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Taming Jets’ Hair
• Jet differential cross sections are the finest-grained observables 

at modern colliders

• LO — each jet modeled by a lone parton

• NLO — virtual: same; IR divergences in loop integrals
— real-emission, some jets modeled by pair,

IR divergences in phase-space integrals
• NNLO  — double-virtual: lone parton, IR divs in loop integrals

— mixed: mixed divergences
— double-real: IR divergences in phase-space integrals

• Need to cancel divergences
• Ideally point-by-point in jet phase space



Current Approaches
• Cancel in physical observables (not point by point)
• Slicing — virtual divergences known analytically

— separate singular regions (soft, collinear)
— integrate analytically
— integrate numerically in hard regions

Giele & Glover; Giele, Glover, & DAK
• Subtraction  — singular behavior known analytically

— subtract it everywhere, resulting integral finite
— integrate singular functions analytically

Catani & Seymour; Frixione, Kunszt, & Signer; Nagy & Soper; 
Bevilacqua, Czakon, Kubocz, & Worek

• NNLO  — generalizations of subtraction
Gehrmann-De Ridder, Gehrmann, & Glover; Weinzierl;

Del Duca, Duhr, Kardos, Somogyi, Szőr, Trócsányi, & Tulipánt; Czakon; 
Magnea, Maina, Pelliccioli, Signorile-Signorile, Torrielli, & Uccirati

— hybrid schemes
Stewart, Tackmann, & Waalewijn; Catani & Grazzini

• Complicated and not yet fully general



Framework
• Virtual @ NLO: 𝑛 partons ® 𝑛 (proto)jets
• Real Emission @ NLO: 𝑛 + 1 partons ® 𝑛 (proto)jets
• Do phase-space integral exactly in 𝐷 = 4 − 2𝜖

– Mixture of analytic and numerical

• Want to align phase spaces, expose analogy
• Reexpress partons in terms of protojets

*𝑘! = *𝑘!( 𝑘"
#$%)

𝑘& = 𝑘&( 𝑘"
#$%)

• Factorize phase space (exact)



Vision of  the Destination
If you don't know where you're going, you'll end up someplace else. —
Yogi Berra

• Master-integral decomposition of multi-emission phase-
space integrals

Ý
• Master-integral decomposition of single-emission phase-

space integrals
Ý

• Decomposition of single-emission phase-space integrands: 
squares of tree amplitudes

Ý



A thousand-mile journey
begins with a single step

Paraphrase of Laozi (between 2300 – 2500 yrs ago)
• Decomposition of tree amplitudes with one emission

• Suitable mapping to isolate emission
~ “theoretical” jet algorithm

• Classification of amplitudes

• Computational algebraic geometry



Decomposition of  One-Loop Integrands

• First: integrands with trivial numerators

• Integrand of hexagon

• External momenta strictly in 𝐷 = 4

• Use Gram determinants



Scalar Hexagon Decomposition

• Six denominators 𝐷" = ℓ − 𝐾%,"
(

• Write a Gram identity

• And put it over the denominator



New Lyrics to an Old Melody
like the Lichtenstein National Anthem

• Look at singularities on both sides of the decomposition

• Both are singular when any 𝐷" vanishes

• What happens when all 𝐷" vanish simultaneously?
– Left-hand side (6 powers) appears more singular than right-

hand side (5 powers)
– Consistent only if all 𝐷! cannot vanish simultaneously
– Obstruction must be dependent on external momenta in 𝐷 = 4



Inconsistency of  Equations

• Need to show that simultaneous equations

have no solution

• Use computational algebraic geometry

• Show the ideal generated by these polynomials is the 
unit ideal 1 : compute the Gröbner basis

• Cofactor matrix would give coefficients 𝑐"𝐷" + 𝑐)𝐺 = 1



Inverse Antenna Mapping
• Antenna mapping: maps partons ® protojets
• Three recombining momenta yielding two massless protojets
• Want to map protojets ® partons, so that we can write

– original partons as f(protojets, real emission)

• Ultimately, functions of 𝜏, 4𝜆, 𝑠 *+&, 𝑠& ,-, 𝑠&%, 𝑠&(



Simple Example

• Contribution  
$

%!"%!"#%!"#$%!%"#$%!%&"#$
• 𝑆% = 𝑠"., 𝑆( = 𝑠"./, 𝑆. = 𝑠"./0, 𝑆/ = 𝑠"%./0, 𝑆0 = 𝑠"%(./0
• Build a Gram

• It gives a similar decomposition



Harder Case

• No simple identity as for the simple example
• Need to add functions imposing mapping constraints

• 𝑇% = 𝑠!/, 𝑇( = 𝑠"%, 𝑇. = 𝑠!/0, 𝑇/ = 𝑠"%(, 𝑇0 = 𝑠"%(.
• 𝑍" vanish on physical configurations

• Too computationally difficult in standard variables



Better Variables & Finite Field Numerics

• Use finite-field momenta for 𝑘%, … , 𝑘0, 𝑘 *+, 𝑘 ,-
• Variables 𝑉 = {𝑠 *+&, 𝑠& ,-, 𝑠&%, 𝑠&(, 𝜏, 4𝜆}; 
𝑠&. &c. expressed numerically

• Gram constraints solved explicitly
• Form of 𝜏, 4𝜆 expressed by two constraints 𝑅1, 𝑅23

• Ideal 𝑇%, 𝑇(, 𝑇., 𝑇/, 𝑇0, 𝑅1, 𝑅23

• Compute GröbnerBasis(𝐵; 𝑉) using Singular Þ {1}
• No common solutions as desired



Coefficient Simplification

• Coefficients from cofactor matrix ∑! 𝑐!𝐵! = 1

• Not necessarily “simplest”

• Compute syzygies of 𝐵
• Compute Gröbner basis of syzygies
• Reduce cofactors against this Gröbner basis

• Can make coefficients independent of 𝑘&, but not 𝜏, 4𝜆



Triskelia
a well-known triskelion

• Classify all possible contributions: 
focus on all possible arrangements 
of the three recombining partons

• Lines from each inwards will 
ultimately meet at a center

• Number and types of legs attached 
give different triskelia

• Twelve major classes, subclasses 
depending on masses



Survey

• Consider 1152 triskelia (after symmetries)

• All yield unit Gröbner basis
• In all cases, coefficients can be made independent of 𝑘&
• Results independent of external masses



Numerators

• What about reduction of nontrivial numerators?

• In one-loop integrals, just ordinary partial fractioning

• In CAG, 

• Analog for tree-level contributions



Summary

• First step towards decomposing phase-space integrals 
into master integrals

• Recast one-loop integral reduction into language of 
computational algebraic geometry

• Generalizes to allow partial-fractioning of any cubic 
contribution to a tree-level scattering amplitude

• Finite basis of master integrals


