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Gravitational two-body problem

▪ EFT approach:

▪ Post-Minkowskian expansion:

▪ Total momentum change:

▪ Corrections to trajectories:
solve Euler-Lagrange 

equations iteratively

use in-in formalism

 ret/adv propagators

B2B
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Loop integrals at 4PM

• Example integral family:

▪ Treat cut propagators just as linear propagators

▪ Rationalize square-root:

cut linear propagators

only one variable
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Differential equations method

• Integration-by-parts reduction to basis

• Solve by transforming to canonical form: 

Dyson series

rational

ret/adv  turn off symmetry detection
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▪ Third-order DE:
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-form using INITIAL

• Elliptic differential equations
68 master integrals:

 constant 68 × 68 matrices

▪ Differential equations not problematic for us, despite elliptics

▪ Canonical form just as in polylogarithmic 3PM case
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-form using INITIAL

• Elliptic differential equations

constant matrices

68 × 68

▪ Simple integration kernels  easy to handle

▪ Eisenstein kernels:

▪ Observables: No iterated integrals of elliptic kernels

• in  -form, one can simply remove the kernels

• otherwise

efficient numerical 

evaluation in GiNaC

elliptics in the result come 

from transformation only
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Boundary conditions

•Compare series expansions around singular point
▪ Small velocity expansion:

1) Solution of differential equations:

▪ Identify an independent set:

relations between infinite 

set of

2) Explicit integral expansions:

Frobenius/Wasow:

method of regions:

PN-like integrals
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Static boundary integrals

▪ Momentum space: radiation:

Feynman  conservative

ret/adv    dissipative

compute boundary constants:



Static boundary integrals

▪ Regions at 4PM

▪ Momentum space:



Summary

•Gravitational two-body problem

• 4PM loop integrals

•Differential equations
▪ Canonical form

▪ Elliptic integrals

▪ Function space

•Boundary constants
▪ Relations

▪ Static integrals



Outlook

• Spin

• 5PM
▪ Integrand

▪ IBPs (Master integrals)

▪ DEs

▪ Boundary conditions
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