c_{2} F_{\mathrm{int}}\left(R_{2}, z_{+}, z_{-}, x_{-}\right)\right]_{y=0}^{y=1}
$$

- Parameters are functions of kinematics and masses

$$
F_{\text {int }}\left(R_{2}, z_{+}, z_{-}, x_{0}\right)=\frac{\sqrt{\pi}}{2} \int_{0}^{1} d x \frac{1}{\sqrt{R_{2}\left(x-z_{+}\right)\left(x-z_{-}\right)}\left(x-x_{0}\right)}
$$

Triangle master integral

- Integral given by

$$
\begin{aligned}
& T_{\text {master }}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, M_{1}, M_{2}, M_{3}\right)= \\
& \qquad \int \frac{d^{3} \boldsymbol{q}}{\pi^{3 / 2}} \frac{1}{\left(q^{2}+M_{1}\right)\left(\left|\boldsymbol{k}_{1}-\boldsymbol{q}\right|^{2}+M_{2}\right)\left(\left|\boldsymbol{k}_{2}+\boldsymbol{q}\right|^{2}+M_{3}\right)}
\end{aligned}
$$

Use Schwinger parametrization

$$
\frac{1}{A}=\int_{0}^{\infty} d s \exp (-A s)
$$

- Calculation depends on relative sign of the imaginary part or of the real part of the masses.
- Choosing masses with positive real part dramatically simplifies the derivation

$$
T_{\text {master }}=\left[c_{1} F_{\mathrm{int}}\left(R_{2}, z_{+}, z_{-}, x_{+}\right)+c_{2} F_{\mathrm{int}}\left(R_{2}, z_{+}, z_{-}, x_{-}\right)\right]_{y=0}^{y=1}
$$

- Parameters are functions of kinematics and masses
$F_{\text {int }}\left(R_{2}, z_{+}, z_{-}, x_{0}\right)=\frac{\sqrt{\pi}}{2} \int_{0}^{1} d x \frac{1}{\sqrt{R_{2}\left(x-z_{+}\right)\left(x-z_{-}\right)}\left(x-x_{0}\right)}$
$F_{\text {int }}\left(R_{2}, z_{+}, z_{-}, x_{0}\right)=\left.s\left(z_{+},-z_{-}\right) \frac{\sqrt{\pi}}{\sqrt{\left|R_{2}\right|}} \frac{\arctan \left(\frac{\sqrt{z_{+}-x^{2}} \sqrt{x_{0}-z_{-}}}{\sqrt{x_{0}-z_{+}} \sqrt{x-z_{-}}}\right)}{\sqrt{x_{0}-z_{+}} \sqrt{x_{0}-z_{-}}}\right|_{x=0} ^{x=1}-$ discontinuities

Triangle master integral

$\sqrt{a b}=s(a, b) \sqrt{a} \sqrt{b}$

$$
F_{\text {int }}\left(R_{2}, z_{+}, z_{-}, x_{0}\right)=\left.s\left(z_{+},-z_{-}\right) \frac{\sqrt{\pi}}{\sqrt{\left|R_{2}\right|}} \frac{\arctan \left(\frac{\sqrt{z_{-}-x^{2}} \sqrt{x_{0}-z_{-}}}{\sqrt{x_{0}-z_{+}} \sqrt{x-z_{-}}}\right.}{\sqrt{x_{0}-z_{+}} \sqrt{x_{0}-z_{-}}}\right|_{x=0} ^{x=1}-\text { discontinuities }
$$

- Arctan branch cut structure

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \arctan (x i)-\arctan (x i-\epsilon) & =\pi,|x|>1 \\
\lim _{\epsilon \rightarrow 0} \arctan (x i+\epsilon)-\arctan (x i-\epsilon) & =\frac{\pi}{2},|x|=1
\end{aligned}
$$

- Branch cut when $A^{2} \leq-1$, which describes an arc.
- Define argument of $\arctan A\left(z, z_{+}, z_{-}, x_{0}\right) \equiv \frac{\sqrt{z_{+}-z} \sqrt{x_{0}-z_{-}}}{\sqrt{x_{0}-z_{+}} \sqrt{z-z_{-}}}$

Triangle master integral

$\sqrt{a b}=s(a, b) \sqrt{a} \sqrt{b}$

$$
F_{\text {int }}\left(R_{2}, z_{+}, z_{-}, x_{0}\right)=\left.s\left(z_{+},-z_{-}\right) \frac{\sqrt{\pi}}{\sqrt{\left|R_{2}\right|}} \frac{\arctan \left(\frac{\sqrt{z_{+}-x^{2}} \sqrt{x_{0}-z_{-}}}{\sqrt{x_{0}-z_{+}} \sqrt{x-z_{-}}}\right)}{\sqrt{x_{0}-z_{+}} \sqrt{x_{0}-z_{-}}}\right|_{x=0} ^{x=1}-\text { discontinuities }
$$

- Arctan branch cut structure

$$
\begin{array}{r}
\lim _{\epsilon \rightarrow 0} \arctan (x i)-\arctan (x i-\epsilon)=\pi,|x|>1 \\
\lim _{\epsilon \rightarrow 0} \arctan (x i+\epsilon)-\arctan (x i-\epsilon)=\frac{\pi}{2},|x|=1
\end{array}
$$

- Branch cut when $A^{2} \leq-1$, which describes an arc.
- Crossing if arc intersects integration region.
- Define argument of $\arctan A\left(z, z_{+}, z_{-}, x_{0}\right) \equiv \frac{\sqrt{z_{+}-z} \sqrt{x_{0}-z_{-}}}{\sqrt{x_{0}-z_{+}} \sqrt{z-z_{-}}}$

Triangle master integral

$\sqrt{a b}=s(a, b) \sqrt{a} \sqrt{b}$

$$
F_{\text {int }}\left(R_{2}, z_{+}, z_{-}, x_{0}\right)=\left.s\left(z_{+},-z_{-}\right) \frac{\sqrt{\pi}}{\sqrt{\left|R_{2}\right|}} \frac{\arctan \left(\frac{\sqrt{z_{-}-x^{2}} \sqrt{x_{0}-z_{-}}}{\sqrt{x_{0}-z_{+}} \sqrt{x-z_{-}}}\right)}{\sqrt{x_{0}-z_{+}} \sqrt{x_{0}-z_{-}}}\right|_{x=0} ^{x=1}-\text { discontinuities }
$$

- Arctan branch cut structure

$$
\lim _{\epsilon \rightarrow 0} \arctan (x i)-\arctan (x i-\epsilon)=\pi,|x|>1
$$

$$
\lim _{\epsilon \rightarrow 0} \arctan (x i+\epsilon)-\arctan (x i-\epsilon)=\frac{\pi}{2},|x|=1
$$

- Branch cut when $A^{2} \leq-1$, which describes an arc.
- Crossing if arc intersects integration region.
- Possible to know where are the crossings only from values of x_{0}, z_{-}, and z_{+}!
- Direction of crossing depends on $\mathfrak{R} \frac{d A}{d z}$
- Can be numerically implemented
- Define argument of $\arctan A\left(z, z_{+}, z_{-}, x_{0}\right) \equiv \frac{\sqrt{z_{+}-z} \sqrt{x_{0}-z_{-}}}{\sqrt{x_{0}-z_{+}} \sqrt{z-z_{-}}}$

Matter bispectrum: comparison with numerical integration

- B_{222} matches well within 1%
- Other diagrams are even better
- We can now make parameter inference using 1-loop power spectrum and bispectrum because the computation of the loop corrections is extremely fast.

Results from real data analysis

Results using this method with BOSS

D’Amico, Donath, Lewandowski, Senatore, Zhang arXiv:2206.08327

Results using this method with BOSS

Inflationary parameter inference: $f_{N L}$

D’Amico, Lewandowski, Senatore, Zhang arXiv:2201.11518

Results using this method with BOSS

Inflationary parameter inference: $f_{N L}$

D’Amico, Lewandowski, Senatore, Zhang arXiv:2201.11518

The perspectives using this new method in future surveys are very optimistic!

D’Amico, Donath, Lewandowski, Senatore, Zhang arXiv:2206.08327

All N-point functions at 1-loop

Using a result from van Neerven and Vermaseren (1984)

One-loop integrals for all N -point functions in the EFTofLSS

Example: one-loop box integral

$$
I_{4} \equiv \int d^{D} q \frac{1}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}} \quad \mathcal{A}_{i}=\left(q+p_{i}\right)^{2}+M_{i} \quad p_{i}=\sum_{m=1}^{i} k_{m}
$$

One can prove the following identity in 3d

$$
\begin{aligned}
{\left[-2 \rho_{4}-\frac{1}{2}\right.} & \left.\sum_{i, j=1}^{3}\left(\rho_{i}-\rho_{4}\right) \Pi_{i j}\left(\rho_{j}-\rho_{4}\right)\right] \int d^{D} q \frac{1}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}}
\end{aligned}=\left(\begin{array}{l}
-\frac{1}{2} \int d^{D} q \frac{2 \mathcal{A}_{4}+\sum_{i, j=1}^{3}\left(\rho_{i}-\rho_{4}\right) \Pi_{i j}\left(\mathcal{A}_{j}-\mathcal{A}_{4}\right)}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}}+\mathcal{O}(\epsilon)
\end{array}\right.
$$

One-loop integrals for all N -point functions in the EFTofLSS

Example: one-loop box integral

$$
I_{4} \equiv \int d^{D} q \frac{1}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}} \quad \mathcal{A}_{i}=\left(q+p_{i}\right)^{2}+M_{i} \quad p_{i}=\sum_{m=1}^{i} k_{m}
$$

One can prove the following identity in 3d

$$
\begin{aligned}
{\left[-2 \rho_{4}-\frac{1}{2}\right.} & \left.\sum_{i, j=1}^{3}\left(\rho_{i}-\rho_{4}\right) \Pi_{i j}\left(\rho_{j}-\rho_{4}\right)\right] \int d^{D} q \frac{1}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}}
\end{aligned}=\left(\begin{array}{l}
-\frac{1}{2} \int d^{D} q \frac{2 \mathcal{A}_{4}+\sum_{i, j=1}^{3}\left(\rho_{i}-\rho_{4}\right) \Pi_{i j}\left(\mathcal{A}_{j}-\mathcal{A}_{4}\right)}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}}+\mathcal{O}(\epsilon)
\end{array}\right.
$$

One-loop integrals for all N -point functions in the EFTofLSS

Example: one-loop box integral

$$
I_{4} \equiv \int d^{D} q \frac{1}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}} \quad \mathcal{A}_{i}=\left(q+p_{i}\right)^{2}+M_{i} \quad p_{i}=\sum_{m=1}^{i} k_{m}
$$

We have all the master integrals we need at 1-loop!

$$
\begin{aligned}
& {\left[-2 \rho_{4}-\frac{1}{2} \sum_{i, j=1}^{3}\left(\rho_{i}-\rho_{4}\right) \Pi_{i j}\left(\rho_{j}-\rho_{4}\right)\right] \int d^{D} q \frac{1}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}} }= \\
&-\frac{1}{2} \int d^{D} q \frac{2 \mathcal{A}_{4}+\sum_{i, j=1}^{3}\left(\rho_{i}-\rho_{4}\right) \Pi_{i j}\left(\mathcal{A}_{j}-\mathcal{A}_{4}\right)}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}}+\mathcal{O}(\epsilon)
\end{aligned}
$$

LHS: box integral, RHS: 4 triangle integrals!

Conclusions

- A new fast method to calculate 1-loop corrections in the EFTofLSS was found
- Uses QFT-like integrals with massive propagators
- Overcomes problems of previous FFTLog method
- Was already used in real data with good results
- Developed just in time for larger surveys data analysis
- Open roads
- Extend formalism to 2-loops (e.g., using DE formalism)
- Include higher-order N-point functions in the analysis - we have the technique!

Thank you!
Happy to take questions!

UV correction

- To match numerical integration with enough precision, one needs to compensate for the part of the integral outside the limit of integration

$$
\begin{aligned}
m_{\mathrm{UV}, i}^{(13)} & \equiv \int_{\Omega_{2}} d \Omega_{2} \lim _{q \rightarrow \infty} q^{2} 6 F_{3}(\boldsymbol{q},-\boldsymbol{q}, \boldsymbol{k}) f_{i}\left(q^{2}\right) \leq \mathcal{O}\left(\frac{k^{2}}{q^{2}}\right) \\
M_{\mathrm{UV}, i}^{(13)} & \equiv \int_{q_{\mathrm{UV}}}^{\infty} \frac{d q}{(2 \pi)^{3}} m_{\mathrm{UV}, i}^{(13)} \\
\bar{P}_{13}^{\mathrm{UV}} & =P_{\operatorname{lin}} M_{\mathrm{UV}}^{(13)} \cdot \alpha
\end{aligned}
$$

- Then this is subtracted from the estimate of P_{13}

Proof of discontinuities of bubble master

- The important lemma is the following:

$$
\begin{aligned}
\frac{d A}{d x} & =\frac{m_{1}-m_{2}-2 x+1}{\sqrt{x\left(m_{1}-m_{2}-x+1\right)+m_{2}}}-2 i \\
& =\frac{m_{1}-m_{2}-2 x+1-2 i \sqrt{x\left(m_{1}-m_{2}-x+1\right)+m_{2}}}{\sqrt{x\left(m_{1}-m_{2}-x+1\right)+m_{2}}} \\
& =-i \frac{A\left(x, m_{1}, m_{2}\right)}{\sqrt{x\left(m_{1}-m_{2}-x+1\right)+m_{2}}} \\
& =\frac{i t}{\sqrt{x\left(m_{1}-m_{2}-x+1\right)+m_{2}}} .
\end{aligned}
$$

Bubble master: opposite imaginary part sign

$$
\begin{aligned}
B_{\text {master }}\left(k^{2}, M_{1}, M_{2}\right)= & \sqrt{\pi}\left(\int_{0}^{\frac{1}{2}-\frac{1}{\epsilon}} \frac{d \hat{x}}{\sqrt{\hat{x}(1-\hat{x}) k^{2}+M_{1} \hat{x}+M_{2}(1-\hat{x})}}+\right. \\
& \left.\int_{\frac{1}{2}+\frac{1}{e}}^{1} \frac{\left(\hat{x}(1-\hat{x}) k^{2}+M_{1} \hat{x}+M_{2}(1-\hat{x})\right.}{\sqrt{x}}+\frac{\pi}{k}\right)
\end{aligned}
$$

- The result can then be shown to be equal to the case where the masses have the same imaginary part sign

Measurement of cosmological parameters using 1-loop power spectrum

D’Amico, Gleyzes, Kokron, Markovic, Senatore, Zhang, Beutler, Gil-Marin 1909.05271

[^0]: Use Schwinger parametrization $\frac{i}{A}=\int_{0}^{\infty} d s(1+i \epsilon) \exp (i A(1+i \epsilon) s)$

