The ϵ-form of the 4PM Feynman integral differential equations

	$[C D$, Kälin, Liu, Porto, '21]	2112.11296		
based on	$[C D$, Kälin, Liu, Neef, Porto, '22]	2210.05541	$+\quad$ to appear	
	$[C D$, Henn, Wagner, '22]	2211.16357		

èrc

Gravitational two-body problem

- EFT approach: $\quad e^{i S_{\text {eff }}\left[x_{a}\right]}=\int \mathcal{D} h_{\mu \nu} e^{i S_{\mathrm{EH}}[h]+i S_{\mathrm{GF}}[h]+i S_{\mathrm{pp}}\left[x_{a}, h\right]}$
- Post-Minkowskian expansion: $S_{\text {eff }}=\sum_{n=0}^{\infty} \int \mathrm{d} \tau_{1} G^{n} \mathcal{L}_{n}\left[x_{1}\left(\tau_{1}\right), x_{2}\left(\tau_{2}\right)\right]$

Gravitational two-body problem

- EFT approach: $\quad e^{i S_{\text {eff }}\left[x_{a}\right]}=\int \mathcal{D} h_{\mu \nu} e^{i S_{\mathrm{EH}}[h]+i S_{\mathrm{GF}}[h]+i S_{\mathrm{pp}}\left[x_{a}, h\right]} \sim \begin{gathered}S\left[h_{1}, h_{2}\right]=S\left[h_{1}\right]-S\left[h_{2}\right] \\ \Rightarrow \text { ret } / \text { adv propagators }\end{gathered}$
- Post-Minkowskian expansion: $\quad S_{\text {eff }}=\sum_{n=0}^{\infty} \int \mathrm{d} \tau_{1} G^{n} \mathcal{L}_{n}\left[x_{1}\left(\tau_{1}\right), x_{2}\left(\tau_{2}\right)\right]$

Gravitational two-body problem

- EFT approach: $\quad e^{i S_{\text {eff }}\left[x_{a}\right]}=\int \mathcal{D} h_{\mu \nu} e^{i S_{\mathrm{EH}}[h]+i S_{\mathrm{GF}}[h]+i S_{\mathrm{Pp}}\left[x_{a}, h\right]} \sim \begin{aligned} & S\left[h_{1}, h_{2}\right]=S\left[h_{1}\right]-S\left[h_{2}\right] \\ & \Rightarrow \text { ret } / \text { adv propagators }\end{aligned}$
- Post-Minkowskian expansion: $\quad S_{\text {eff }}=\sum_{n=0}^{\infty} \int \mathrm{d} \tau_{1} G^{n} \mathcal{L}_{n}\left[x_{1}\left(\tau_{1}\right), x_{2}\left(\tau_{2}\right)\right]$
- Total momentum change: $\Delta p_{1}^{\mu}=m_{1} \Delta v_{1}^{\mu}=-\eta^{\mu \nu} \sum_{n} \int_{-\infty}^{\infty} \mathrm{d} \tau_{1} \frac{\partial \mathcal{L}_{n}}{\partial x_{1}^{\nu}}$

use in-in formalism
- EFT approach: $\quad e^{i S_{\mathrm{eff}}\left[x_{a}\right]}=\int \mathcal{D} h_{\mu \nu} e^{i S_{\mathrm{EH}}[h]+i S_{\mathrm{GF}}[h]+i S_{\mathrm{pp}}\left[x_{a}, h\right]}$
$S\left[h_{1}, h_{2}\right]=S\left[h_{1}\right]-S\left[h_{2}\right]$ \Rightarrow ret/adv propagators
- Post-Minkowskian expansion: $\quad S_{\text {eff }}=\sum_{n=0}^{\infty} \int \mathrm{d} \tau_{1} G^{n} \mathcal{L}_{n}\left[x_{1}\left(\tau_{1}\right), x_{2}\left(\tau_{2}\right)\right]$
- Total momentum change: $\Delta p_{1}^{\mu}=m_{1} \Delta v_{1}^{\mu}=-\eta^{\mu \nu} \sum_{n} \int_{-\infty}^{\infty} \mathrm{d} \tau_{1} \frac{\partial \mathcal{L}_{n}}{\partial x_{1}^{\nu}}$
- Corrections to trajectories: $x_{a}^{\mu}=b_{a}^{\mu}+u_{a}^{\mu} \tau_{a}+\sum_{n} G^{n} \delta^{(n)} x_{a}^{\mu}\left(\tau_{a}\right)$ solve Euler-Lagrange equations iteratively

Loop integrals at 4PM

- Example integral family:
cut linear propagators

$$
\begin{aligned}
& I_{a_{1} \ldots a_{15}}(x)=\int \mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2} \mathrm{~d}^{D} k_{3} \frac{\delta^{\left(a_{1}\right)}\left(k_{1} \cdot u_{1}\right) \delta^{\left(a_{2}\right)}\left(k_{2} \cdot u_{1}\right) \delta^{\left(a_{3}\right)}\left(k_{3} \cdot u_{2}\right)}{\left(k_{1} \cdot u_{2}-i 0\right)^{a_{4}}\left(k_{2} \cdot u_{2}-i 0\right)^{a_{5}}\left(k_{3} \cdot u_{1}-i 0\right)^{a_{6}}} \frac{1}{\prod_{i=7}^{15} D_{i}^{a_{i}}} \\
& \left\{D_{1}, \ldots, D_{15}\right\}=\left\{-k_{1}^{2},\right. \\
& -k_{2}^{2}, \\
& -k_{3}^{2}, \\
& -\left(k_{1}-q\right)^{2}, \quad-\left(k_{2}-q\right)^{2}, \quad-\left(k_{3}-q\right)^{2}, \\
& \left.-\left(k_{1}-k_{2}\right)^{2}, \quad-\left(k_{2}-k_{3}\right)^{2}, \quad-\left(k_{1}-k_{3}\right)^{2}\right\} \\
& D=4-2 \epsilon
\end{aligned}
$$

- Treat cut propagators just as linear propagators

Loop integrals at 4PM

- Example integral family:

cut linear propagators

$$
\begin{array}{clr}
I_{a_{1} \ldots a_{15}}(x)=\int \mathrm{d}^{D} k_{1} \mathrm{~d}^{D} k_{2} \mathrm{~d}^{D} k_{3} \frac{\delta^{\left(a_{1}\right)}\left(k_{1} \cdot u_{1}\right) \delta^{\left(a_{2}\right)}\left(k_{2} \cdot u_{1}\right) \delta^{\left(a_{3}\right)}\left(k_{3} \cdot u_{2}\right)}{\left(k_{1} \cdot u_{2}-i 0\right)^{a_{4}}\left(k_{2} \cdot u_{2}-i 0\right)^{a_{5}}\left(k_{3} \cdot u_{1}-i 0\right)^{a_{6}}} \frac{1}{\prod_{i=7}^{15} D_{i}^{a_{i}}} \\
\left\{D_{1}, \ldots, D_{15}\right\}=\left\{\begin{array}{lll}
-k_{1}^{2}, & -k_{2}^{2}, & -k_{3}^{2}, \\
-\left(k_{1}-q\right)^{2}, & -\left(k_{2}-q\right)^{2}, & -\left(k_{3}-q\right)^{2}, \\
-\left(k_{1}-k_{2}\right)^{2}, & -\left(k_{2}-k_{3}\right)^{2}, & \left.-\left(k_{1}-k_{3}\right)^{2}\right\}
\end{array}\right. & u_{1}^{2}=u_{2}^{2}=1, q=u_{2} \cdot q=0 \\
& u_{1} \cdot u_{2}=\gamma
\end{array}
$$

- Treat cut propagators just as linear propagators
- Rationalize square-root:
only one variable

$$
\gamma=\frac{1}{2}(1 / x+x)
$$

$$
v \equiv \sqrt{\gamma^{2}-1}=\frac{1}{2}(1 / x-x)
$$

Differential equations method

- Integration-by-parts reduction to basis

$$
\vec{f}=\left(\begin{array}{c}
I_{111000010101110} \\
\vdots \\
I_{111000111111111}
\end{array}\right)
$$

$$
I_{a_{1} \ldots a_{15}}=\sum_{i} c_{i}(x, \epsilon) f_{i}
$$

ret/adv \Rightarrow turn off symmetry detection

Differential equations method

- Integration-by-parts reduction to basis

$$
\vec{f}=\left(\begin{array}{c}
I_{111000010101110} \\
\vdots \\
I_{111000111111111}
\end{array}\right)
$$

$$
I_{a_{1} \ldots a_{15}}=\sum_{i} c_{i}(x, \epsilon) f_{i}
$$

$$
\text { ret/adv } \Rightarrow \text { turn off symmetry detection }
$$

- Solve by transforming to canonical form: [Henn,'13]

$$
\partial_{x} \vec{f}=A(x, \epsilon) \vec{f} \quad \xrightarrow{\vec{g}=T \vec{f}} \quad \partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g}
$$

[Lee,'15]
[Libra, epsilon, Fuchsia, CANONICA]

Dyson series

$\vec{g}=\mathrm{P} e^{\epsilon \int_{x_{0}}^{x} \tilde{A}(\tilde{x}) \mathrm{d} \tilde{x}} \vec{g}_{0}(\epsilon)=\left[1+\epsilon \int_{x_{0}}^{x} \mathrm{~d} x_{1} \tilde{A}\left(x_{1}\right)+\epsilon^{2} \int_{x_{0}}^{x} \mathrm{~d} x_{1} \tilde{A}\left(x_{1}\right) \int_{x_{0}}^{x_{1}} \mathrm{~d} x_{2} \tilde{A}\left(x_{2}\right)+\mathcal{O}\left(\epsilon^{3}\right)\right] \vec{g}_{0}(\epsilon)$

Elliptic integrals

- Polylogarithms for most sectors $\partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g}, \quad \tilde{A}(x)=\sum_{i} M_{i} a_{i}(x)$

$$
a_{i}(x) \in\left\{\frac{1}{x}, \frac{1}{x-1}, \frac{1}{x+1}, \frac{x}{1+x^{2}}\right\} \text { new at 4PM }
$$

Elliptic integrals

- Polylogarithms for most sectors $\quad \partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g}, \quad \tilde{A}(x)=\sum_{i} M_{i} a_{i}(x)$

$$
a_{i}(x) \in\left\{\frac{1}{x}, \frac{1}{x-1}, \frac{1}{x+1}, \frac{x}{1+x^{2}}\right\}^{\text {new at 4PM }}
$$

- Algorithms do not work for one sector $\partial_{x} \vec{f}=A(x, \epsilon) \vec{f}$ > analyze ϵ^{0}-part:

$$
\begin{aligned}
& A(x, \epsilon)=A^{(0)}(x)+\epsilon A^{(1)}(x)+\mathcal{O}\left(\epsilon^{2}\right), \quad \partial_{x} T^{(0)}(x)=A^{(0)}(x) T^{(0)}(x) \\
& \quad \uparrow \\
& \quad \text { remove with transformation }
\end{aligned}
$$

Elliptic integrals

- Polylogarithms for most sectors

$$
a_{i}(x) \in\left\{\frac{1}{x}, \frac{1}{x-1}, \frac{1}{x+1}, \frac{x}{1+x^{2}}\right\}^{\text {new at 4PM }}
$$

$$
\partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g}, \quad \tilde{A}(x)=\sum_{i} M_{\uparrow} a_{i}(x)
$$ constant matrices

- Algorithms do not work for one sector > analyze ϵ^{0}-part:

$$
\begin{aligned}
\partial_{x} \vec{f} & =A(x, \epsilon) \vec{f} \\
\partial_{\gamma} \vec{f} & =A(\gamma, \epsilon) \vec{f} \longrightarrow \sqrt{\gamma^{2}-1} \\
& T^{(0)}(\gamma)
\end{aligned}
$$

$$
A(x, \epsilon)=A^{(0)}(x)+\epsilon A^{(1)}(x)+\mathcal{O}\left(\epsilon^{2}\right),
$$

$$
\partial_{x} T^{(0)}(x)=A^{(0)}(x) T^{(0)}(x)
$$

Elliptic integrals

- Polylogarithms for most sectors $\quad \partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g}, \quad \tilde{A}(x)=\sum_{i} M_{\uparrow} a_{i}(x)$
- Algorithms do not work for one sector
- Third-order DE: $\quad\left[\partial^{3}-\frac{6 x}{1-x^{2}} \partial_{x}^{2}-\frac{1-4 x^{2}+7 x^{4}}{x^{2}\left(1-x^{2}\right)^{2}} \partial_{x}-\frac{1+x^{2}}{x^{3}\left(1-x^{2}\right)}\right] \Psi_{1,2,3}=0$
- Solve with Mathematica: $\quad \Psi_{1}=x \mathrm{~K}^{2}\left(1-x^{2}\right), \quad \Psi_{2}=x \mathrm{~K}\left(1-x^{2}\right) \mathrm{K}\left(x^{2}\right), \quad \Psi_{3}=x \mathrm{~K}^{2}\left(x^{2}\right)$

$$
\begin{aligned}
& \mathrm{K}(z)=\int_{0}^{1} \frac{\mathrm{~d} t}{\sqrt{\left(1-t^{2}\right)\left(1-z t^{2}\right)}}, \\
& \mathrm{E}(z)=\int_{0}^{1} \frac{1-z t^{2}}{\sqrt{1-t^{2}}} \mathrm{~d} t
\end{aligned}
$$

Elliptic integrals

- Polylogarithms for most sectors

$$
\partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g}, \quad \tilde{A}(x)=\sum_{i} M_{\uparrow} a_{i}(x)
$$

constant matrices

- Algorithms do not work for one sector
- Third-order DE: $\quad\left[\partial^{3}-\frac{6 x}{1-x^{2}} \partial_{x}^{2}-\frac{1-4 x^{2}+7 x^{4}}{x^{2}\left(1-x^{2}\right)^{2}} \partial_{x}-\frac{1+x^{2}}{x^{3}\left(1-x^{2}\right)}\right] \Psi_{1,2,3}=0$
- Solve with Mathematica: $\Psi_{1}=x \mathrm{~K}^{2}\left(1-x^{2}\right), \quad \Psi_{2}=x \mathrm{~K}\left(1-x^{2}\right) \mathrm{K}\left(x^{2}\right), \quad \Psi_{3}=x \mathrm{~K}^{2}\left(x^{2}\right)$

$$
\begin{aligned}
& \mathrm{K}(z)=\int_{0}^{1} \frac{\mathrm{~d} t}{\sqrt{\left(1-t^{2}\right)\left(1-z t^{2}\right)}}, \\
& \mathrm{E}(z)=\int_{0}^{1} \frac{1-z t^{2}}{\sqrt{1-t^{2}}} \mathrm{~d} t
\end{aligned}
$$

ϵ-form using INITIAL

- Elliptic differential equations

68 master integrals:
\Rightarrow constant 68×68 matrices

$$
\partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g},
$$

$$
\tilde{A}(x)=\sum_{i} \overparen{M_{i} a_{i}(x)}
$$

- Differential equations not problematic for us, despite elliptics
- Canonical form just as in polylogarithmic 3PM case

$$
\begin{aligned}
& a_{i}(x) \in\left\{\frac{\pi^{2}}{x\left(1-x^{2}\right) \mathrm{K}^{2}\left(1-x^{2}\right)}, \frac{1}{1-x},\right. \\
& \frac{1}{x}, \\
& \frac{1}{1+x} \text {, } \\
& \frac{x}{1+x^{2}}, \\
& \frac{\mathrm{~K}^{2}\left(1-x^{2}\right)}{\pi^{2} x\left(1-x^{2}\right)}, \\
& \frac{\mathrm{K}^{2}\left(1-x^{2}\right)}{\pi^{2}\left(1-x^{2}\right)}, \quad \frac{\mathrm{K}^{2}\left(1-x^{2}\right)}{\pi^{2} x}, \\
& \frac{\mathrm{~K}^{2}\left(1-x^{2}\right)}{\pi^{2}}, \\
& \frac{\left(1-x^{2}\right) \mathrm{K}^{2}\left(1-x^{2}\right)}{\pi^{2} x}, \\
& \frac{\mathrm{~K}^{4}\left(1-x^{2}\right)}{\pi^{4} x\left(1-x^{2}\right)}, \\
& \frac{\mathrm{K}^{4}\left(1-x^{2}\right)}{\pi^{4} x}, \quad \frac{\left(1-x^{2}\right) \mathrm{K}^{4}\left(1-x^{2}\right)}{\pi^{4} x}, \quad \frac{\left(1-x^{2}\right)^{2} \mathrm{~K}^{4}\left(1-x^{2}\right)}{\pi^{4} x}
\end{aligned}
$$

ϵ-form using INITIAL

- Elliptic differential equations

$$
\partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g}, \quad \tilde{A}(x)=\sum_{i} M_{i} a_{i}(x)
$$

$$
a_{i}(x) \in\left\{\frac{\pi^{2}}{x\left(1-x^{2}\right) \mathrm{K}^{2}\left(1-x^{2}\right)}, \frac{1}{1-x}, \frac{1}{x}, \frac{1}{1+x}, \frac{x}{1+x^{2}}, \frac{\mathrm{~K}^{2}\left(1-x^{2}\right)}{\pi^{2} x\left(1-x^{2}\right)}, \frac{\mathrm{K}^{4}\left(1-x^{2}\right)}{\pi^{4} x\left(1-x^{2}\right)}, \ldots\right\}
$$

- Simple integration kernels \Rightarrow easy to handle

ϵ-form using INITIAL

- Elliptic differential equations

$$
\partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g}, \quad \tilde{A}(x)=\sum_{i} M_{i} a_{i}(x)
$$

$$
a_{i}(x) \in\left\{\frac{\pi^{2}}{x\left(1-x^{2}\right) \mathrm{K}^{2}\left(1-x^{2}\right)}, \frac{1}{1-x}, \frac{1}{x}, \frac{1}{1+x}, \frac{x}{1+x^{2}}, \frac{\mathrm{~K}^{2}\left(1-x^{2}\right)}{\pi^{2} x\left(1-x^{2}\right)}, \frac{\mathrm{K}^{4}\left(1-x^{2}\right)}{\pi^{4} x\left(1-x^{2}\right)}, \ldots\right\}
$$

- Simple integration kernels \Rightarrow easy to handle
- Eisenstein kernels: $\quad E_{2,8,1,1,2}, E_{2,8,1,1,4}, E_{2,8,1,1,8} \longrightarrow$
[Walden, Weinzierl, '20]
efficient numerical
evaluation in GiNaC

ϵ-form using INITIAL

- Elliptic differential equations

$$
\partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g}, \quad \tilde{A}(x)=\sum_{i} M_{i} a_{i}(x)
$$ $a_{i}(x) \in\left\{\frac{\pi^{2}}{x\left(1-x^{2}\right) \mathrm{K}^{2}\left(1-x^{2}\right)}, \frac{1}{1-x}, \frac{1}{x}, \frac{1}{1+x}, \frac{x}{1+x^{2}}, \frac{\mathrm{~K}^{2}\left(1-x^{2}\right)}{\pi^{2} x\left(1-x^{2}\right)}, \frac{\mathrm{K}^{4}\left(1-x^{2}\right)}{\pi^{4} x\left(1-x^{2}\right)}, \ldots\right\}$

- Simple integration kernels \Rightarrow easy to handle
- Eisenstein kernels: $E_{2,8,1,1,2}, E_{2,8,1,4,4}, E_{2,8,1,1,8} \rightarrow$ efficient numerical evaluation in GiNaC
- Observables: No iterated integrals of elliptic kernels
- in ϵ-form, one can simply remove the kernels
- otherwise $\int \mathrm{d} x \frac{2 \mathrm{~K}\left(1-x^{2}\right) \mathrm{E}\left(1-x^{2}\right)}{\pi^{2} x}=\frac{\left(1-x^{2}\right) \mathrm{K}^{2}\left(1-x^{2}\right)}{\pi^{2}}$
elliptics in the result come from transformation only

[^0]
Boundary conditions

- Compare series expansions around singular point
- Small velocity expansion: $v \equiv \sqrt{\gamma^{2}-1}$

1) Solution of differential equations:

$$
v \rightarrow 0
$$

 $\gamma \rightarrow 1$

$$
\Longleftrightarrow x \rightarrow 1
$$

[Lee, Smirnov, Smirnov, Steinhauser,'19] [Libra: Lee,'20]
2) Explicit integral expansions:

Boundary conditions

- Compare series expansions around singular point
- Small velocity expansion: $v \equiv \sqrt{\gamma^{2}-1} \quad v \rightarrow 0 \Longleftrightarrow \gamma \rightarrow 1 \Longleftrightarrow x \rightarrow 1$

1) Solution of differential equations:
[Lee, Smirnov, Smirnov, Steinhauser, '19] [Libra: Lee, '20]
Frobenius/Wasow:
$\partial_{x} \vec{f}=A(x, \epsilon) \vec{f}, \quad \vec{f}(v, \epsilon) \simeq \sum_{n_{1}, n_{2}, k} v^{n_{1}+n_{2} \epsilon} \log ^{k}(v) H_{n_{1}, n_{2}, k}(\epsilon) \vec{g}_{0}(\epsilon)$,
2) Explicit integral expansions:

Boundary conditions

- Compare series expansions around singular point
- Small velocity expansion: $v \equiv \sqrt{\gamma^{2}-1} \quad v \rightarrow 0 \Longleftrightarrow \gamma \rightarrow 1 \Longleftrightarrow x \rightarrow 1$

1) Solution of differential equations:
[Lee, Smirnov, Smirnov, Steinhauser, '19] [Libra: Lee, '20]
Frobenius/Wasow:
$\partial_{x} \vec{f}=A(x, \epsilon) \vec{f}$,

$$
\vec{f}(v, \epsilon) \simeq \sum_{n_{1}, n_{2}, k} v^{n_{1}+n_{2} \epsilon} \log ^{k}(v) H_{n_{1}, n_{2}, k}(\epsilon) \vec{g}_{0}(\epsilon)
$$

$$
n_{1}, n_{2}, k \in \mathbb{Z}
$$

2) Explicit integral expansions:
method of regions:
$I=\int \mathrm{d} k \frac{\delta\left(k \cdot u_{1}\right) \ldots}{k^{2}\left(k \cdot u_{2}\right) \ldots}, \quad \vec{f}(v, \epsilon) \simeq \sum_{n_{1}, n_{2}, k} v^{n_{1}+n_{2} \epsilon} \log ^{k}(v) \vec{h}_{n_{1}, n_{2}, k}(\epsilon) \longleftarrow \quad$ PN-like integrals

Boundary conditions

- Compare series expansions around singular point
- Small velocity expansion: $v \equiv \sqrt{\gamma^{2}-1} \quad v \rightarrow 0 \Longleftrightarrow \gamma \rightarrow 1 \Longleftrightarrow x \rightarrow 1$

1) Solution of differential equations:
[Lee, Smirnov, Smirnov, Steinhauser, '19] [Libra: Lee,'20]
Frobenius/Wasow: $\partial_{x} \vec{f}=A(x, \epsilon) \vec{f}$,

$$
\vec{f}(v, \epsilon) \simeq \sum_{n_{1}, n_{2}, k} v^{n_{1}+n_{2} \epsilon} \log ^{k}(v) H_{n_{1}, n_{2}, k}(\epsilon) \vec{g}_{0}(\epsilon)
$$

$$
n_{1}, n_{2}, k \in \mathbb{Z}
$$

2) Explicit integral expansions:
method of regions:
$I=\int \mathrm{d} k \frac{\delta\left(k \cdot u_{1}\right) \ldots}{k^{2}\left(k \cdot u_{2}\right) \ldots}, \quad \vec{f}(v, \epsilon) \simeq \sum_{n_{1}, n_{2}, k} v^{n_{1}+n_{2} \epsilon} \log ^{k}(v) \vec{h}_{n_{1}, n_{2}, k}(\epsilon)$

$$
\vec{h}_{n_{1}, n_{2}, k}(\epsilon)=H_{n_{1}, n_{2}, k}(\epsilon) \vec{g}_{0}(\epsilon)
$$ relations between infinite set of PN-like integrals

Boundary conditions

- Compare series expansions around singular point
- Small velocity expansion: $v \equiv \sqrt{\gamma^{2}-1}$

$$
v \rightarrow 0
$$

$\gamma \rightarrow 1$

1) Solution of differential equations:
[Lee, Smirnov, Smirnov, Steinhauser, '19] [Libra: Lee, '20]
Frobenius/Wasow:

$$
\partial_{x} \vec{f}=A(x, \epsilon) \vec{f}
$$

$$
\vec{f}(v, \epsilon) \simeq \sum_{n_{1}, n_{2}, k} v^{n_{1}+n_{2} \epsilon} \log ^{k}(v) H_{n_{1}, n_{2}, k}(\epsilon) \vec{g}_{0}(\epsilon)
$$

$$
n_{1}, n_{2}, k \in \mathbb{Z}
$$

2) Explicit integral expansions:

$$
\vec{h}_{n_{1}, n_{2}, k}(\epsilon)=H_{n_{1}, n_{2}, k}(\epsilon) \vec{g}_{0}(\epsilon)
$$

method of regions:
$I=\int \mathrm{d} k \frac{\delta\left(k \cdot u_{1}\right) \ldots}{k^{2}\left(k \cdot u_{2}\right) \ldots}, \quad \vec{f}(v, \epsilon) \simeq \sum_{n_{1}, n_{2}, k} v^{n_{1}+n_{2} \epsilon} \log ^{k}(v) \vec{h}_{n_{1}, n_{2}, k}(\epsilon)$
relations between infinite set of PN-like integrals

- Identify an independent set:

$$
\vec{g}_{0}(\epsilon)=H_{\text {indep }}(\epsilon)^{-1} \vec{h}_{\text {indep }}(\epsilon)
$$

Static boundary integrals

$$
\vec{f}(v, \epsilon) \simeq \sum_{n_{1}, n_{2}, k} v^{n_{1}+n_{2} \epsilon} \log ^{k}(v) \vec{h}_{n_{1}, n_{2}, k}(\epsilon), \quad \vec{f}=\left(\begin{array}{c}
I_{111000010101110} \\
\vdots \\
I_{111000111111111}
\end{array}\right)
$$

- 3PM example:

$$
v \rightarrow 0
$$

$$
I_{N}(x)=\int \mathrm{d}^{D} \ell \mathrm{~d}^{D} k \frac{\delta\left((k-\ell) \cdot u_{1}\right) \delta\left(\ell \cdot u_{2}\right)}{(k-\ell+q)^{2} \ell^{2} k^{2}}
$$

[Beneke, Smirnov, '97]
[asy2.m: Pak, Smirnov, '10 /
Jantzen, Smirnov, Smirnov, '12]
[FIESTA3: Smirnov, $\left.{ }^{\prime} 13\right]$

- For Feynman: possible in parametric space

$$
\begin{aligned}
\alpha_{i} \rightarrow v^{2 c_{i}} \alpha_{i}, \quad i=1, \ldots, 3 & \mathbf{c}_{\mathrm{pot}}
\end{aligned}=(0,0,0), \quad \mathbf{c}_{\mathrm{rad}}=(0,0,-1)
$$

Static boundary integrals

$$
\vec{f}(v, \epsilon) \simeq \sum_{n_{1}, n_{2}, k} v^{n_{1}+n_{2} \epsilon} \log ^{k}(v) \vec{h}_{n_{1}, n_{2}, k}(\epsilon)
$$

$$
\vec{f}=\left(\begin{array}{c}
I_{111000010101110} \\
\vdots \\
I_{111000111111111}
\end{array}\right)
$$

- 3PM example:

$$
v \rightarrow 0
$$

$$
I_{N}(x)=\int \mathrm{d}^{D} \ell \mathrm{~d}^{D} k \frac{\delta\left((k-\ell) \cdot u_{1}\right) \delta\left(\ell \cdot u_{2}\right)}{(k-\ell+q)^{2} \ell^{2} k^{2}}
$$

[Beneke, Smirnov, '97]
[asy2.m: Pak, Smirnov, '10/
Jantzen, Smirnov, Smirnov, '12]
[FIESTA3: Smirnov, $\left.{ }^{\prime} 13\right]$

- For Feynman: possible in parametric space
- Momentum space:

$$
\text { radiation: } \quad\left(\ell^{0}, \ell\right) \sim(v, 1), \quad\left(k^{0}, \boldsymbol{k}\right) \sim(v, v)
$$

$$
h_{1,-2,0}(\epsilon)=-\int \mathrm{d}^{d} \boldsymbol{\ell} \frac{1}{(\boldsymbol{\ell}-\boldsymbol{q})^{2} \boldsymbol{\ell}^{2}} \int \mathrm{~d}^{d} \boldsymbol{k} \frac{1}{\boldsymbol{k}^{2}-(\boldsymbol{\ell} \cdot \boldsymbol{n})^{2}}
$$

$$
\begin{aligned}
d & =3-2 \epsilon \\
\boldsymbol{n}^{2} & =1, \quad \boldsymbol{n} \cdot \boldsymbol{q}=0
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{i} \rightarrow v^{2 c_{i}} \alpha_{i}, \quad i=1, \ldots, 3 \\
& \mathbf{c}_{\mathrm{pot}}=(0,0,0), \quad \mathbf{c}_{\mathrm{rad}}=(0,0,-1) \\
& I_{N}(x) \simeq v^{0} h_{0,0,0}+v^{1-2 \epsilon} h_{1,-2,0}+\ldots
\end{aligned}
$$

Static boundary integrals

$$
I_{N}(x) \simeq v^{0} h_{0,0,0}+v^{1-2 \epsilon} h_{1,-2,0}+\ldots \quad d=3-2 \epsilon, \quad \boldsymbol{n}^{2}=1, \quad \boldsymbol{n} \cdot \boldsymbol{q}=0
$$

- Momentum space: radiation: $\quad\left(\ell^{0}, \ell\right) \sim(v, 1), \quad\left(k^{0}, \boldsymbol{k}\right) \sim(v, v)$,

$$
\begin{gathered}
h_{1,-2,0}(\epsilon)=-\int \mathrm{d}^{d} \boldsymbol{\ell} \frac{1}{(\boldsymbol{\ell}-\boldsymbol{q})^{2} \boldsymbol{\ell}^{2}} \int \mathrm{~d}^{d} \boldsymbol{k} \frac{1}{\boldsymbol{k}^{2}-(\boldsymbol{\ell} \cdot \boldsymbol{n})^{2}} \\
\int \mathrm{~d}^{d} \boldsymbol{k} \frac{1}{\left[\boldsymbol{k}^{2}-(\boldsymbol{\ell} \cdot \boldsymbol{n})^{2} \pm i 0\right]}=\frac{\Gamma(1-d / 2)}{\left[-(\boldsymbol{n} \cdot \boldsymbol{\ell})^{2} \pm i 0\right]^{1-d / 2}} \longleftarrow \text { Feynman } \Rightarrow \text { conservative } \\
\int \mathrm{d}^{d} \boldsymbol{k} \frac{1}{\left[\boldsymbol{k}^{2}-(\boldsymbol{\ell} \cdot \boldsymbol{n} \pm i 0)^{2}\right]}=\frac{\Gamma(1-d / 2)}{\left[-(\boldsymbol{n} \cdot \boldsymbol{\ell} \pm i 0)^{2}\right]^{1-d / 2}} \longleftarrow \text { [Galley, Leibovich, Porto, Ross,'16] }
\end{gathered}
$$

Static boundary integrals

$$
I_{N}(x) \simeq v^{0} h_{0,0,0}+v^{1-2 \epsilon} h_{1,-2,0}+\ldots \quad d=3-2 \epsilon, \quad \boldsymbol{n}^{2}=1, \quad \boldsymbol{n} \cdot \boldsymbol{q}=0
$$

- Momentum space: radiation: $\quad\left(\ell^{0}, \boldsymbol{\ell}\right) \sim(v, 1), \quad\left(k^{0}, \boldsymbol{k}\right) \sim(v, v)$,

$$
\begin{gathered}
h_{1,-2,0}(\epsilon)=-\int \mathrm{d}^{d} \boldsymbol{\ell} \frac{1}{(\boldsymbol{\ell}-\boldsymbol{q})^{2} \boldsymbol{\ell}^{2}} \int \mathrm{~d}^{d} \boldsymbol{k} \frac{1}{\boldsymbol{k}^{2}-(\boldsymbol{\ell} \cdot \boldsymbol{n})^{2}} \\
\int \mathrm{~d}^{d} \boldsymbol{k} \frac{1}{\left[\boldsymbol{k}^{2}-(\boldsymbol{\ell} \cdot \boldsymbol{n})^{2} \pm i 0\right]}=\frac{\Gamma(1-d / 2)}{\left[-(\boldsymbol{n} \cdot \boldsymbol{\ell})^{2} \pm i 0\right]^{1-d / 2}} \longleftarrow \text { Feynman } \Rightarrow \text { conservative } \\
\int \mathrm{d}^{d} \boldsymbol{k} \frac{1}{\left[\boldsymbol{k}^{2}-(\boldsymbol{\ell} \cdot \boldsymbol{n} \pm i 0)^{2}\right]}=\frac{\Gamma(1-d / 2)}{\left[-(\boldsymbol{n} \cdot \boldsymbol{\ell} \pm i 0)^{2}\right]^{1-d / 2}} \longleftarrow \mathrm{ret} / \mathrm{adv} \Rightarrow \text { dissipative } \\
h_{1,-2,0}^{\mathrm{F}}(\epsilon)=\frac{i^{-d} 2^{5-2 d} \Gamma(3-d) \Gamma\left(1-\frac{d}{2}\right) \Gamma(d-2) \Gamma\left(\frac{d-1}{2}\right)}{\Gamma\left(d-\frac{3}{2}\right)} \\
h_{1,-2,0}^{\mathrm{ret}}(\epsilon)=\frac{i^{-2 d} 8^{2-d} \sqrt{\pi} \Gamma^{2}\left(1-\frac{d}{2}\right) \Gamma(d-1)}{\Gamma\left(d-\frac{3}{2}\right)}
\end{gathered}
$$

Static boundary integrals

- Regions at 4PM

$$
\alpha_{i} \rightarrow v^{2 c_{i}} \alpha_{i}, \quad i=1, \ldots, 6
$$

$\left(\ell^{0}, \ell\right) \quad\left(k_{1}^{0}, \boldsymbol{k}_{1}\right) \quad\left(k_{2}^{0}, \boldsymbol{k}_{2}\right)$
$(v, 1)$
$\mathbf{c}_{\text {pot }}=(0,0,0,0,0,0), \longrightarrow v^{n_{1}}$
$(v, 1)$
$(v, 1) \quad(v, v) \quad \longleftrightarrow$

$$
\begin{equation*}
\mathbf{c}_{1 \mathrm{rad}}=(0,0,0,0,0,-1) \tag{v,1}
\end{equation*}
$$

\qquad
$(v, 1)$ (v, v) $(v, v) \quad \longleftrightarrow$

$$
\begin{aligned}
\mathbf{c}_{2 \mathrm{rad}} \in\{ & (0,0,0,0,-1,-1),(0,0,0,-1,0,-1) \\
& (0,0,0,-1,-1,-1)\}
\end{aligned}
$$

- Momentum space:

$$
I(x)=\int \mathrm{d}^{D} \ell \mathrm{~d}^{D} k_{1} \mathrm{~d}^{D} k_{2} \frac{\cdots \delta\left(k_{1}^{0}-\ell^{0}\right) \delta\left(k_{2}^{0}+\ell^{0}\right)}{\cdots(\ell-q)^{2}\left(k_{1}+k_{2}\right)^{2} k_{1}^{2} k_{2}^{2}}
$$

Summary

- Gravitational two-body problem
- 4PM loop integrals
- Differential equations $\partial_{x} \vec{g}=\epsilon \tilde{A}(x) \vec{g}$
- Canonical form
- Elliptic integrals
- Function space

$$
\begin{aligned}
a_{i}(x) \in\{ & \frac{\pi^{2}}{x\left(1-x^{2}\right) \mathrm{K}^{2}\left(1-x^{2}\right)}, \frac{1}{1-x}, \frac{1}{x}, \frac{1}{1+x}, \frac{x}{1+x^{2}}, \\
& \left.\frac{\mathrm{~K}^{2}\left(1-x^{2}\right)}{\pi^{2} x\left(1-x^{2}\right)}, \frac{\mathrm{K}^{4}\left(1-x^{2}\right)}{\pi^{4} x\left(1-x^{2}\right)}, \ldots\right\}
\end{aligned}
$$

- Boundary constants

$$
\vec{h}_{n_{1}, n_{2}, k}(\epsilon)=H_{n_{1}, n_{2}, k}(\epsilon) \vec{g}_{0}(\epsilon)
$$

- Relations

$$
\ell \sim(v, 1), \quad k_{1} \sim(v, v), \quad k_{2} \sim(v, v)
$$

- Static integrals

$$
\int \mathrm{d}^{d} \boldsymbol{k} \frac{1}{\left[\boldsymbol{k}^{2}-(\boldsymbol{\ell} \cdot \boldsymbol{n} \pm i 0)^{2}\right]}=\frac{\Gamma(1-d / 2)}{\left[-(\boldsymbol{n} \cdot \boldsymbol{\ell} \pm i 0)^{2}\right]^{1-d / 2}}
$$

Outlook

- Spin
-5PM
- Integrand
- IBPs (Master integrals)
- DEs
- Boundary conditions

[^0]: [CD, Kälin, Liu, Porto, '21]

