Equivariant iterated Eisenstein integrals and modular graph forms

Martijn Hidding (Uppsala University)

Based on 2209.06772 with D. Dorigoni, M. Doroudiani, J. Drewitt, A. Kleinschmidt, N. Matthes, O. Schlotterer, B. Verbeek

15 December 2022

Introduction

- Feynman integrals and string amplitudes are fruitful settings for studying special functions.
- We obtain special types of iterated integrals by working order-by-order in the dimensional regulator ϵ. These include:
- Multiple polylogarithms (MPLs).
- Elliptic multiple polylogarithms (eMPLs).
- Iterated integrals of modular forms.
- In this talk, we focus on Modular Graph Forms (MGFs).
- Show up in genus one closed-string amplitudes.
- Conjecturally evaluate to single-valued MZV's at the cusp $\tau \rightarrow i \infty$.
- Can be thought of as versions of single-valued eMZV's.
- MGFs are non-holomorphic modular forms.
- Can be written in terms of non-holomorphic combinations of iterated integrals of Eisenstein series.

String amplitudes and special functions

- String amplitudes admit an expansion in genus: [Figures taken from PhD thesis of J. Gerken]

$$
\mathcal{A}_{\text {closed }}=\sum_{0}^{0}+\sum_{0}^{0} \times \sum_{0}^{0}+\infty \lll<
$$

- The boundaries may be conformally mapped to punctures, leading to:

$$
\begin{aligned}
& \mathcal{A}_{\text {closed }}=g_{s}^{-2} \int_{\mathcal{M}_{0,4}}\left(\int_{\mathcal{M}_{1,4}}+\dot{\bullet}+g_{s}^{2} \mathcal{M}_{2,4}+\ldots\right. \\
& \mathcal{A}_{\text {open }}=g_{s}^{-1} \int_{\mathcal{M}_{0,4}}^{\infty}+\int_{\mathcal{M}_{1,4}}+g_{s} \int_{\mathcal{M}_{2,4}} \rightarrow \infty
\end{aligned}
$$

String amplitudes and special functions

- Various types of special functions show up depending on whether we have open/closed strings, and depending on the genus:

	Open string		Closed string	
$\mathrm{g}=0$		Disk: (MZV's)		Riemann sphere: (sv. MZV’s)
$g=1$		Cylinder: (eMZV's)		Torus: MGF's $\text { (} \approx \mathrm{sv} . \mathrm{eMzv} \text { 's) }$

- In this talk we consider the MGF's, which can be expressed in terms of non-holomorphic combinations of iterated integrals of Eisenstein series.

Introduction: Connection to Feynman integrals

- Various Feynman integrals can be solved in terms of iterated integrals of modular forms: e.g.: [Adams, Weinzierl, 1704.08895],
[Adams, Weinzierl, arXiv:1802.05020]

$$
I\left(f_{1}, f_{2}, \ldots, f_{n} ; q\right)=(2 \pi i)^{n} \int_{\tau_{0}}^{\tau} d \tau_{1} f_{1}\left(\tau_{1}\right) \int_{\tau_{0}}^{\tau_{1}} d \tau_{2} f_{2}\left(\tau_{2}\right) \ldots \int_{\tau_{0}}^{\tau_{n-1}} d \tau_{n} f_{n}\left(\tau_{n}\right)
$$

(In this talk we do not consider z-dependence, in which case we would consider kernels $f^{(k)}(z \mid \tau)$ from the Kronecker-Eisenstein series.)

- Such representations can sometimes be obtain from ϵ-factorized differential equations of the form $(d+\epsilon A) I=0$.
- Integrating a modular form does not usually result in another modular form.

$$
\int_{\tau}^{i \infty} \mathrm{~d} \tau_{1}\left(\tau_{1}\right)^{j} \mathrm{G}_{k}\left(\tau_{1}\right)^{\tau \rightarrow-1 / \tau}(-1)^{j}\left(\int_{\tau}^{i \infty}-\int_{0}^{i \infty}\right) \mathrm{d} \tau_{1}\left(\tau_{1}\right)^{k-j-2} \mathrm{G}_{k}\left(\tau_{1}\right)
$$

- The contributions from $\int_{0}^{i \infty}$ are known as multiple modular values (MMV's.)
- We can construct non-holomorphic combinations of iterated Eisenstein integrals that do yield modular forms. We study these special combinations in this talk!

Multiple Modular Values (MMV's)

- MMV's are numbers that extend beyond the realm of Multiple Zeta Values (MZV's). For example, we have:

$$
\begin{aligned}
\mathfrak{m}\left[\begin{array}{l}
j_{1} \\
k_{1}
\end{array}\right] & =\int_{0}^{i \infty} \mathrm{~d} \tau_{1} \tau_{1}^{j_{1}} \mathrm{G}_{k_{1}}\left(\tau_{1}\right) \\
\mathfrak{m}\left[\begin{array}{l}
j_{1} j_{2} \\
k_{1} k_{2}
\end{array}\right] & =\int_{0}^{i \infty} \mathrm{~d} \tau_{2} \tau_{2}^{j_{2}} \mathrm{G}_{k_{2}}\left(\tau_{2}\right) \int_{\tau_{2}}^{i \infty} \mathrm{~d} \tau_{1} \tau_{1}^{j_{1}} \mathrm{G}_{k_{1}}\left(\tau_{1}\right)
\end{aligned}
$$

- The following examples at weight ≥ 14 contain new numbers:
[Brown,

$$
\begin{aligned}
& \mathfrak{m}\left[\begin{array}{cc}
0 & 0 \\
4 & 10
\end{array}\right]=\frac{7613 \pi^{14}}{1361455395300}-\frac{4}{27} \pi^{2} \rho^{-1}\left(f_{3} f_{9}\right)-\frac{1024 \pi^{14} c\left(\Delta_{12}, 12\right)}{652995} \\
& \mathfrak{m}\left[\begin{array}{ll}
1 & 0 \\
4 & 10
\end{array}\right]=-\frac{4 i \pi^{11} \zeta_{3}}{2525985}-\frac{i \pi^{5}}{243} \zeta_{9}+\frac{11 i \pi^{3}}{270} \zeta_{11}-\frac{128 i \pi^{13} \Lambda\left(\Delta_{12}, 12\right)}{1913625}
\end{aligned}
$$

(The completed L-function of a holomorphic cusp form $\Delta(\tau)=\sum_{n=1}^{\infty} a(n) q^{n}$ is
$\Lambda(\Delta, t)=(2 \pi)^{-t} \Gamma(t) \sum_{n=1}^{\infty} a(n) n^{-t}$, which converges absolutely for $\operatorname{Re}(t)>s+\frac{1}{2}$ and can be extended to a meromorphic function.)

Modular Forms

- MGFs can be thought of as generalizations of Eisenstein series. Let us briefly review these.
- The holomorphic Eisenstein series $\mathrm{G}_{k}(\tau)$ is given by:

$$
\mathrm{G}_{k}(\tau)=\sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{1}{(m+n \tau)^{k}}=\sum_{p \in \Lambda^{\prime}} \frac{1}{p^{k}}, \quad k \geq 4,
$$

where the discrete momentum $p=m \tau+n \in \Lambda^{\prime}$ and $\Lambda^{\prime}=(\mathbb{Z} \tau+\mathbb{Z}) \backslash\{0\}$.

- The Eisenstein series $\mathrm{G}_{k}(\tau)$ is a modular form of weight k :

$$
\mathrm{G}_{k}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} \mathrm{G}_{k}(\tau) \quad \text { for }\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) .
$$

- Modular forms admit q-series, where $q=e^{2 \pi i \tau}$, due to T-invariance ($\tau \rightarrow \tau+1$), e.g:

$$
G_{4}(\tau)=2 \zeta_{4}\left(1+240 q+2160 q^{2}+6720 q^{3}+17520 q^{4}+\mathcal{O}\left(q^{5}\right)\right)
$$

- If the zeroth power in q has coefficient zero, we call it a cusp form.

Non-Holomorphic Modular Forms

- The non-holomorphic Eisenstein series $\mathrm{E}_{k}(\tau)$ is given by:

$$
\mathrm{E}_{k}(\tau)=\left(\frac{\operatorname{lm} \tau}{\pi}\right)^{k} \sum_{p \in \Lambda^{\prime}} \frac{1}{|p|^{2 k}}, \quad k \geq 2
$$

- It is modular invariant, such that:

$$
\mathrm{E}_{k}\left(\frac{a \tau+b}{c \tau+d}\right)=\mathrm{E}_{k}(\tau) \quad \text { for }\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) .
$$

- More generally, a non-holomorphic modular form $h(\tau)$ of weight (a, b) satisfies:

$$
h\left(\frac{\alpha \tau+\beta}{\gamma \tau+\delta}\right)=(\gamma \tau+\delta)^{a}(\gamma \bar{\tau}+\delta)^{b} h(\tau)
$$

- The simplest example is $\operatorname{Im}\left(\tau^{\prime}\right)=\frac{\operatorname{lm}(\tau)}{|\gamma \tau+\delta|^{2}}$ which is a non-holomorphic modular form of weight $(-1,-1)$.
- Non-holomorphic modular forms admit expansions in q, \bar{q} and $\operatorname{Im}(\tau)$:

$$
h(\tau)=\sum_{n, m \geq 0} \sum_{r \in \mathbb{Z}} c_{n, m, r} \operatorname{Im}(\tau)^{r} q^{n} \bar{q}^{m} .
$$

- The coefficients $c_{n, m, r}$ contain odd zeta's for E_{k} and MZV's in general.

Modular Graph Forms

[D'Hoker, Gürdogan, Green, Vanhove 1512.06779], [D'Hoker, Green 1603.00839]

- Modular Graph Forms (MGFs) arise in the low-energy (α^{\prime}-expansion) of genus-one closed string amplitudes. (In type II or the Heterotic string.)
- For dihedral graphs the definition of MGFs reduces to the following nested sums over discrete torus momenta:

$$
\mathcal{C}^{+}\left[\begin{array}{ccc}
a_{1} & \ldots & a_{R} \\
b_{1} & \ldots & b_{R}
\end{array}\right](\tau)=\left(\prod_{j=1}^{R} \frac{(\operatorname{lm} \tau)^{a_{j}}}{\pi^{b_{j}}}\right) \sum_{p_{1}, \ldots, p_{R} \in \Lambda^{\prime}} \frac{\delta\left(p_{1}+\ldots+p_{R}\right)}{p_{1}^{a_{1}} \bar{p}_{1}^{b_{1}} \ldots p_{R}^{R_{R}} \bar{p}_{R}^{b_{R}}} .
$$

- In general MGF's can be represented by a connected graph of discrete momenta, with a momentum conserving delta-function for each vertex.
- We have the special cases:

$$
\mathrm{G}_{k}(\tau)=\operatorname{Im}(\tau)^{-k} \mathcal{C}^{+}\left[\begin{array}{ll}
k^{k} & 0 \\
0 & 0
\end{array}\right](\tau), \quad \mathrm{E}_{k}(\tau)=\mathcal{C}^{+}\left[\begin{array}{cc}
k & 0 \\
k & 0
\end{array}\right](\tau) .
$$

- MGF's are non-holomorphic modular forms:

$$
\mathcal{C}^{+}\left[\begin{array}{l}
A \\
B
\end{array}\right]\left(\frac{a \tau+b}{c \tau+d}\right)=(c \bar{\tau}+d)^{|B|-|A|} \mathcal{C}^{+}\left[\begin{array}{c}
A \\
B
\end{array}\right](\tau)
$$

where $A=\left(a_{1}, \ldots, a_{R}\right)$ and $B=\left(b_{1}, \ldots, b_{R}\right)$ are non-negative integers.

Iterated Eisenstein Integrals

- MGFs satisfy various non-trivial relations:

$$
\begin{aligned}
\mathcal{C}^{+}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right](\tau) & =\mathrm{E}_{3}(\tau)+\zeta_{3}, \quad[\mathrm{D} . \text { Zagier, Notes on Lattice Sums }] \\
\mathcal{C}^{+}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right](\tau) & =24 \mathcal{C}^{+}\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 1 & 1
\end{array}\right](\tau)-18 \mathrm{E}_{4}(\tau)+3 \mathrm{E}_{2}(\tau)^{2},
\end{aligned}
$$

which are difficult to obtain from the definition as a lattice-sum.

- Relations between MGF's can be exposed by writing them in terms of iterated integrals. Let us define the following kernels:

$$
\begin{aligned}
& \omega_{+}\left[\begin{array}{l}
j \\
k
\end{array} \tau, \tau_{1}\right]=\frac{\mathrm{d} \tau_{1}}{2 \pi i}\left(\frac{\tau-\tau_{1}}{4 \pi \operatorname{Im}(\tau)}\right)^{k-2-j}\left(\bar{\tau}-\tau_{1}\right)^{j} \mathrm{G}_{k}\left(\tau_{1}\right), \\
& \omega_{-}\left[\begin{array}{l}
j \\
k
\end{array} \tau, \tau_{1}\right]=-\frac{\mathrm{d} \bar{\tau}_{1}}{2 \pi i}\left(\frac{\tau-\bar{\tau}_{1}}{4 \pi \operatorname{Im}(\tau)}\right)^{k-2-j}\left(\bar{\tau}-\bar{\tau}_{1}\right)^{j} \overline{\mathrm{G}_{k}\left(\tau_{1}\right)},
\end{aligned}
$$

where $0 \leq j \leq k-2$. These kernels are modular forms with vanishing holomorphic modular weight. Next, consider iterated integrals of the type:
$\beta_{+}\left[\begin{array}{lll}j_{1} & j_{2} & \ldots \\ k_{1} k_{2} & j_{e} & k_{e}\end{array} ; \tau\right]=\int_{\tau}^{i \infty} \omega_{+}\left[\begin{array}{l}j_{e} \\ k_{\ell}\end{array} ; \tau, \tau_{\ell}\right] \ldots \int_{\tau_{3}}^{i \infty} \omega_{+}\left[\begin{array}{l}j_{2} \\ k_{2}\end{array} ; \tau, \tau_{2}\right] \int_{\tau_{2}}^{i \infty} \omega_{+}\left[\begin{array}{l}j_{1} \\ k_{1}\end{array} ; \tau, \tau_{1}\right]$,
$\beta_{-}\left[\begin{array}{l}j_{1} j_{2} \ldots j_{2} \\ k_{1} k_{2} \ldots k_{\ell}\end{array}, \tau\right]=\int_{\bar{\tau}}^{-i \infty} \omega_{-}\left[\begin{array}{l}j_{e} ; \tau, \tau_{\ell} \\ k_{\ell}\end{array}\right] \ldots \int_{\bar{\tau}_{3}}^{-i \infty} \omega_{-}\left[\begin{array}{l}j_{2} \\ k_{2}\end{array} ; \tau, \tau_{2}\right] \int_{\bar{\tau}_{2}}^{-i \infty} \omega_{-}\left[\begin{array}{l}j_{1} \\ k_{1}\end{array} ; \tau, \tau_{1}\right]$

Iterated Eisenstein Integrals

- These integrals fail to be modular forms by:

$$
\left.\beta_{ \pm}\left[\begin{array}{lll}
j_{1} & \ldots & j_{\ell} \\
k_{1} & \ldots & k_{\ell}
\end{array} ; \frac{a \tau+b}{c \tau+d}\right]=\left(\prod_{i=1}^{\ell}(c \bar{\tau}+d)^{k_{i}-2-2 j_{i}}\right) \beta_{ \pm}\left[\begin{array}{ccc}
j_{1} & \ldots & j_{\ell} \\
k_{1} & \ldots & k_{\ell}
\end{array}\right] \tau\right] \quad\binom{\text { mod lower depth }}{\& \text { MMV's }} .
$$

- The non-holomorphic Eisenstein series can be written as :

$$
\mathrm{E}_{k}(\tau)=-\frac{(2 k-1)!}{(k-1)!^{2}}\left\{\beta_{+}\left[\begin{array}{c}
k-1 \\
2 k
\end{array} ; \tau\right]+\beta_{-}\left[\begin{array}{c}
k-1 \\
2 k
\end{array} ; \tau\right]-\frac{2 \zeta_{2 k-1}}{(2 k-1)(4 \pi \operatorname{lm}(\tau))^{k-1}}\right\} .
$$

- Because $\mathrm{E}_{k}(\tau)$ is modular invariant, we identify the modular invariant combination:

$$
\beta^{\operatorname{eqv}}\left[\begin{array}{c}
k-1 \\
2 k
\end{array} ; \tau\right]=\beta_{+}\left[\begin{array}{c}
k-1 \\
2 k
\end{array} ; \tau\right]+\beta_{-}\left[\begin{array}{c}
k-1 \\
2 k
\end{array} ; \tau\right]-\frac{2 \zeta_{2 k-1}}{(2 k-1)(4 \pi \operatorname{lm}(\tau))^{k-1}}
$$

- More generally, we have that:

$$
\left.\begin{array}{rl}
\mathcal{C}^{+}\left[\begin{array}{ll}
0 & a \\
0 & b
\end{array}\right](\tau)=- & \frac{(2 i)^{b-a}(a+b-1)!}{(a-1)!(b-1)!}\left(\beta_{+}\left[\begin{array}{c}
a-1 \\
a+b
\end{array} ; \tau\right]+\beta_{-}\left[\begin{array}{c}
a-1 \\
a+b
\end{array} \tau\right]\right.
\end{array}\right] .
$$

and we may identify the combination within the brackets as $\beta^{\text {eqv }}\left[\begin{array}{c}a-1 \\ a+b\end{array} ; \tau\right]$.

Iterated Eisenstein Integrals

- We seek to generalize to higher-depth $\beta^{\text {eqv }}[\ldots ; \tau]$, which are modular forms:

$$
\left.\beta^{\operatorname{eqv}}\left[\begin{array}{lll}
j_{1} & \ldots & j_{\ell} \\
k_{1} & \ldots & k_{\ell}
\end{array} ; \frac{a \tau+b}{c \tau+d}\right] .\left[\prod_{i=1}^{\ell}(c \bar{\tau}+d)^{k_{i}-2-2 j_{i}}\right) \beta^{\mathrm{eqv}}\left[\begin{array}{lll}
j_{1} & \ldots & j_{\ell} \\
k_{1} & \ldots & k_{\ell}
\end{array}\right] \tau\right] .
$$

- A defining property is the holomorphic differential equation:

$$
\begin{aligned}
& 2 \pi i(\tau-\bar{\tau})^{2} \partial_{\tau} \beta^{\text {eqv }}\left[\begin{array}{lll}
j_{1} & \ldots & j_{\ell} \\
k_{1} & \ldots & k_{e}
\end{array}\right]=\sum_{i=1}^{\ell}\left(k_{i}-j_{i}-2\right) \beta^{\text {eqv }}\left[\begin{array}{llllll}
j_{1} & \ldots & j_{i}+1 & \ldots & j_{\ell} \\
k_{1} \ldots & k_{i} & k_{i} & \ldots & k_{\ell}
\end{array}\right] \\
& -\delta_{j_{e}, k_{\ell}-2}(\tau-\bar{\tau})^{k_{\ell}} \mathrm{G}_{k_{\ell}}(\tau) \beta^{\text {eqv }}\left[\begin{array}{ccc}
j_{1} & \ldots & j_{\ell-1} \\
k_{1} & \ldots & k_{\ell-1}
\end{array} ; \tau\right]\left(\bmod \beta_{\Delta}^{\text {sv }}\right)
\end{aligned}
$$

- We may again draw inspiration from MGF's. For example, it turns out that:

$$
\begin{aligned}
\mathcal{C}^{+}\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 1 & 1
\end{array}\right]= & -126 \beta^{\text {eqv }}\left[\begin{array}{l}
3 \\
8
\end{array}\right]-18 \beta^{\text {eqv }}\left[\begin{array}{ll}
2 & 0 \\
4 & 4
\end{array}\right], \\
\mathcal{C}^{+}\left[\begin{array}{lll}
3 & 2 & 1 \\
1 & 2 & 1
\end{array}\right]= & \frac{279}{2} \beta^{\text {eqv }}\left[\begin{array}{l}
5 \\
10
\end{array}\right]+30 \beta^{\text {eqv }}\left[\begin{array}{lll}
3 & 1 \\
6 & 4
\end{array}\right]+\frac{15}{2} \beta^{\text {eqv }}\left[\begin{array}{ll}
4 & 0 \\
6 & 4
\end{array}\right], \\
2 i \operatorname{lm} \mathcal{C}^{+}\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 2
\end{array}\right]= & 60\left(\beta^{\text {eqv }}\left[\begin{array}{ll}
0 & 3 \\
4 & 6
\end{array}\right]-\beta^{\text {eqv }}\left[\begin{array}{lll}
1 & 2 \\
6 & 4
\end{array}\right]\right)-270\left(\beta^{\text {eqv }}\left[\begin{array}{ll}
1 & 2 \\
4 & 6
\end{array}\right]-\beta^{\text {eqv }}\left[\begin{array}{ll}
2 & 1 \\
6 & 4
\end{array}\right]\right) \\
& +390\left(\beta^{\text {eqv }}\left[\begin{array}{lll}
2 & 1 \\
4 & 6
\end{array}\right]-\beta^{\text {eqv }}\left[\begin{array}{ll}
3 & 0 \\
6 & 4
\end{array}\right]\right)-3 \zeta_{3} \beta^{\text {eqv }}\left[\begin{array}{l}
1 \\
4
\end{array}\right],
\end{aligned}
$$

Iterated Eisenstein Integrals

- Let us briefly consider the origin of the representations of the $\mathcal{C}^{+}[\cdots](\tau)$ in terms of $\beta_{+}[\cdots ; \tau]$ and $\beta_{-}[\cdots ; \tau]$, which we'll rewrite as $\beta^{\text {eqv }}[\cdots ; \tau]$.
- The main idea is that repeated actions of so-called Maass operators $\nabla_{\tau}=2 i(\operatorname{lm} \tau)^{2} \partial_{\tau}$ simplify the lattice sums.

$$
\left(\pi \nabla_{\tau}\right)^{3} \mathcal{C}^{+}\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 1 & 1
\end{array}\right]=\frac{9}{10}\left(\pi \nabla_{\tau}^{3}\right) \mathrm{E}_{4}-6(\operatorname{lm} \tau)^{4} \mathrm{G}_{4}\left(\pi \nabla_{\tau}\right) \mathrm{E}_{2}
$$

- By plugging in the depth-one integral representations for G_{k} and E_{k}, and integrating, we obtain representations in terms of iterated integrals.
- Unfortunately, at higher depths the collections of MGF's and $\beta^{\text {eqv }}[\cdots ; \tau]$ are not one-to-one. Only particular combinations of $\beta^{\text {eqv }}[\ldots ; \tau]$ appear in MGF's, subject to Tsunogai's derivation algebra.
- To investigate this point further, let us switch to the generating series point of view.

Generating series of Modular Graph Forms

- A genenerating series of convergent MGFs (that do not simplify under holomorphic subgraph reduction) was defined in [Gerken, Kleinschmidt, Schlotterer, 1911.03476, 2004.05156]:

$$
\begin{aligned}
Y_{\vec{\eta}}^{\tau}(\sigma \mid \rho)=(\tau-\bar{\tau})^{n-1} & \int\left(\prod_{j=2}^{n} \frac{\mathrm{~d}^{2} z_{j}}{\operatorname{lm} \tau}\right) \exp \left(\sum_{1 \leq i<j}^{n} s_{i j} G\left(z_{i}-z_{j}, \tau\right)\right) \\
& \times \sigma\left[\overline{\varphi^{\tau}\left(z_{j}, \eta_{j}, \bar{\eta}_{j}\right)}\right] \rho\left[\varphi^{\tau}\left(z_{j},(\tau-\bar{\tau}) \eta_{j}, \bar{\eta}_{j}\right)\right],
\end{aligned}
$$

where the n punctures z_{j} are integrated over a torus of modular parameter τ, and the η_{j} and $\bar{\eta}_{j}$ are formal variables of the generating series.

- The integrals $Y_{\vec{\eta}}^{\tau}$ are indexed by permutations $\sigma, \rho \in \mathcal{S}_{n-1}$ that act on the subscripts $2,3, \ldots, n$ of the $\left\{z_{j}, \eta_{j}\right\}$ variables and leave z_{1} inert.
- The integrand involves doubly-periodic functions $\varphi^{\tau}\left(z_{j}, \ldots\right)=$ $\varphi^{\tau}\left(z_{j}+1, \ldots\right)=\varphi^{\tau}\left(z_{j}+\tau, \ldots\right)$, build out of products of the Kronecker-Eisenstein series:

$$
\Omega(z, \eta, \tau)=\exp \left(2 \pi i \eta \frac{\operatorname{Im} z}{\operatorname{Im} \tau}\right) \frac{\theta^{\prime}(0, \tau) \theta(z+\eta, \tau)}{\theta(z, \tau) \theta(\eta, \tau)}
$$

- The exponent (Koba-Nielsen factor) features the closed-string Green function $G(z, \tau)$ on the torus.

Generating series of Modular Graph Forms

- On the one hand, these integrals may be computed by performing a Fourier transform, which leads to sums over discrete momenta and which yields expressions in terms of MGFs.
- Alternatively, we note that the (KZB-type) differential equations are of the form:

$$
2 \pi i \partial_{\tau} Y_{\vec{\eta}}^{\tau}(\sigma \mid \rho)=\sum_{\alpha \in S_{n-1}}\left\{-\frac{1}{(\tau-\bar{\tau})^{2}} R_{\vec{\eta}}\left(\epsilon_{0}\right)_{\rho}{ }^{\alpha}+\sum_{k=4}^{\infty}(1-k)(\tau-\bar{\tau})^{k-2} \mathrm{G}_{k}(\tau) R_{\vec{\eta}}\left(\epsilon_{k}\right)_{\rho}{ }^{\alpha}\right\} Y_{\bar{\eta}}^{\tau}(\sigma \mid \alpha),
$$

and can be solved in terms of a generating series

$$
Y_{\vec{\eta}}^{\tau}=\sum_{P} R_{\vec{\eta}}(\epsilon[P]) \underbrace{\left(\sum_{P=A B C} \overline{\kappa[A ; \tau]} \beta_{-}\left[B^{t} ; \tau\right] \beta_{+}[C ; \tau]\right)}_{\text {(collecting holo/antiholo. contributions) }} \underbrace{\exp \left(-\frac{R_{\vec{\eta}}\left(\epsilon_{0}\right)}{4 \pi \operatorname{Im}(\tau)}\right) \hat{Y}_{\vec{\eta}}^{i \infty}}_{\text {(initial value) }}
$$

- The first sum is over words $P=\begin{array}{ccc}j_{1} & \cdots & j_{\ell} \\ k_{1} \\ k_{\ell}\end{array}$ of length $\ell \geq 0$ with $k_{i} \geq 4$ even and $0 \leq j_{i} \leq k_{i}-2$, while the second sum is over deconcatenations of P.
- The term $\overline{\kappa[X ; \tau]}$ is a purely antiholomorphic term which carries combinations of MZV's and which can be determined through reality properties of the MGF's.

Generating series of Modular Graph Forms

- The coefficients $\epsilon[P]$ are defined by:

$$
\epsilon[P]=\epsilon\left[\begin{array}{lll}
j_{1} & j_{2} & \ldots \\
k_{1} & k_{2} & \ldots \\
k_{\ell}
\end{array}\right]=\left(\prod_{i=1}^{\ell} \frac{(-1)^{j_{i}}\left(k_{i}-1\right)}{\left(k_{i}-j_{i}-2\right)!}\right) \epsilon_{k_{\ell}}^{\left(k_{\ell}-2-j_{\ell}\right)} \cdots \epsilon_{k_{2}}^{\left(k_{2}-2-j_{2}\right)} \epsilon_{k_{1}}^{\left(k_{1}-2-j_{1}\right)},
$$

where the quantities $\epsilon_{k}^{(j)}$ are defined using the shorthand:

$$
\epsilon_{k}^{(j)}=\operatorname{ad}_{\epsilon_{0}}^{j}\left(\epsilon_{k}\right)=\underbrace{\left[\epsilon_{0},\left[\ldots,\left[\epsilon_{0}, \epsilon_{k}\right]\right] \ldots\right]}_{j \text {-times }}
$$

- The notation $R_{\vec{\eta}}(\epsilon[P])$ indicates that we are considering a particular matrix representation of the generators ϵ_{k}. The ϵ_{k}-derivations satisfy various relations furnished by Tsunogai's derivation algebra:
[Tsunogai 1995, ...,

$$
\begin{align*}
0= & \epsilon_{k}^{(k-1)}, \quad k \geq 4 \text { even, } \\
0= & {\left[\epsilon_{4}, \epsilon_{10}\right]-3\left[\epsilon_{6}, \epsilon_{8}\right] } \\
0= & -462\left[\epsilon_{4},\left[\epsilon_{4}, \epsilon_{8}\right]\right]-1725\left[\epsilon_{6},\left[\epsilon_{6}, \epsilon_{4}\right]\right]-280\left[\epsilon_{8}, \epsilon_{8}^{(1)}\right] \\
& +125\left[\epsilon_{6}, \epsilon_{10}^{(1)}\right]+250\left[\epsilon_{10}, \epsilon_{6}^{(1)}\right]-80\left[\epsilon_{12}, \epsilon_{4}^{(1)}\right]-16\left[\epsilon_{4}, \epsilon_{12}^{(1)}\right]
\end{align*}
$$

Tsunogai derivation algebra

- The Tsunogai derivation algebra has the following impact on the generating series.

1. Relations like $\left[\epsilon_{4}, \epsilon_{10}\right]-3\left[\epsilon_{6}, \epsilon_{8}\right]=0$ project out cusp-form contributions to non-holomorphic modular forms in Jeqv, in other words there are no $\int_{\tau} \mathrm{d} \tau_{1} \Delta_{k}\left(\tau_{1}\right)$
2. Therefore, MGF's and the $\beta^{\text {eqv }}[\ldots ; \tau]$ are not one-to-one. It turns out that a 'full' set of $\beta^{\text {eqv }}[\cdots ; \tau]$ requires (iterated) integrals of cusp forms starting from $k \geq 14$.

Generating Series of $\beta^{\text {eqv }}$

- We now consider a generating series for the $\beta^{\text {eqv }}[\ldots ; \tau]$:

$$
\operatorname{Jeqv}^{\text {eqv }}\left(\left\{\epsilon_{k}\right\} ; \tau\right)=\sum_{P} \epsilon[P] \beta^{\mathrm{eqv}}[P ; \tau]
$$

- The central result of our paper is that:

$$
J^{\text {eqv }}\left(\left\{\epsilon_{k}\right\} ; \tau\right)=J_{+}\left(\left\{\epsilon_{k}\right\} ; \tau\right) B^{\text {sv }}\left(\left\{\epsilon_{k}\right\} ; \tau\right) \phi^{\text {sv }}\left(\tilde{J_{-}}\left(\left\{\epsilon_{k}\right\} ; \tau\right)\right) .
$$

which makes explicit a construction in [Brown, 1707.01230, 1708.03354] of these integrals. The holomorphic / antiholomorphic contributions are packaged in the following way:

$$
J_{ \pm}\left(\left\{\epsilon_{k}\right\} ; \tau\right)=\sum_{P} \epsilon[P] \beta_{ \pm}[P ; \tau]
$$

- The tilde of $\widetilde{J_{-}}\left(\left\{\epsilon_{k}\right\} ; \tau\right)$ instructs us to reverse the words:

$$
\epsilon_{k_{1}}^{\left(j_{1}\right)} \ldots \epsilon_{k_{\ell}}^{\left(j_{e}\right)} \rightarrow \epsilon_{k_{\ell}}^{\left(j_{\ell}\right)} \ldots \epsilon_{k_{1}}^{\left(j_{1}\right)}
$$

- We furthermore have $B^{\text {sv }}\left(\left\{\epsilon_{k}\right\} ; \tau\right)=\sum_{P} \epsilon[P] b^{\text {sv }}[P ; \tau]$, with

$$
b^{\mathrm{sv}}\left[\begin{array}{ccc}
\cdots & j_{i} & \cdots \\
\cdots & k_{i} & \ldots
\end{array}\right]=\sum_{p_{i}=0}^{k_{i}-2-j_{i}} \sum_{\ell_{i}=0}^{j_{i}+p_{i}}\binom{k_{i}-2-j_{i}}{p_{i}}\binom{j_{i}+p_{i}}{\ell_{i}} \frac{(-2 \pi i \bar{\tau})^{\ell_{i}}}{(4 \pi \operatorname{lm}(\tau))^{p_{i}}} c^{\mathrm{sv}}\left[\begin{array}{ccc}
\ldots & j_{i}-\ell_{i}+p_{i} & \ldots \\
\cdots & k_{i} & \cdots
\end{array}\right]
$$

$B^{\text {sv }}\left(\left\{\epsilon_{k}\right\} ; \tau\right)$

- The new ingredient $B^{\text {SV }}\left(\epsilon_{k}\right)$ is specified by the $c^{\text {sv }}$ which are composed out of single-valued MZV's. For example:

$$
\begin{aligned}
& c^{\mathrm{sV}}\left[\begin{array}{ll}
0 & 1 \\
4 & 6
\end{array}\right]=\frac{\zeta_{3}}{907200}, \quad C^{\mathrm{SV}}\left[\begin{array}{ll}
1 & 0 \\
4 & 6
\end{array}\right]=-\frac{\zeta_{3}}{226800}, \\
& c^{\mathrm{sv}}\left[\begin{array}{ll}
0 & 3 \\
4 & 6
\end{array}\right]=-\frac{\zeta_{5}}{7200}, \quad c^{\mathrm{sv}}\left[\begin{array}{ll}
1 & 2 \\
4 & 6
\end{array}\right]=\frac{\zeta_{5}}{21600}, \quad c^{\mathrm{sv}}\left[\begin{array}{ll}
2 & 1 \\
4 & 6
\end{array}\right]=-\frac{\zeta_{5}}{21600}, \\
& c^{\mathrm{sv}}\left[\begin{array}{ll}
0 & 4 \\
4 & 6
\end{array}\right]=-\frac{\zeta_{3}^{2}}{315}, \quad c^{\mathrm{sv}}\left[\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right]=\frac{\zeta_{3}^{2}}{1260}, \quad c^{\mathrm{sv}}\left[\begin{array}{l}
2 \\
4 \\
4
\end{array}\right]=-\frac{\zeta_{3}^{2}}{1890}, \\
& c^{\text {sv }}\left[\begin{array}{ll}
1 & 4 \\
4 & 6
\end{array}\right]=\frac{7 \zeta_{7}}{360}, \quad c^{\text {sv }}\left[\begin{array}{ll}
2 & 3 \\
4 & 6
\end{array}\right]=-\frac{7 \zeta_{7}}{720}, \quad c^{\text {sv }}\left[\begin{array}{ll}
2 & 4 \\
4 & 6
\end{array}\right]=\frac{2 \zeta_{3} \zeta_{5}}{15} . \\
& c^{\mathrm{sv}}\left[\begin{array}{lll}
2 & 2 & 4 \\
4 & 4 & 6
\end{array}\right]=-\frac{1}{450} \zeta_{3,5,3}^{\mathrm{sv}}-\frac{2}{45} \zeta_{3}^{2} \zeta_{5}-\frac{221}{21600} \zeta_{11}, \\
& c^{\mathrm{sv}}\left[\begin{array}{lll}
2 & 4 & 4 \\
4 & 6 & 6
\end{array}\right]=\frac{1}{3750} \zeta_{5,3,5}^{\mathrm{sv}}+\frac{2}{375} \zeta_{3} \zeta_{5}^{2}+\frac{1804427}{124380000} \zeta_{13}, \\
& c^{\mathrm{sv}}\left[\begin{array}{lll}
2 & 2 & 6 \\
4 & 4 & 8
\end{array}\right]=-\frac{1}{1764} \zeta_{3,7,3}^{\mathrm{sv}}+\frac{1}{1470} \zeta_{5,3,5}^{\mathrm{sv}}-\frac{2}{63} \zeta_{3}^{2} \zeta_{7}-\frac{137359}{24378480} \zeta_{13},
\end{aligned}
$$

- Conjecturally:

$$
c^{\mathrm{sv}}\left[\begin{array}{ccc}
k_{1}-2 & \ldots & k_{\ell}-2 \\
k_{1} & \ldots & k_{\ell}
\end{array}\right]=\left(\prod_{i=1}^{\ell} \frac{1}{1-k_{i}}\right) \operatorname{sv}\left(f_{k_{1}-1} \ldots f_{k_{\ell}-1}\right) \quad \text { mod fewer } f_{i}
$$

The change of alphabet $\phi^{\text {sv }}$

- The map $\phi^{\text {sv }}$ applies a change of alphabet to the $\epsilon[P]$. For example:

$$
\phi^{\mathrm{sv}}\left(\epsilon_{2}\right)=\epsilon_{4}+\frac{\zeta_{3}}{252}\left(\left[\epsilon_{6}^{(2)}, \epsilon_{4}\right]-3\left[\epsilon_{6}^{(1)}, \epsilon_{4}^{(1)}\right]+6\left[\epsilon_{6}, \epsilon_{4}^{(2)}\right]\right)+\ldots
$$

- More generally, the map $\phi^{\text {sv }}$ can be described through a conjugation with another generating series: $\phi^{\text {sv }}\left(\epsilon_{k}\right)=\mathbb{M}^{S V} \epsilon_{k}\left(\mathbb{M}^{S V}\right)^{-1}$, which is given by:

$$
\mathbb{M}^{\mathrm{SV}}\left(z_{i}\right)=\sum_{\ell \geq 0} \sum_{m_{1}, \ldots, m_{\ell} \in 2 \mathbb{N}+1} \operatorname{sv}\left(f_{m_{1}} f_{m_{2}} \ldots f_{m_{\ell}}\right) z_{m_{1}} z_{m_{2}} \ldots z_{m_{\ell}}
$$

- Here the f_{i} are letters in the so-called f-alphabet of (motivic) multiple zeta values, and the z_{j} are a new class of operators in the derivation algebra which normalize the set $\left\{\epsilon_{k}\right\}$. For example:

$$
\left[z_{3}, \epsilon_{4}\right]=\frac{1}{504}\left(\left[\epsilon_{6}^{(2)}, \epsilon_{4}\right]-3\left[\epsilon_{6}^{(1)}, \epsilon_{4}^{(1)}\right]+6\left[\epsilon_{6}, \epsilon_{4}^{(2)}\right]\right)
$$

- Putting things together, we find (in shorthand notation):

$$
J^{\mathrm{eqv}}=J_{+} B^{\mathrm{sv}} \mathbb{M}^{\text {sv }} \tilde{J}_{-}\left(\mathbb{M}^{\mathrm{sv}}\right)^{-1}
$$

Iterated Integrals of Holomorphic Cusp Forms

- We may generalize the construction by relaxing the constraints from Tsunogai's derivation algebra. In this case we also require contributions from holomorphic cusp forms $\Delta_{k}(\tau)=q+\mathcal{O}\left(q^{2}\right)$ in the modular completion. For example:
[Brown, 1407.5167, 1707.01230]
[Dorigoni, Kleinschmidt, Schlotterer, 2109.05018]

$$
\begin{aligned}
& \beta^{\text {eqv }[}\left[\begin{array}{l}
1 \\
6 \\
8
\end{array} ; \tau\right]=\left(\beta_{ \pm} \text {and MZVs }\right) \\
&+\frac{1}{52920000} \frac{\Lambda\left(\Delta_{12}, 12\right)}{\Lambda\left(\Delta_{12}, 10\right)}\left(\beta_{+}\left[\Delta_{12}^{5} ; \tau\right]-\beta_{-}\left[\Delta_{12}^{5} ; \tau\right]\right) \\
&\left.\beta^{\text {eqv }\left[\begin{array}{ll}
2 & 3 \\
4 & 10
\end{array} \tau\right]=} \begin{array}{rl}
& \left(\beta_{ \pm} \text {and MZVs }\right) \\
& -\frac{1}{122472000} \frac{\Lambda\left(\Delta_{12}, 12\right)}{\Lambda\left(\Delta_{12}, 10\right)}\left(\beta_{+}\left[\Delta_{12}^{5} ; \tau\right]-\beta_{-}\left[\Delta_{12}^{5} ; \tau\right]\right)
\end{array}\right) .
\end{aligned}
$$

- The coefficients contain ratios of (critical and non-critical) L-values $\frac{\Lambda\left(\Delta_{k}, \text {,.c.. }\right)}{\Lambda\left(\Delta_{k}, \text { crit.) }\right.}$.

Conclusion and outlook

- MGFs are an interesting class of non-holomorphic modular forms, which have (conjecturally s.v.) MZV's in the coefficients of their q-expansions.
- We provided the dictionary between MGF's and Brown's equivariant iterated Eisenstein integrals, and provide evidence for Brown's conjecture that equivariant iterated Eisenstein integrals contain all modular graph forms.
- Future work: explore similar generating-function approach to z-dependent elliptic MGFs / single-valued elliptic polylogarithms and their iterated-integral representation.
- Future work: explore connections to the recent one-loop KLT formula? [Stieberger, 2212.06816]

