Towards a Universal Decomposition of Phase-Space Integrands

David A. Kosower
Institut de Physique Théorique, CEA-Saclay
work with Ben Page (CERN), [2211.14156]
QCD Meets Gravity 2022
in Zurich - Dec 15, 2022

Taming Jets' Hair

- Jet differential cross sections are the finest-grained observables at modern colliders
- LO - each jet modeled by a lone parton
- NLO - virtual: same; IR divergences in loop integrals - real-emission, some jets modeled by pair,

> IR divergences in phase-space integrals

- NNLO - double-virtual: lone parton, IR divs in loop integrals - mixed: mixed divergences
- double-real: IR divergences in phase-space integrals
- Need to cancel divergences
- Ideally point-by-point in jet phase space

Current Approaches

- Cancel in physical observables (not point by point)
- Slicing - virtual divergences known analytically
- separate singular regions (soft, collinear)
- integrate analytically
- integrate numerically in hard regions

Giele \& Glover; Giele, Glover, \& DAK

- Subtraction - singular behavior known analytically
- subtract it everywhere, resulting integral finite
- integrate singular functions analytically

Catani \& Seymour; Frixione, Kunszt, \& Signer; Nagy \& Soper;
Bevilacqua, Czakon, Kubocz, \& Worek

- NNLO - generalizations of subtraction

Gehrmann-De Ridder, Gehrmann, \& Glover; Weinzierl;
Del Duca, Duhr, Kardos, Somogyi, Szőr, Trócsányi, \& Tulipánt; Czakon; Magnea, Maina, Pelliccioli, Signorile-Signorile, Torrielli, \& Uccirati

- hybrid schemes

Stewart, Tackmann, \& Waalewijn; Catani \& Grazzini

- Complicated and not yet fully general

Framework

- Virtual @ NLO: n partons $\rightarrow n$ (proto)jets
- Real Emission @ NLO: $n+1$ partons $\rightarrow n$ (proto)jets
- Do phase-space integral exactly in $D=4-2 \epsilon$
- Mixture of analytic and numerical
- Want to align phase spaces, expose analogy
- Reexpress partons in terms of protojets

$$
\begin{aligned}
& \hat{k}_{i}=\hat{k}_{i}\left(\left\{k_{j}\right\}^{n+1}\right) \\
& k_{r}=k_{r}\left(\left\{k_{j}\right\}^{n+1}\right)
\end{aligned}
$$

- Factorize phase space (exact)

$$
d \operatorname{LIPS}_{n+1}^{D}\left(K ;\left\{k_{i}\right\}_{i=1}^{n+1}\right)=d \operatorname{LIPS}_{n}^{D}\left(\left\{\hat{k}_{i}\right\}\right) d \operatorname{LIPS}_{s}^{D}\left(k_{r}\right) \mathrm{Jac}
$$

Vision of the Destination

If you don't know where you're going, you'll end up someplace else. Yogi Berra

- Master-integral decomposition of multi-emission phasespace integrals
\Uparrow
- Master-integral decomposition of single-emission phasespace integrals
\Uparrow
- Decomposition of single-emission phase-space integrands: squares of tree amplitudes

A thousand-mile journey begins with a single step Paraphrase of Laozi (between 2300-2500 yrs ago)

- Decomposition of tree amplitudes with one emission
- Suitable mapping to isolate emission
~ "theoretical" jet algorithm
- Classification of amplitudes
- Computational algebraic geometry

Decomposition of One-Loop Integrands

- First: integrands with trivial numerators
- Integrand of hexagon
- External momenta strictly in $D=4$
- Use Gram determinants

$$
G\binom{p_{1}, \ldots, p_{m}}{q_{1}, \ldots, q_{m}}=\operatorname{det}_{i, j}\left(2 p_{i} \cdot q_{j}\right)
$$

Scalar Hexagon Decomposition

- Six denominators $D_{j}=\left(\ell-K_{1, j}\right)^{2}$
- Write a Gram identity

$$
0=G\left(\begin{array}{cccc}
\ell, & k_{1}, & \ldots, & k_{4} \\
k_{5}, & k_{1}, & \ldots, & k_{4}
\end{array}\right)=\omega_{j} D_{j}+\omega_{0}
$$

- And put it over the denominator

$$
\frac{\omega_{0}}{D_{1} D_{2} D_{3} D_{4} D_{5} D_{6}}=-\sum_{j=1}^{6} \frac{\omega_{j}}{D_{1} \cdots \not X_{j} \cdots D_{6}}
$$

New Lyrics to an Old Melody

like the Lichtenstein National Anthem

- Look at singularities on both sides of the decomposition
- Both are singular when any D_{j} vanishes
- What happens when all D_{j} vanish simultaneously?
- Left-hand side (6 powers) appears more singular than righthand side (5 powers)
- Consistent only if all D_{j} cannot vanish simultaneously
- Obstruction must be dependent on external momenta in $D=4$

Inconsistency of Equations

- Need to show that simultaneous equations

$$
D_{j}=0 \quad(j=1, \ldots, 6), \quad G\left(\begin{array}{cccc}
\ell, & k_{1}, \ldots, & k_{4} \\
k_{5}, & k_{1}, & \ldots, & k_{4}
\end{array}\right)=0
$$

have no solution

- Use computational algebraic geometry
- Show the ideal generated by these polynomials is the unit ideal $\langle 1\rangle$: compute the Gröbner basis
- Cofactor matrix would give coefficients $c_{j} D_{j}+c_{0} G=1$

Inverse Antenna Mapping

- Antenna mapping: maps partons \rightarrow protojets
- Three recombining momenta yielding two massless protojets
- Want to map protojets \rightarrow partons, so that we can write
- original partons as $f($ protojets, real emission)

$$
\begin{aligned}
k_{i}= & \frac{1}{2}\left(1+\tau\left(s_{\hat{a} r}, s_{r \hat{b}}\right) w_{+}\left(s_{\hat{a} r}, s_{r \hat{b}}\right)\right) k_{\hat{a}}-\frac{1}{2}\left(1+\tau\left(s_{\hat{a} r}, s_{r \hat{b}}\right) w_{\lambda}\left(s_{\hat{a} r}, s_{r \hat{b}}\right)\right) k_{r} \\
& +\frac{1}{2}\left(1+\tau\left(s_{\hat{a} r}, s_{r \hat{b}}\right) w_{-}\left(s_{\hat{a} r}, s_{r \hat{b}}\right)\right) k_{\hat{b}}, \\
k_{j}= & k_{r}, \\
k_{k}= & \frac{1}{2}\left(1-\tau\left(s_{\hat{a} r}, s_{r \hat{b}}\right) w_{+}\left(s_{\hat{a} r}, s_{r \hat{b}}\right)\right) k_{\hat{a}}-\frac{1}{2}\left(1-\tau\left(s_{\hat{a} r}, s_{r \hat{b}}\right) w_{\lambda}\left(s_{\hat{a} r}, s_{r \hat{b}}\right)\right) k_{r} \\
& +\frac{1}{2}\left(1-\tau\left(s_{\hat{a} r}, s_{r \hat{b}}\right) w_{-}\left(s_{\hat{a} r}, s_{r \hat{b}}\right)\right) k_{\hat{b}}
\end{aligned}
$$

- Ultimately, functions of $\tau, \hat{\lambda}, s_{\hat{a} r}, s_{r \hat{b}}, s_{r 1}, s_{r 2}$

Simple Example

- Contribution $\frac{1}{s_{j 3} S_{j 34} S_{j 345} s_{j 1345} S_{j 12345}}$
- $S_{1}=s_{j 3}, S_{2}=s_{j 34}, S_{3}=s_{j 345}, S_{4}=s_{j 1345}, S_{5}=s_{j 12345}$
- Build a Gram

$$
G\left(\begin{array}{llll}
k_{j}, & k_{1}, & \ldots, & k_{4} \\
k_{5}, & k_{1}, & \ldots, & k_{4}
\end{array}\right)
$$

- It gives a similar decomposition

$$
\frac{\omega_{0}^{r}}{S_{1} S_{2} S_{3} S_{4} S_{5}}=-\sum_{j=1}^{5} \frac{\omega_{j}^{r}}{S_{1} \cdots \mathcal{S}_{j} \cdots S_{5}}
$$

Harder Case

- No simple identity as for the simple example
- Need to add functions imposing mapping constraints

$$
0=\frac{c_{0}}{T_{1} T_{2} T_{3} T_{4} T_{5}}+\sum_{j=1}^{5} \frac{c_{j}}{T_{1} \cdots \mathscr{K}_{j} \cdots T_{5}}+\sum_{j=1}^{n_{z}} \frac{\hat{c}_{j} Z_{j}}{T_{1} T_{2} T_{3} T_{4} T_{5}}
$$

- $T_{1}=s_{i 4}, T_{2}=s_{j 1}, T_{3}=s_{i 45}, T_{4}=s_{j 12}, T_{5}=s_{j 123}$
- Z_{j} vanish on physical configurations
- Too computationally difficult in standard variables

Better Variables \& Finite Field Numerics

- Use finite-field momenta for $k_{1}, \ldots, k_{5}, k_{\hat{a}}, k_{\hat{b}}$
- Variables $V=\left\{s_{\hat{a} r}, s_{r \hat{b}}, s_{r 1}, s_{r 2}, \tau, \hat{\lambda}\right\}$; $s_{r 3} \& c$. expressed numerically
- Gram constraints solved explicitly
- Form of $\tau, \hat{\lambda}$ expressed by two constraints $R_{\tau}, R_{\widehat{\lambda}}$
- Ideal $\left\langle T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, R_{\tau}, R_{\widehat{\lambda}}\right\rangle$
- Compute GröbnerBasis $(B ; V)$ using Singular $\Rightarrow\{1\}$
- No common solutions as desired

Coefficient Simplification

- Coefficients from cofactor matrix $\sum_{i} c_{i} B_{i}=1$
- Not necessarily "simplest"
- Compute syzygies of B
- Compute Gröbner basis of syzygies
- Reduce cofactors against this Gröbner basis
- Can make coefficients independent of k_{r}, but not $\tau, \hat{\lambda}$

Triskelia

a well-known triskelion

- Classify all possible contributions: focus on all possible arrangements of the three recombining partons
- Lines from each inwards will ultimately meet at a center

Survey

- Consider 1152 triskelia (after symmetries)
- All yield unit Gröbner basis
- In all cases, coefficients can be made independent of k_{r}
- Results independent of external masses

Numerators

- What about reduction of nontrivial numerators?
- In one-loop integrals, just ordinary partial fractioning
- In CAG,
$v \quad \bmod$ GröbnerBasis $\left(\left\{D_{i}\right\}_{i=1}^{5} ; W_{\ell: 4}\right)=$ constant $\quad \forall v \in W_{\ell: 4}$
- Analog for tree-level contributions
$v \bmod \operatorname{GröbnerBasis}\left(\left\{T_{1}, T_{2}, T_{3}, T_{4}, R_{\tau}, R_{\hat{\lambda}}\right\} ; V\right)=\operatorname{Poly}(\tau, \hat{\lambda})$

$$
\forall v \in\left\{s_{\hat{a} r}, s_{r \hat{b}}, s_{r 1}, s_{r 2}\right\}
$$

Summary

- First step towards decomposing phase-space integrals into master integrals
- Recast one-loop integral reduction into language of computational algebraic geometry
- Generalizes to allow partial-fractioning of any cubic contribution to a tree-level scattering amplitude
- Finite basis of master integrals

