QCD Meets Gravity 2022

Equivariant iterated Eisenstein integrals and modular graph forms

Martijn Hidding (Uppsala University)

Based on **2209.06772** with D. Dorigoni, M. Doroudiani, J. Drewitt, A. Kleinschmidt, N. Matthes, O. Schlotterer, B. Verbeek

15 December 2022

- Feynman integrals and string amplitudes are fruitful settings for studying special functions.
- We obtain special types of **iterated integrals** by working order-by-order in the dimensional regulator *ε*. These include:
 - Multiple polylogarithms (MPLs).
 - Elliptic multiple polylogarithms (eMPLs).
 - Iterated integrals of modular forms.
- In this talk, we focus on Modular Graph Forms (MGFs).
 - Show up in genus one closed-string amplitudes.
 - Conjecturally evaluate to single-valued MZV's at the cusp $au
 ightarrow i\infty.$
 - Can be thought of as versions of single-valued eMZV's.
 - MGFs are non-holomorphic modular forms.
 - Can be written in terms of non-holomorphic combinations of **iterated integrals** of **Eisenstein series**.

String amplitudes and special functions

String amplitudes admit an expansion in genus: [Figures taken from PhD thesis of J. Gerken]

• The boundaries may be conformally mapped to punctures, leading to:

String amplitudes and special functions

 Various types of special functions show up depending on whether we have open/closed strings, and depending on the genus:

 In this talk we consider the MGF's, which can be expressed in terms of non-holomorphic combinations of iterated integrals of Eisenstein series.

Introduction: Connection to Feynman integrals

 Various Feynman integrals can be solved in terms of iterated integrals of modular forms:
 e.g.: [Adams, Weinzierl, 1704.08895],

[Adams, Weinzierl, arXiv:1802.05020]

$$I(f_1, f_2, \ldots, f_n; q) = (2\pi i)^n \int_{\tau_0}^{\tau} d\tau_1 f_1(\tau_1) \int_{\tau_0}^{\tau_1} d\tau_2 f_2(\tau_2) \ldots \int_{\tau_0}^{\tau_{n-1}} d\tau_n f_n(\tau_n)$$

(In this talk we do not consider z-dependence, in which case we would consider kernels $f^{(k)}(z \mid \tau)$ from the Kronecker-Eisenstein series.)

- Such representations can sometimes be obtain from ϵ -factorized differential equations of the form $(d + \epsilon A)I = 0$.
- Integrating a modular form **does not** usually result in another modular form.

$$\int_{\tau}^{i\infty} \mathrm{d}\tau_{1}\left(\tau_{1}\right)^{j} \mathrm{G}_{k}\left(\tau_{1}\right) \xrightarrow{\tau \to -1/\tau} (-1)^{j} \left(\int_{\tau}^{i\infty} -\int_{0}^{i\infty}\right) \mathrm{d}\tau_{1}\left(\tau_{1}\right)^{k-j-2} \mathrm{G}_{k}\left(\tau_{1}\right)$$

• The contributions from $\int_0^{i\infty}$ are known as **multiple modular values** (MMV's.)

J

• We can construct **non-holomorphic** combinations of iterated Eisenstein integrals that **do** yield modular forms. We study these special combinations in this talk!

Multiple Modular Values (MMV's)

 MMV's are numbers that extend beyond the realm of Multiple Zeta Values (MZV's). For example, we have:

$$\mathfrak{m} \begin{bmatrix} j_1 \\ k_1 \end{bmatrix} = \int_0^{i\infty} \mathrm{d}\tau_1 \, \tau_1^{j_1} \mathrm{G}_{k_1} \left(\tau_1 \right)$$
$$\mathfrak{m} \begin{bmatrix} j_1 & j_2 \\ k_1 & k_2 \end{bmatrix} = \int_0^{i\infty} \mathrm{d}\tau_2 \, \tau_2^{j_2} \mathrm{G}_{k_2} \left(\tau_2 \right) \int_{\tau_2}^{i\infty} \mathrm{d}\tau_1 \, \tau_1^{j_1} \mathrm{G}_{k_1} \left(\tau_1 \right)$$

• The following examples at weight \geq 14 contain new numbers: [Brown, 1904.00179]

$$\mathfrak{m} \begin{bmatrix} 0 & 0 \\ 4 & 10 \end{bmatrix} = \frac{7613\pi^{14}}{1361455395300} - \frac{4}{27}\pi^2\rho^{-1} (f_3f_9) - \frac{1024\pi^{14}c (\Delta_{12}, 12)}{652995}$$
$$\mathfrak{m} \begin{bmatrix} 1 & 0 \\ 4 & 10 \end{bmatrix} = -\frac{4i\pi^{11}\zeta_3}{2525985} - \frac{i\pi^5}{243}\zeta_9 + \frac{11i\pi^3}{270}\zeta_{11} - \frac{128i\pi^{13}\Lambda (\Delta_{12}, 12)}{1913625}$$

(The completed L-function of a holomorphic cusp form $\Delta(\tau) = \sum_{n=1}^{\infty} a(n)q^n$ is $\Lambda(\Delta, t) = (2\pi)^{-t}\Gamma(t) \sum_{n=1}^{\infty} a(n)n^{-t}$, which converges absolutely for $\operatorname{Re}(t) > s + \frac{1}{2}$ and can be extended to a meromorphic function.)

Modular Forms

- MGFs can be thought of as generalizations of Eisenstein series. Let us briefly review these.
- The **holomorphic** Eisenstein series $G_k(\tau)$ is given by:

$$\mathrm{G}_k(\tau) = \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \frac{1}{(m+n\tau)^k} = \sum_{p \in \Lambda'} \frac{1}{p^k}, \quad k \ge 4,$$

where the **discrete momentum** $p = m\tau + n \in \Lambda'$ and $\Lambda' = (\mathbb{Z}\tau + \mathbb{Z}) \setminus \{0\}$.

• The Eisenstein series $G_k(\tau)$ is a **modular form** of weight *k*:

$$\mathrm{G}_k\left(rac{a au+b}{c au+d}
ight)=(c au+d)^k\mathrm{G}_k(au)\quad ext{for } \left(\begin{smallmatrix}lphaη\\\gamma&\delta\end{smallmatrix}
ight)\in\mathrm{SL}_2(\mathbb{Z}).$$

• Modular forms admit *q*-series, where $q = e^{2\pi i \tau}$, due to T-invariance $(\tau \rightarrow \tau + 1)$, e.g:

$$G_4(\tau) = 2\zeta_4 \left(1 + 240q + 2160q^2 + 6720q^3 + 17520q^4 + \mathcal{O}(q^5)\right)$$

• If the zeroth power in *q* has coefficient zero, we call it a **cusp form**.

Non-Holomorphic Modular Forms

• The **non-holomorphic** Eisenstein series $E_k(\tau)$ is given by:

$$\mathrm{E}_k(\tau) = \left(\frac{\mathrm{Im}\,\tau}{\pi}\right)^k \sum_{p\in\Lambda'} \frac{1}{|p|^{2k}}\,,\quad k\geq 2$$

• It is modular invariant, such that:

$$\mathrm{E}_k\left(rac{a au+b}{c au+d}
ight)=\mathrm{E}_k(au) \quad ext{for } \left(egin{array}{c} lpha & eta \ \gamma & \delta \end{array}
ight)\in\mathrm{SL}_2(\mathbb{Z}).$$

 More generally, a non-holomorphic modular form h(τ) of weight (a, b) satisfies:

$$h\left(\frac{\alpha\tau+\beta}{\gamma\tau+\delta}\right) = (\gamma\tau+\delta)^a(\gamma\bar{\tau}+\delta)^bh(\tau)$$

- The simplest example is $Im(\tau') = \frac{Im(\tau)}{|\gamma\tau+\delta|^2}$ which is a non-holomorphic modular form of weight (-1, -1).
- Non-holomorphic modular forms admit expansions in q, \bar{q} and $Im(\tau)$:

$$h(\tau) = \sum_{n,m\geq 0} \sum_{r\in\mathbb{Z}} c_{n,m,r} \operatorname{Im}(\tau)^{r} q^{n} \bar{q}^{m}.$$

• The coefficients $c_{n,m,r}$ contain odd zeta's for E_k and MZV's in general.

Modular Graph Forms

[D'Hoker, Gürdogan, Green, Vanhove 1512.06779], [D'Hoker, Green 1603.00839]

- Modular Graph Forms (MGFs) arise in the low-energy (α'-expansion) of genus-one closed string amplitudes. (In type II or the Heterotic string.)
- For **dihedral graphs** the definition of MGFs reduces to the following nested sums over discrete torus momenta:

- In general MGF's can be represented by a connected graph of discrete momenta, with a momentum conserving delta-function for each vertex.
- We have the special cases:

$$\mathbf{G}_{k}(\tau) = \mathsf{Im}(\tau)^{-k} \mathcal{C}^{+} \begin{bmatrix} k & 0 \\ 0 & 0 \end{bmatrix} (\tau), \qquad \mathbf{E}_{k}(\tau) = \mathcal{C}^{+} \begin{bmatrix} k & 0 \\ k & 0 \end{bmatrix} (\tau).$$

MGF's are non-holomorphic modular forms:

$$\mathcal{C}^{+}\begin{bmatrix} A\\B\end{bmatrix} \left(\frac{a\tau+b}{c\tau+d}\right) = (c\bar{\tau}+d)^{|B|-|A|} \mathcal{C}^{+}\begin{bmatrix} A\\B\end{bmatrix} (\tau),$$

where $A = (a_1, \ldots, a_R)$ and $B = (b_1, \ldots, b_R)$ are non-negative integers.

• MGFs satisfy various non-trivial relations: $\mathcal{C}^+ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} (\tau) = E_3(\tau) + \zeta_3$, [D. Zagier, Notes on Lattice Sums]

 $\mathcal{C}^{+}\begin{bmatrix}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{bmatrix}(\tau) = 24\mathcal{C}^{+}\begin{bmatrix}2 & 1 & 1 \\ 2 & 1 & 1\end{bmatrix}(\tau) - 18\mathrm{E}_{4}(\tau) + 3\mathrm{E}_{2}(\tau)^{2},$

which are difficult to obtain from the definition as a lattice-sum.

• Relations between MGF's can be exposed by writing them in terms of iterated integrals. Let us define the following kernels:

$$\begin{split} \omega_{+}\begin{bmatrix} j\\k \end{bmatrix};\tau,\tau_{1} \end{bmatrix} &= \frac{\mathrm{d}\tau_{1}}{2\pi i} \left(\frac{\tau-\tau_{1}}{4\pi\,\mathrm{Im}(\tau)}\right)^{k-2-j} (\bar{\tau}-\tau_{1})^{j} \mathrm{G}_{k}(\tau_{1}),\\ \omega_{-}\begin{bmatrix} j\\k \end{bmatrix};\tau,\tau_{1} \end{bmatrix} &= -\frac{\mathrm{d}\bar{\tau}_{1}}{2\pi i} \left(\frac{\tau-\bar{\tau}_{1}}{4\pi\,\mathrm{Im}(\tau)}\right)^{k-2-j} (\bar{\tau}-\bar{\tau}_{1})^{j} \overline{\mathrm{G}_{k}(\tau_{1})}, \end{split}$$

where $0 \le j \le k - 2$. These kernels are **modular forms** with **vanishing holomorphic modular** weight. Next, consider iterated integrals of the type:

$$\beta_{+} \begin{bmatrix} j_{1} & j_{2} & \dots & j_{\ell} \\ k_{1} & k_{2} & \dots & k_{\ell} \end{bmatrix} = \int_{\tau}^{i\infty} \omega_{+} \begin{bmatrix} j_{\ell} \\ k_{\ell} \end{bmatrix} ; \tau, \tau_{\ell} \end{bmatrix} \dots \int_{\tau_{3}}^{i\infty} \omega_{+} \begin{bmatrix} j_{2} \\ k_{2} \end{bmatrix} ; \tau, \tau_{2} \end{bmatrix} \int_{\tau_{2}}^{i\infty} \omega_{+} \begin{bmatrix} j_{1} \\ k_{1} \end{bmatrix} ; \tau, \tau_{1} \end{bmatrix} ,$$
$$\beta_{-} \begin{bmatrix} j_{1} & j_{2} & \dots & j_{\ell} \\ k_{1} & k_{2} & \dots & k_{\ell} \end{bmatrix} : - \int_{\tau}^{-i\infty} \omega_{-} \begin{bmatrix} j_{\ell} \\ k_{\ell} \end{bmatrix} ; \tau, \tau_{\ell} \end{bmatrix} \dots \int_{\tau_{3}}^{-i\infty} \omega_{-} \begin{bmatrix} j_{2} \\ k_{2} \end{bmatrix} ; \tau, \tau_{2} \end{bmatrix} \int_{\tau_{2}}^{-i\infty} \omega_{-} \begin{bmatrix} j_{1} \\ k_{1} \end{bmatrix} ; \tau, \tau_{1} \end{bmatrix} ,$$

• These integrals fail to be modular forms by:

$$\beta_{\pm} \begin{bmatrix} j_1 & \dots & j_\ell \\ k_1 & \dots & k_\ell \end{bmatrix}; \frac{a\tau + b}{c\tau + d} \end{bmatrix} = \left(\prod_{i=1}^{\ell} (c\bar{\tau} + d)^{k_i - 2 - 2j_i} \right) \beta_{\pm} \begin{bmatrix} j_1 & \dots & j_\ell \\ k_1 & \dots & k_\ell \end{bmatrix}; \tau \right] \quad \begin{pmatrix} \text{mod lower depth} \\ \& & \text{MMV's} \end{pmatrix}$$

• The non-holomorphic Eisenstein series can be written as :

$$\mathbf{E}_{k}(\tau) = -\frac{(2k-1)!}{(k-1)!^{2}} \left\{ \beta_{+} \begin{bmatrix} k-1\\2k \end{bmatrix}; \tau \right\} + \beta_{-} \begin{bmatrix} k-1\\2k \end{bmatrix}; \tau - \frac{2\zeta_{2k-1}}{(2k-1)(4\pi \operatorname{Im}(\tau))^{k-1}} \right\}$$

Because E_k(τ) is modular invariant, we identify the modular invariant combination:

$$\beta^{\text{eqv}} \begin{bmatrix} k-1\\2k \end{bmatrix}; \tau = \beta_{+} \begin{bmatrix} k-1\\2k \end{bmatrix}; \tau + \beta_{-} \begin{bmatrix} k-1\\2k \end{bmatrix}; \tau - \frac{2\zeta_{2k-1}}{(2k-1)(4\pi \operatorname{Im}(\tau))^{k-1}}$$

More generally, we have that:

$$\mathcal{C}^{+} \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}(\tau) = -\frac{(2i)^{b-a}(a+b-1)!}{(a-1)!(b-1)!} \left(\beta_{+} \begin{bmatrix} a-1 \\ a+b \end{bmatrix}; \tau \right] + \beta_{-} \begin{bmatrix} a-1 \\ a+b \end{bmatrix}; \tau \Big] \\ - \frac{2\zeta_{a+b-1}}{(a+b-1)(4\pi \operatorname{Im}(\tau))^{b-1}} \right).$$

and we may identify the combination within the brackets as $\beta^{eqv} \begin{bmatrix} a-1\\a+b \end{bmatrix}$; $\tau \end{bmatrix}$.

• We seek to generalize to higher-depth $\beta^{eqv}[\ldots; \tau]$, which are modular forms:

$$\beta^{\mathrm{eqv}} \begin{bmatrix} j_1 & \dots & j_\ell \\ k_1 & \dots & k_\ell \end{bmatrix} = \left(\prod_{i=1}^{\ell} (\boldsymbol{c} \bar{\tau} + \boldsymbol{d})^{k_i - 2 - 2j_i} \right) \beta^{\mathrm{eqv}} \begin{bmatrix} j_1 & \dots & j_\ell \\ k_1 & \dots & k_\ell \end{bmatrix}$$

A defining property is the holomorphic differential equation:

$$2\pi i (\tau - \bar{\tau})^2 \partial_\tau \beta^{\mathrm{eqv}} \begin{bmatrix} j_1 & \dots & j_\ell \\ k_1 & \dots & k_\ell \end{bmatrix}; \tau = \sum_{i=1}^{\ell} (k_i - j_i - 2) \beta^{\mathrm{eqv}} \begin{bmatrix} j_1 & \dots & j_i + 1 & \dots & j_\ell \\ k_1 & \dots & k_i & \dots & k_\ell \end{bmatrix}; \tau = -\delta_{j_\ell, k_\ell - 2} (\tau - \bar{\tau})^{k_\ell} \mathrm{G}_{k_\ell}(\tau) \beta^{\mathrm{eqv}} \begin{bmatrix} j_1 & \dots & j_{\ell-1} \\ k_1 & \dots & k_{\ell-1} \end{bmatrix}; \tau \pmod{\beta_{\Delta}^{\mathrm{sv}}}$$

• We may again draw inspiration from MGF's. For example, it turns out that:

$$\begin{aligned} \mathcal{C}^{+} \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix} &= -126\beta^{\text{eqv}} \begin{bmatrix} 3 \\ 8 \end{bmatrix} - 18\beta^{\text{eqv}} \begin{bmatrix} 2 & 0 \\ 4 & 4 \end{bmatrix} , \\ \mathcal{C}^{+} \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix} &= \frac{279}{2}\beta^{\text{eqv}} \begin{bmatrix} 5 \\ 10 \end{bmatrix} + 30\beta^{\text{eqv}} \begin{bmatrix} 3 & 1 \\ 6 & 4 \end{bmatrix} + \frac{15}{2}\beta^{\text{eqv}} \begin{bmatrix} 4 & 0 \\ 6 & 4 \end{bmatrix} , \\ 2i \,\text{Im} \, \mathcal{C}^{+} \begin{bmatrix} 0 & 1 & 2 & 2 \\ 1 & 1 & 0 & 3 \end{bmatrix} = 60(\beta^{\text{eqv}} \begin{bmatrix} 0 & 3 \\ 4 & 6 \end{bmatrix} - \beta^{\text{eqv}} \begin{bmatrix} 1 & 2 \\ 6 & 4 \end{bmatrix}) - 270(\beta^{\text{eqv}} \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} - \beta^{\text{eqv}} \begin{bmatrix} 2 & 1 \\ 6 & 4 \end{bmatrix}) \\ &+ 390(\beta^{\text{eqv}} \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} - \beta^{\text{eqv}} \begin{bmatrix} 3 & 0 \\ 6 & 4 \end{bmatrix}) - 3\zeta_{3}\beta^{\text{eqv}} \begin{bmatrix} 1 \\ 4 \end{bmatrix} , \end{aligned}$$

- Let us briefly consider the origin of the representations of the C⁺[...](τ) in terms of β₊[...; τ] and β₋[...; τ], which we'll rewrite as β^{eqv}[...; τ].
- The main idea is that repeated actions of so-called Maass operators $\nabla_{\tau} = 2i(\operatorname{Im} \tau)^2 \partial_{\tau}$ simplify the lattice sums.

$$\left(\pi\nabla_{\tau}\right)^{3}\mathcal{C}^{+}\left[\begin{smallmatrix}2&1&1\\2&1&1\end{smallmatrix}\right]=\frac{9}{10}\left(\pi\nabla_{\tau}^{3}\right)\mathrm{E}_{4}-6(\mathrm{Im}\,\tau)^{4}\mathrm{G}_{4}\left(\pi\nabla_{\tau}\right)\mathrm{E}_{2}$$

- By plugging in the **depth-one** integral representations for G_k and E_k, and **integrating**, we obtain representations in terms of iterated integrals.
- Unfortunately, at higher depths the collections of MGF's and β^{eqv}[...; τ] are not one-to-one. Only particular combinations of β^{eqv}[...; τ] appear in MGF's, subject to Tsunogai's derivation algebra.
- To investigate this point further, let us switch to the **generating series point** of view.

Generating series of Modular Graph Forms

 A genenerating series of convergent MGFs (that do not simplify under holomorphic subgraph reduction) was defined in [Gerken, Kleinschmidt, Schlotterer, 1911.03476, 2004.05156]:

$$\begin{split} Y_{\vec{\eta}}^{\tau}(\sigma \mid \rho) &= (\tau - \bar{\tau})^{n-1} \int \left(\prod_{j=2}^{n} \frac{\mathrm{d}^{2} z_{j}}{\mathrm{Im} \, \tau} \right) \exp \left(\sum_{1 \leq i < j}^{n} s_{ij} G\left(z_{i} - z_{j}, \tau \right) \right) \\ &\times \sigma \left[\overline{\varphi^{\tau}\left(z_{j}, \eta_{j}, \bar{\eta}_{j} \right)} \right] \rho \left[\varphi^{\tau}\left(z_{j}, (\tau - \bar{\tau}) \eta_{j}, \bar{\eta}_{j} \right) \right], \end{split}$$

where the *n* **punctures** z_j are integrated over a **torus** of modular parameter τ , and the η_j and $\overline{\eta}_j$ are **formal variables** of the generating series.

- The integrals $Y_{\vec{\eta}}^{\tau}$ are indexed by permutations $\sigma, \rho \in S_{n-1}$ that act on the subscripts 2, 3, ..., *n* of the $\{z_j, \eta_j\}$ variables and leave z_1 inert.
- The integrand involves **doubly-periodic functions** $\varphi^{\tau}(z_j,...) = \varphi^{\tau}(z_j + 1,...) = \varphi^{\tau}(z_j + \tau,...)$, build out of products of the **Kronecker-Eisenstein series**:

$$\Omega(z,\eta,\tau) = \exp\left(2\pi i\eta \frac{\operatorname{Im} z}{\operatorname{Im} \tau}\right) \frac{\theta'(0,\tau)\theta(z+\eta,\tau)}{\theta(z,\tau)\theta(\eta,\tau)}.$$

• The exponent (Koba-Nielsen factor) features the closed-string Green function $G(z, \tau)$ on the torus.

Generating series of Modular Graph Forms

- On the one hand, these integrals may be computed by performing a Fourier transform, which leads to sums over discrete momenta and which yields expressions in terms of MGFs.
- Alternatively, we note that the (KZB-type) **differential equations** are of the form:

$$2\pi i \partial_{\tau} Y^{\tau}_{\vec{\eta}}(\sigma|\rho) = \sum_{\alpha \in S_{\eta-1}} \left\{ -\frac{1}{(\tau-\bar{\tau})^2} R_{\vec{\eta}}(\epsilon_0)_{\rho}{}^{\alpha} + \sum_{k=4}^{\infty} (1-k)(\tau-\bar{\tau})^{k-2} \mathrm{G}_k(\tau) R_{\vec{\eta}}(\epsilon_k)_{\rho}{}^{\alpha} \right\} Y^{\tau}_{\vec{\eta}}(\sigma|\alpha) \,,$$

and can be solved in terms of a generating series

$$Y_{\vec{\eta}}^{\tau} = \sum_{P} R_{\vec{\eta}}(\epsilon[P]) \underbrace{\left(\sum_{P=ABC} \overline{\kappa[A;\tau]}\beta_{-} \left[B^{t};\tau\right]\beta_{+}[C;\tau]\right)}_{\text{(collecting holo/antiholo. contributions)}} \underbrace{\exp\left(-\frac{R_{\vec{\eta}}\left(\epsilon_{0}\right)}{4\pi \operatorname{Im}(\tau)}\right)\hat{Y}_{\vec{\eta}}^{i\infty}}_{\text{(initial value)}}$$

- The first sum is over words $P = \frac{j_1 \cdots j_\ell}{k_1 \cdots k_\ell}$ of length $\ell \ge 0$ with $k_i \ge 4$ even and $0 \le j_i \le k_i 2$, while the second sum is over **deconcatenations** of *P*.
- The term $\overline{\kappa[X; \tau]}$ is a **purely antiholomorphic** term which carries combinations of MZV's and which can be determined through **reality properties** of the MGF's.

Generating series of Modular Graph Forms

• The coefficients $\epsilon[P]$ are defined by:

$$\epsilon[\mathbf{P}] = \epsilon \begin{bmatrix} j_1 & j_2 & \dots & j_\ell \\ k_1 & k_2 & \dots & k_\ell \end{bmatrix} = \left(\prod_{i=1}^{\ell} \frac{(-1)^{j_i}(k_i-1)}{(k_i-j_i-2)!}\right) \epsilon_{k_\ell}^{(k_\ell-2-j_\ell)} \cdots \epsilon_{k_2}^{(k_2-2-j_2)} \epsilon_{k_1}^{(k_1-2-j_1)},$$

where the quantities $\epsilon_k^{(j)}$ are defined using the shorthand:

$$\epsilon_{k}^{(j)} = \mathsf{ad}_{\epsilon_{0}}^{j}(\epsilon_{k}) = \underbrace{[\epsilon_{0}, [\ldots, [\epsilon_{0}, \epsilon_{k}]] \dots]}_{j\text{-times}}$$

• The notation $R_{\vec{\eta}}(\epsilon[P])$ indicates that we are considering a particular **matrix representation** of the generators ϵ_k . The ϵ_k -derivations satisfy various relations furnished by **Tsunogai's derivation algebra**: [Tsunogai 1995, ...,

$$\begin{split} 0 &= \epsilon_k^{(k-1)}, \quad k \geq 4 \; \mathrm{even} \,, & \text{Pollack 2009} \\ 0 &= [\epsilon_4, \epsilon_{10}] - 3[\epsilon_6, \epsilon_8] \,, \\ 0 &= -462 \big[\epsilon_4, [\epsilon_4, \epsilon_8] \big] - 1725 \big[\epsilon_6, [\epsilon_6, \epsilon_4] \big] - 280 [\epsilon_8, \epsilon_8^{(1)}] \\ &+ 125 [\epsilon_6, \epsilon_{10}^{(1)}] + 250 [\epsilon_{10}, \epsilon_6^{(1)}] - 80 [\epsilon_{12}, \epsilon_4^{(1)}] - 16 [\epsilon_4, \epsilon_{12}^{(1)}] \end{split}$$

- The Tsunogai derivation algebra has the following impact on the generating series.
- 1. Relations like $[\epsilon_4, \epsilon_{10}] 3 [\epsilon_6, \epsilon_8] = 0$ project out cusp-form contributions to non-holomorphic modular forms in J^{eqv} , in other words there are no $\int_{\tau} d\tau_1 \Delta_k (\tau_1)$
- 2. Therefore, MGF's and the $\beta^{eqv}[\dots; \tau]$ are not one-to-one. It turns out that a 'full' set of $\beta^{eqv}[\dots; \tau]$ requires (iterated) integrals of cusp forms starting from $k \ge 14$.

Generating Series of $\beta^{ m eqv}$

• We now consider a generating series for the $\beta^{eqv}[\ldots; \tau]$:

$$J^{\text{eqv}}(\{\epsilon_k\};\tau) = \sum_{\rho} \epsilon[P]\beta^{\text{eqv}}[P;\tau]$$

• The central result of our paper is that:

 $J^{\text{eqv}}(\{\epsilon_k\};\tau) = J_+(\{\epsilon_k\};\tau)B^{\text{sv}}(\{\epsilon_k\};\tau)\phi^{\text{sv}}(\widetilde{J_-}(\{\epsilon_k\};\tau)).$

which makes explicit a construction in [Brown, 1707.01230, 1708.03354] of these integrals. The holomorphic / antiholomorphic contributions are packaged in the following way:

$$J_{\pm}(\{\epsilon_k\};\tau) = \sum_{P} \epsilon[P]\beta_{\pm}[P;\tau].$$

• The tilde of $\widetilde{J}_{-}(\{\epsilon_k\}; \tau)$ instructs us to reverse the words:

$$\epsilon_{k_1}^{(j_1)} \dots \epsilon_{k_\ell}^{(j_\ell)} \to \epsilon_{k_\ell}^{(j_\ell)} \dots \epsilon_{k_1}^{(j_1)}$$

• We furthermore have $B^{sv}({\epsilon_k}; \tau) = \sum_P \epsilon[P] b^{sv}[P; \tau]$, with

$$b^{\mathrm{sv}}\left[\begin{array}{c} \dots \ j_{i} \ p_{i} \$$

 $B^{\mathrm{sv}}\left(\left\{\epsilon_k
ight\}; au
ight)$

• The new ingredient $B^{SV}(\epsilon_k)$ is specified by the c^{sv} which are composed out of single-valued MZV's. For example:

$$\begin{split} \mathcal{C}^{\rm sv} \begin{bmatrix} 0 & 1 \\ 4 & 6 \end{bmatrix} &= \frac{\zeta_3}{907200} \,, \qquad \mathcal{C}^{\rm sv} \begin{bmatrix} 1 & 0 \\ 4 & 6 \end{bmatrix} = -\frac{\zeta_3}{226800} \,, \\ \mathcal{C}^{\rm sv} \begin{bmatrix} 0 & 3 \\ 4 & 6 \end{bmatrix} &= -\frac{\zeta_5}{7200} \,, \qquad \mathcal{C}^{\rm sv} \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix} = \frac{\zeta_5}{21600} \,, \qquad \mathcal{C}^{\rm sv} \begin{bmatrix} 2 & 1 \\ 4 & 6 \end{bmatrix} = -\frac{\zeta_5}{21600} \,, \\ \mathcal{C}^{\rm sv} \begin{bmatrix} 0 & 4 \\ 4 & 6 \end{bmatrix} &= -\frac{\zeta_5}{315} \,, \qquad \mathcal{C}^{\rm sv} \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix} = \frac{\zeta_5^2}{12260} \,, \qquad \mathcal{C}^{\rm sv} \begin{bmatrix} 2 & 2 \\ 4 & 6 \end{bmatrix} = -\frac{\zeta_5^2}{1890} \,, \\ \mathcal{C}^{\rm sv} \begin{bmatrix} 1 & 4 \\ 4 & 6 \end{bmatrix} = \frac{7\zeta_7}{360} \,, \qquad \mathcal{C}^{\rm sv} \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} = -\frac{7\zeta_7}{720} \,, \qquad \mathcal{C}^{\rm sv} \begin{bmatrix} 2 & 4 \\ 4 & 6 \end{bmatrix} = \frac{2\zeta_5\zeta_5}{15} \,. \\ \mathcal{C}^{\rm sv} \begin{bmatrix} 2 & 2 & 4 \\ 4 & 6 & 6 \end{bmatrix} = -\frac{1}{450} \zeta_{3,5,3}^{\rm sv} - \frac{2}{45} \zeta_3^2 \zeta_5 \,- \frac{221}{21600} \zeta_{11} \,, \\ \mathcal{C}^{\rm sv} \begin{bmatrix} 2 & 4 & 4 \\ 4 & 6 & 6 \end{bmatrix} = \frac{1}{3750} \zeta_{5,3,5}^{\rm sv} + \frac{2}{375} \zeta_3 \zeta_5^2 \,+ \frac{1804427}{124380000} \zeta_{13} \,, \\ \mathcal{C}^{\rm sv} \begin{bmatrix} 2 & 2 & 6 \\ 4 & 4 & 8 \end{bmatrix} = -\frac{1}{1764} \zeta_{3,7,3}^{\rm sv} + \frac{1}{1470} \zeta_{5,3,5}^{\rm sv} - \frac{2}{63} \zeta_3^2 \zeta_7 \,- \frac{137359}{24378480} \zeta_{13} \,, \end{split}$$

Conjecturally:

$$c^{\mathrm{sv}} \begin{bmatrix} k_1 - 2 \dots k_{\ell} - 2 \\ k_1 \dots k_{\ell} \end{bmatrix} = \left(\prod_{i=1}^{\ell} \frac{1}{1 - k_i} \right) \mathrm{sv} \left(f_{k_1 - 1} \dots f_{k_{\ell} - 1} \right) \mod \mathrm{fewer} f_i$$

The change of alphabet $\phi^{ m sv}$

• The map ϕ^{sv} applies a **change of alphabet** to the $\epsilon[P]$. For example:

$$\phi^{\mathrm{sv}}(\epsilon_2) = \epsilon_4 + \frac{\zeta_3}{252} \left(\left[\epsilon_6^{(2)}, \epsilon_4 \right] - 3 \left[\epsilon_6^{(1)}, \epsilon_4^{(1)} \right] + 6 \left[\epsilon_6, \epsilon_4^{(2)} \right] \right) + \dots$$

• More generally, the map ϕ^{sv} can be described through a **conjugation** with another generating series: $\phi^{sv}(\epsilon_k) = \mathbb{M}^{SV} \epsilon_k (\mathbb{M}^{SV})^{-1}$, which is given by:

$$\mathbb{M}^{\mathrm{SV}}\left(z_{i}
ight)=\sum_{\ell\geq0}\sum_{m_{1},\ldots,m_{\ell}\in2\mathbb{N}+1}\operatorname{\mathsf{sv}}\left(f_{m_{1}}f_{m_{2}}\ldots f_{m_{\ell}}
ight)z_{m_{1}}z_{m_{2}}\ldots z_{m_{\ell}}$$

• Here the f_i are letters in the so-called *f***-alphabet** of (motivic) multiple zeta values, and the z_j are a new class of operators in the derivation algebra which **normalize** the set $\{\epsilon_k\}$. For example:

$$[z_3,\epsilon_4] = \frac{1}{504} \left(\left[\epsilon_6^{(2)},\epsilon_4 \right] - 3 \left[\epsilon_6^{(1)},\epsilon_4^{(1)} \right] + 6 \left[\epsilon_6,\epsilon_4^{(2)} \right] \right)$$

• Putting things together, we find (in shorthand notation):

$$J^{\mathrm{eqv}} = J_{+} B^{\mathrm{sv}} \mathbb{M}^{\mathrm{sv}} \widetilde{J}_{-} \left(\mathbb{M}^{\mathrm{sv}} \right)^{-1}$$

Iterated Integrals of Holomorphic Cusp Forms

• We may generalize the construction by relaxing the constraints from Tsunogai's derivation algebra. In this case we also require contributions from holomorphic cusp forms $\Delta_k(\tau) = q + O(q^2)$ in the modular completion. For example: [Brown, 1407.5167, 1707.01230]

[Dorigoni, Kleinschmidt, Schlotterer, 2109.05018]

$$\beta^{\text{eqv}} \begin{bmatrix} 1 & 4 \\ 6 & 8 \end{bmatrix} = (\beta_{\pm} \text{ and MZVs}) + \frac{1}{52920000} \frac{\Lambda(\Delta_{12}, 12)}{\Lambda(\Delta_{12}, 10)} \left(\beta_{\pm} \begin{bmatrix} 5 \\ \Delta_{12} \end{bmatrix}; \tau \right] - \beta_{-} \begin{bmatrix} 5 \\ \Delta_{12} \end{bmatrix}; \tau \right] \beta^{\text{eqv}} \begin{bmatrix} 2 & 3 \\ 4 & 10 \end{bmatrix}; \tau = (\beta_{\pm} \text{ and MZVs}) - \frac{1}{122472000} \frac{\Lambda(\Delta_{12}, 12)}{\Lambda(\Delta_{12}, 10)} \left(\beta_{\pm} \begin{bmatrix} 5 \\ \Delta_{12} \end{bmatrix}; \tau \right] - \beta_{-} \begin{bmatrix} 5 \\ \Delta_{12} \end{bmatrix}; \tau \right]$$

• The coefficients contain ratios of (critical and non-critical) L-values $\frac{\Lambda(\Delta_k, n.c.)}{\Lambda(\Delta_k, crit.)}$.

Conclusion and outlook

- MGFs are an interesting class of non-holomorphic modular forms, which have (conjecturally s.v.) MZV's in the coefficients of their *q*-expansions.
- We provided the dictionary between MGF's and Brown's equivariant iterated Eisenstein integrals, and provide evidence for Brown's conjecture that equivariant iterated Eisenstein integrals contain all modular graph forms.
- Future work: explore similar generating-function approach to *z*-dependent elliptic MGFs / single-valued elliptic polylogarithms and their iterated-integral representation.
- Future work: explore connections to the recent one-loop KLT formula? [Stieberger, 2212.06816]