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Taming Jets’ Hair

Jet differential cross sections are the finest-grained observables
at modern colliders

LO — each jet modeled by a lone parton

NLO — virtual: same; IR divergences in loop integrals
— real-emission, some jets modeled by pair,
IR divergences in phase-space integrals

NNLO — double-virtual: lone parton, IR divs in loop integrals
— mixed: mixed divergences
— double-real: IR divergences in phase-space integrals

Need to cancel divergences
Ideally point-by-point in jet phase space



Current Approaches

Cancel in physical observables (not point by point)

Slicing — virtual divergences known analytically
— separate singular regions (soft, collinear)
— integrate analytically
— integrate numerically in hard regions
Giele & Glover; Giele, Glover, & DAK

Subtraction — singular behavior known analytically
— subtract it everywhere, resulting integral finite

— integrate singular functions analytically
Catani & Seymour; Frixione, Kunszt, & Signer; Nagy & Soper;
Bevilacqua, Czakon, Kubocz, & Worek

NNLO — generalizations of subtraction
Gehrmann-De Ridder, Gehrmann, & Glover; Weinzierl;
Del Duca, Duhr, Kardos, Somogyi, Sz0r, Trocsanyi, & Tulipant; Czakon;
Magnea, Maina, Pelliccioli, Signorile-Signorile, Torrielli, & Uccirati

— hybrid schemes

Stewart, Tackmann, & Waalewijn; Catani & Grazzini

Complicated and not yet fully general



Framework

Virtual @ NLO: n partons — n (proto)jets
Real Emission @ NLO: n + 1 partons — n (proto)jets
Do phase-space integral exactly in D = 4 — 2e¢

— Mixture of analytic and numerical

Want to align phase spaces, expose analogy
Reexpress partons in terms of protojets

o = kol
Factorize phase space (exact)

dLIPSY | (K;{ki}14}) = dLIPS? ({k;}) dLIPSE (k,.) Jac

TL+1



Vision of the Destination

If you don't know where you're going, you'll end up someplace else. —
Yogi Berra

* Master-integral decomposition of multi-emission phase-
space integrals
f

* Master-integral decomposition of single-emission phase-
space integrals
f

* Decomposition of single-emission phase-space integrands:
squares of tree amplitudes
N



A thousand-mile journey
begins with a single step

Paraphrase of Laozi (between 2300 — 2500 yrs ago)
Decomposition of tree amplitudes with one emission

Suitable mapping to isolate emission
~ “theoretical” jet algorithm

Classification of amplitudes

Computational algebraic geometry



Decomposition of One-Loop Integrands

First: integrands with trivial numerators

* Integrand of hexagon

External momenta strictly in D = 4

e Use Gram determinants

G(pla. = 7pm> _ det (2pZ . Qj) .

d1,---5,4m 2,J



Scalar Hexagon Decomposition

* Six denominators D; = (f - K j)z
* Write a Gram identity
_ 0, ki, ..., ka\ _ .
= G(k57 kla R k4> - ijj T Wo

* And put it over the denominator

N ——Z
D1 Do D3 Dy D5 De Dy - % - Dg




New Lyrics to an Old Melody

like the Lichtenstein National Anthem
* Look at singularities on both sides of the decomposition

* Both are singular when any D; vanishes

* What happens when all D; vanish simultaneously?

— Left-hand side (6 powers) appears more singular than right-
hand side (5 powers)

— Consistent only if all D; cannot vanish simultaneously

— Obstruction must be dependent on external momenta in D = 4



Inconsistency ot Equations

* Need to show that simultaneous equations

: (, ki, ..., k

have no solution
* Use computational algebraic geometry

« Show the ideal generated by these polynomials is the
unit ideal (1): compute the Grobner basis

* Cofactor matrix would give coefficients ¢;D; + ¢,G = 1



Inverse Antenna Mapping

* Antenna mapping: maps partons — protojets
* Three recombining momenta yielding two massless protojets

« Want to map protojets — partons, so that we can write
— original partons as f(protojets, real emission)

1 1
ki = 9 (1 + 7(850 8,5) W+ (850 8,3)) kg — 2 (L4 757 5,8) WA (5570 5,5)) For
1
—+ 5 (1 -+ T<S&7~7 STB)’UJ_ (S&fN S?"l;)> ki) )
k'j : kr ’
1 1
ki = 2 (1 — (S5 S,5) W4 (S, 37«13)) ks — 9 (1 — T(S47> 5,5) WA(S, Sré)) for
1
+ 5 (1 - T<8&7~7 Srl;)w—(sdr’ Srl;)) ké

« Ultimately, functions of 7, 4, Sg;, S5, Sr1, Sr2



Simple Example

5

1

k

Contribution
Sj35j345j3455j13455j12345

S1 = Sj3,92 = Sj34,93 = Sj345,54 = Sj1345,95 = Sj12345

Build a Gram . ki, ki, ..., k4
ks, ki, ..., ky

It gives a similar decomposition

5) r

Wo I Yj
5152535455 Z S+ &S5

j=1




Harder Case

1 2 3 k 5 4

J (

* No simple identity as for the simple example
* Need to add functions imposing mapping constraints

5 T A
Co Cj CjZ;
0= + +
T1T2T3T4T5 ; T1 . XJ s T5 J_Zl T1T2T3T4T5

I7 = Sig, Ty = Sj1, T3 = Sis5, Ty = Sj12,I's = Sj123

* Z; vanish on physical configurations

* Too computationally difficult in standard variables



Better Variables & Finite Field Numerics

» Use finite-field momenta for kq, ..., ks, kg, k5

* Variables V = {sa;, S;-5, Sr1, Sr2, T, A}
sr3 &c. expressed numerically

* Gram constraints solved explicitly

» Form of 7,1 expressed by two constraints Ry, Rj
» Ideal (T4, Ty, T3, Ty, Ts, Ry, Ry)

* Compute GrobnerBasis(B; V) using Singular = {1}
 No common solutions as desired



Coetficient Simplification

Coefficients from cofactor matrix };; ¢;B; =1
Not necessarily “simplest”

Compute syzygies of B

Compute Grobner basis of syzygies

Reduce cofactors against this Grobner basis

Can make coefficients independent of k,., but not 7, A



Triskelia

Y mtlly Y
= ‘\ i
L
e‘

\. a well-known triskelion

Classity all possible contributions:
focus on all possible arrangements
of the three recombining partons

Lines from each inwards will
ultimately meet at a center

Number and types of legs attached
give different triskelia

Twelve major classes, subclasses
depending on masses




Survey

Consider 1152 triskelia (after symmetries)

All yield unit Grobner basis
In all cases, coetficients can be made independent of k,
Results independent of external masses



Numerators

» What about reduction of nontrivial numerators?

* In one-loop integrals, just ordinary partial fractioning

 In CAG,
v mod GrobnerBasis ({D;}2_; Wy.4) = constant Vo € Wy

* Analog for tree-level contributions
v mod GrobnerBasis ({11,715, 13,14, R, R5 }; V') = Poly(r, 5\)

Vv € {5;.,5 5,501,502}



Summary

First step towards decomposing phase-space integrals
into master integrals

Recast one-loop integral reduction into language of
computational algebraic geometry

Generalizes to allow partial-fractioning of any cubic
contribution to a tree-level scattering amplitude

Finite basis of master integrals



