Minimally divergent integral bases and special relations

Pavel Novichkov (IPhT CEA/Saclay)

Work with David Kosower, Giulio Gambuti, and Lorenzo Tancredi

QCD Meets Gravity 2022, December 15

Minimally divergent integral bases and special relations

Finite Integrals and Where to Find Them

Pavel Novichkov (IPhT CEA/Saclay)

Work with David Kosower, Giulio Gambuti, and Lorenzo Tancredi

QCD Meets Gravity 2022, December 15

Motivation

Motivation

$$k_2$$
 A k_3 = c_1 Master₁ + ··· + c_N Master_N

Minimally divergent bases: reduce the number of divergent masters
 Q: Which integrals are finite?

Motivation

$$k_2$$

 k_1 A k_3 = c_1 Master₁ + ... + c_N Master_N

- Minimally divergent bases: reduce the number of divergent masters
 Q: Which integrals are finite?
- 2. Special relations: remove masters which are redundant to O(ε)
 Q: Which integrals are O(ε)?

Problem statement

Num = Poly
$$(\ell_i \cdot \ell_j, \ell_i \cdot k_j)$$
 with coefficients being Rational $(k_i \cdot k_j)$

$$\int \mathrm{d}\ell\,\frac{\mathrm{Num}}{\mathrm{Den}_1\cdots\mathrm{Den}_{\mathrm{E}}}$$

$$Den = \left(\sum \pm \ell_i \pm k_j\right)^2 - m^2 + i\epsilon$$

Problem statement

Num = Poly
$$(\ell_i \cdot \ell_j, \ell_i \cdot k_j)$$
 with coefficients being Rational $(k_i \cdot k_j)$

Find Num such that
$$\int d\ell \frac{\text{Num}}{\text{Den}_1 \cdots \text{Den}_E} = O(\epsilon^r)$$

 $k_1 \qquad \ell_1 \qquad \ell_2 \qquad k_4$

Den =
$$\left(\sum \pm \ell_i \pm k_j\right)^2 - m^2 + i\epsilon$$

Problem statement

Num = Poly
$$(\ell_i \cdot \ell_j, \ell_i \cdot k_j)$$
 with coefficients being Rational $(k_i \cdot k_j)$

UV divergences

Weinberg's theorem

An integral is UV-finite, if:

- it converges superficially
- all its subintegrations converge superficially

[Weinberg 1960; Hahn, Zimmermann 1968]

Weinberg's theorem

An integral is UV-finite, if:

- it converges superficially
- all its subintegrations converge superficially

[Weinberg 1960; Hahn, Zimmermann 1968]

Subintegration = hold a subset of edge momenta fixed

 $\ell_1 + \ell_2 = fixed$

UV-finite numerators

- form a linear space

$coef_1 \cdot Num_1 + coef_2 \cdot Num_2$ is UV-finite

UV-finite numerators

- form a linear space

$$coef_1 \cdot Num_1 + coef_2 \cdot Num_2$$
 is UV-finite

- overall divergence \rightarrow upper bound on order in ℓ

Num
$$(\ell_1, \ell_2) = c_1 + c_2 (\ell_1 \cdot k_1) + \dots + c_N (\ell_2^2)^2 (\ell_2 \cdot k_3)$$

UV-finite numerators

- form a linear space

$$coef_1 \cdot Num_1 + coef_2 \cdot Num_2$$
 is UV-finite

- overall divergence \rightarrow upper bound on order in ℓ

Num
$$(\ell_1, \ell_2) = c_1 + c_2 (\ell_1 \cdot k_1) + \dots + c_N (\ell_2^2)^2 (\ell_2 \cdot k_3)$$

- subdivergences \rightarrow linear constraints on c_i

$$\operatorname{Num}(\ell_1,\lambda\ell_2) = \underbrace{(c_N \dots)}_{=0} \lambda^5 + (\dots) \lambda^4 + \dots$$

IR divergences

UV vs IR

UV

$$\left\{ \begin{array}{l} \ell_1 = \infty, \\ \ell_1 + \ell_2 = C \end{array} \right\}$$

$$\left\{ \begin{array}{l} \ell_1 \to \lambda \ell_1, \\ \ell_2 \to C - \lambda \ell_1 \end{array} \right\}$$

divergent surface

power-counting rule

UV vs IR

UV

$$\left\{ \begin{array}{l} \ell_1 = \infty, \\ \ell_1 + \ell_2 = C \end{array} \right\} \qquad \qquad \left\{ \begin{array}{l} \ell_1 \to \lambda \ell_1, \\ \ell_2 \to C - \lambda \ell_1 \end{array} \right\}$$

divergent surface

power-counting rule

$$\begin{bmatrix} \ell_1 = k_1, \\ \ell_2 = xk_4 \end{bmatrix} \qquad \begin{bmatrix} \ell_1 \to k_1 + \lambda^2 \ell_s, \\ \ell_2 \to xk_4 + \lambda^2 \eta_4 + \lambda \ell_{\perp} \end{bmatrix}$$

[Agarwal, Magnea et al. 2021; Collins 2011; see also Anastasiou, Sterman 2018]

 $\int_{-1}^{1} \frac{\mathrm{d}x}{\mathrm{x}}$

$$\lim_{\epsilon \to +0} \int_{-1}^{1} \frac{\mathrm{d}x}{x + \mathrm{i}\epsilon}$$

no divergence

$$\lim_{\varepsilon \to +0} \int_{-1}^{1} \frac{\mathrm{d}x}{x + i\varepsilon} \qquad -1 \stackrel{\bullet}{\longrightarrow} 1$$

Landau equations

mixed representation

[Bjorken 1959; Landau 1959; Nakanishi 1959; see also Collins 2020]

Landau equations

Feynman parameter representation

mixed representation

[Bjorken 1959; Landau 1959; Nakanishi 1959; see also Collins 2020]

Two types of solutions

1. kinematics-independent \rightarrow divergences

Two types of solutions

1. [kinematics-independent \rightarrow divergences]

2. kinematics-dependent → Landau singularities [see William's talk]

Integral
$$\supset \log\left(\frac{m^2 - s}{m^2}\right) \Rightarrow$$
 singularity at s = m²

General structure of solutions

[Coleman, Norton 1965; Sterman 1978; Libby, Sterman 1978]

IR-finite numerators

- linear constraints on c_i as in the UV case

$$\operatorname{Num}(\lambda^{2}\ell_{s}, xk_{4} + \lambda^{2}\eta_{4} + \lambda\ell_{\perp}) = \underbrace{(c_{i} \dots)}_{=0} + (\dots)\lambda + \dots$$

IR-finite numerators

- linear constraints on c_i as in the UV case

Num
$$(\lambda^2 \ell_s, xk_4 + \lambda^2 \eta_4 + \lambda \ell_{\perp}) = \underbrace{(c_i \dots)}_{=0} + (\dots) \lambda + \dots$$

- form a polynomial ideal

$$poly_1 \cdot Num_1 + poly_2 \cdot Num_2$$
 is IR-finite

IR-finite numerators

- linear constraints on c_i as in the UV case

Num
$$(\lambda^2 \ell_s, xk_4 + \lambda^2 \eta_4 + \lambda \ell_{\perp}) = \underbrace{(c_1 \dots)}_{=0} + (\dots) \lambda + \dots$$

- form a polynomial ideal

$$poly_1 \cdot Num_1 + poly_2 \cdot Num_2$$
 is IR-finite

Conjecture: IR-finite ideal can be built using Gram determinants

$$G\begin{pmatrix} p_1 \cdots p_n \\ q_1 \cdots q_n \end{pmatrix} = det(2p_i \cdot q_j)$$

$O(\varepsilon)$ numerators

1. Start with the most general finite numerator

 $Num(\ell) = c_1 Num_1 + \dots + c_N Num_N$

O(ε) numerators

1. Start with the most general finite numerator

 $Num(\ell) = c_1 Num_1 + \dots + c_N Num_N$

2. Restrict it to 4d loop momenta

$$\ell = b_1 k_1 + b_2 k_2 + b_3 k_3 + b_4 k_\perp \qquad k_\perp \cdot k_i = 0$$

$O(\varepsilon)$ numerators

1. Start with the most general finite numerator

 $Num(\ell) = c_1 Num_1 + \dots + c_N Num_N$

2. Restrict it to 4d loop momenta

$$\ell = b_1 k_1 + b_2 k_2 + b_3 k_3 + b_4 k_{\perp} \qquad k_{\perp} \cdot k_i = 0$$

3. Require that Num vanish \rightarrow linear constraints on c_i

$O(\varepsilon)$ numerators

1. Start with the most general finite numerator

 $Num(\ell) = c_1 Num_1 + \dots + c_N Num_N$

2. Restrict it to 4d loop momenta

$$\ell = b_1 k_1 + b_2 k_2 + b_3 k_3 + b_4 k_\perp \qquad k_\perp \cdot k_i = 0$$

3. Require that Num vanish \rightarrow linear constraints on c_i

Conjecture: $O(\epsilon)$ numerators can be built using Gram determinants

Results

max. order in ł	1	2	3	4	5
# finite integrals	0	2	18	89	247
# O(ε) integrals	0	0	0	1	7

31 IR-div. surfaces

31 IR-div. surfaces

Num =
$$\frac{1}{2} (s_{12} + s_{23}) (\ell_1 \cdot \ell_2) + (\ell_1 \cdot k_3) (\ell_2 \cdot k_1) + (\ell_1 \cdot k_3) (\ell_2 \cdot k_3)$$

 $- \frac{s_{23}}{s_{12}} (\ell_1 \cdot k_1) (\ell_2 \cdot k_1) - \frac{s_{23}}{s_{12}} (\ell_1 \cdot k_1) (\ell_2 \cdot k_3)$
 $- (1 + \frac{s_{23}}{s_{12}}) (\ell_1 \cdot k_1) (\ell_2 \cdot k_2) + (1 + \frac{s_{23}}{s_{12}}) (\ell_1 \cdot k_2) (\ell_2 \cdot k_3)$

order 2
$$G\begin{pmatrix} \ell_1 & k_1 & k_2 \\ \ell_2 & k_3 & k_4 \end{pmatrix}$$
 $G\begin{pmatrix} \ell_1 & k_1 & k_2 \\ k_1 & k_2 & k_4 \end{pmatrix}G\begin{pmatrix} \ell_2 & k_3 & k_4 \\ k_1 & k_2 & k_4 \end{pmatrix}G\begin{pmatrix} \ell_2 & k_3 & k_4 \\ k_1 & k_2 & k_4 \end{pmatrix}$
order 3 $(\ell_1 - k_1)^2 G\begin{pmatrix} \ell_2 & k_3 & k_4 \\ k_1 & k_2 & k_4 \end{pmatrix}$ $G\begin{pmatrix} \ell_1 & k_1 & k_2 \\ k_1 & k_2 & k_4 \end{pmatrix}G(\ell_2 & k_1 & k_2 & k_4)$
 $(\ell_2 - k_4)^2 G\begin{pmatrix} \ell_1 & k_1 & k_2 \\ k_1 & k_2 & k_4 \end{pmatrix}$ $G\begin{pmatrix} \ell_2 & k_3 & k_4 \\ k_1 & k_2 & k_4 \end{pmatrix}G(\ell_1 & k_1 & k_2 & k_4)$
order 4 $(\ell_1 - k_1)^2 G(\ell_2 & k_3 & k_4)$ $(\ell_1 - k_1)^2 (\ell_2 - k_4)^2$
 $(\ell_2 - k_4)^2 G(\ell_1 & k_1 & k_2)$ $G(\ell_1 & \ell_1 - k_1)^2 (\ell_2 - k_4)^2$

order 2
$$G\begin{pmatrix} \ell_1 & k_1 & k_2 \\ \ell_2 & k_3 & k_4 \end{pmatrix}$$
 $G\begin{pmatrix} \ell_1 & k_1 & k_2 \\ k_1 & k_2 & k_4 \end{pmatrix}G\begin{pmatrix} \ell_2 & k_3 & k_4 \\ k_1 & k_2 & k_4 \end{pmatrix}G\begin{pmatrix} \ell_2 & k_3 & k_4 \\ k_1 & k_2 & k_4 \end{pmatrix}$
order 3 $(\ell_1 - k_1)^2 G\begin{pmatrix} \ell_2 & k_3 & k_4 \\ k_1 & k_2 & k_4 \end{pmatrix}$ $G\begin{pmatrix} \ell_1 & k_1 & k_2 \\ k_1 & k_2 & k_4 \end{pmatrix}G(\ell_2 & k_1 & k_2 & k_4)$
 $(\ell_2 - k_4)^2 G\begin{pmatrix} \ell_1 & k_1 & k_2 \\ k_1 & k_2 & k_4 \end{pmatrix}$ $G\begin{pmatrix} \ell_2 & k_3 & k_4 \\ k_1 & k_2 & k_4 \end{pmatrix}G(\ell_1 & k_1 & k_2 & k_4)$
order 4 $(\ell_1 - k_1)^2 G(\ell_2 & k_3 & k_4)$ $(\ell_1 - k_1)^2 (\ell_2 - k_4)^2$
 $(\ell_2 - k_4)^2 G(\ell_1 & k_1 & k_2)$ $G(\ell_1 & \ell_1 - k_1)^2 (\ell_2 - k_4)^2$

Result: 3-loop ladder

max. order in <i>{</i>	1	2	3	4	5	6	7
# finite integrals	0	2	26	184	850	2807	6044
# Gram generators	0	2	6	9	-	-	-
# O(ε) integrals	0	0	0	4	42	?	?

71 IR-div. surfaces

Result: 3-loop ladder

Summary

- 1. We have developed an algorithmic procedure for finding sets of finite and $O(\varepsilon)$ integrals for a given diagram
- 2. IR-finite integrals can be compactly described in terms of generating numerators
- 3. These integrals can be used to construct minimally divergent bases and to find special relations on the masters