An open twistor sigma model for 4d gravity and celestial $Lw_{1+\infty}$ symmetry

Lionel Mason

The Mathematical Institute, Oxford lmason@maths.ox.ac.uk

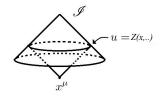
QCD meets gravity Dec 14 2022

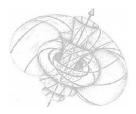
We consider 4d pure gravity in *split signature*:

- Adapt Math.DG/0504582, Duke Math (2007), LeBrun & M. to formulate global SD gravity in split signature manifesting Strominger's celestial $Lw_{1+\infty}$ symmetry.
- Adapt Adamo, M. & Sharma 2103.16984, to construct full gravity tree-level S-matrix from open chiral sigma model built from from *I* with Lw_{1+∞} vertex operators.

Holography from null infinity, and amplitudes

- Celestial Holography seeks to find boundary theory that constructs 4d gravity from *I*.
- Newman '70's: tries to rebuild space-time from 'cuts' of *I*.
- Yields instead '*H*-space' a complex self-dual space-time.
- Penrose: → asymptotic Twistor space P 𝒯 ~ ℂℙ³, the *nonlinear graviton*.
- Embodies integrability of SD sector.
- Chiral sigma models in twistor space give full 4d gravity S-matrix expanding around SD sector; manifests Lw_{1+∞} symmetry.





イロト 不良 とくほ とくほう 一日

Gravity amplitudes at MHV (--+...+helicity)

Scatter *n* gravitons with momenta k_i , i = 1, ..., n.

► In 2-component spinors, null momenta $k_{i\alpha\dot{\alpha}} = \kappa_{i\alpha}\kappa_{i\dot{\alpha}}$. Spinor helicity notation:

$$\langle \mathbf{12} \rangle := \kappa_{1\alpha} \kappa_2^{\alpha} \,, \, [\mathbf{12}] := \kappa_{1\dot{\alpha}} \kappa_2^{\dot{\alpha}} \,, \, \langle \mathbf{1} | \mathbf{2} | \mathbf{3}] = \kappa_{1\alpha} k_2^{\alpha \dot{\alpha}} \kappa_{\mathbf{3} \dot{\alpha}} \,.$$

• Hodges 2012 MHV formula, define $n \times n$ matrix:

$$\mathbb{H}_{ij} = \begin{cases} \frac{[ij]}{\langle ij \rangle} & i \neq j \\ -\sum_{k} \frac{[ik]}{\langle ik \rangle} & i = j \end{cases}.$$

Then: $\mathcal{M}(1,\ldots,n) = \langle 12 \rangle^6 \det' \mathbb{H} \, \delta^4(\sum_i k_i)$

▶ It is Laplace matrix for matrix-tree theorem ~→[Feng,He 2012]
 ▶ Sum of trees [Bern,Dixon,Perelstein,Rosowski '98, Nguyen, Spradlin, Volovich, Wen '10]

Why??? $\mathcal{M} = \langle V_1 \dots V_{n-2} \rangle_{\text{tree}}$ from Sigma model.

Conformal geometry in 4d split signature & self-duality Conformal group = SO(3,3) acts globally on:

• Conformally flat models: $S^2 \times S^2$ or $S^2 \times S^2/\mathbb{Z}_2$:

$$ds^2 = \Omega^2 (ds^2_{S^2_{\mathbf{x}}} - ds^2_{S^2_{\mathbf{y}}})$$

Coordinates $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^3 \times \mathbb{R}^3$, $|\mathbf{x}| = |\mathbf{y}| = 1$.

$$\blacktriangleright \mathbb{Z}_2 \text{ acts by } (\mathbf{x}, \mathbf{y}) \to (-\mathbf{x}, -\mathbf{y}).$$

• For flat
$$\Lambda = 0 : \Omega \sim \frac{1}{x_3 - y_3}$$
, and

$$\mathscr{I} = \{x_3 = y_3\} = \mathbb{R} \times S^1 \times S^1.$$

(For $\Lambda \neq 0$: $\Omega \sim 1/y_3$, and $\mathscr{I} = S^2 \times S^1$.)

Curvature: For curved (M^4, g) , 2-forms split: $\Omega^2_M = \Omega^{2+} \oplus \Omega^{2-}$

$$\mathsf{Riem} = \begin{pmatrix} \mathsf{Weyl}^+ + S\delta & \mathsf{Ricci}_0 \\ \mathsf{Ricci}_0 & \mathsf{Weyl}^- + S\delta \end{pmatrix}.$$

This talk: expand around Weyl⁻ = 0 = Ricci, so Ω^{2-} is flat.

α and $\beta\text{-surfaces}$ and the Zollfrei condition

The split signature conformally flat metric

$$ds^2 = \Omega^2 (ds^2_{S^2_{\mathbf{x}}} - ds^2_{S^2_{\mathbf{y}}}),$$

admits a 3-parameter family of β -planes denoted by $\mathbb{PT}_{\mathbb{R}}$:

respectively totally null ASD S²s given by

$$\mathbf{x} = A\mathbf{y}\,, \qquad A \in SO(3) = \mathbb{RP}^3\,.$$

- Weyl⁻ = $0 \Rightarrow \beta$ -planes survive as β -surfaces.
- \triangleright β -surfaces are projectively flat.
- If compact, β -surfaces are necessarily S^2 or \mathbb{RP}^2 .
- ► Null geodesics are projectively ℝP¹s or double cover. Following Guillemin we define:

Definition

 (M^d, g) is Zollfrei if all null geodesics are embedded S^1s .

Conformally self-dual case

Theorem (LeBrun & M. [Duke Math J. 2007, math.dg/0504582.)

Let $(M^4, [g])$ be Zollfrei with nontrivial SD Weyl-curvature. Then $M = S^2 \times S^2$ and there is a 1 : 1-correspondence between

- 1. SD conformal structures on $S^2 \times S^2$ near flat model &
- 2. Deformations $\mathbb{PT}_{\mathbb{R}}$ of standard embedding of $\mathbb{RP}^3 \subset \mathbb{CP}^3$.

Let $U \simeq \mathbb{R}^3 \times \mathbb{RP}^3 \subset \mathbb{CP}^3$ be a neighbourhood of of \mathbb{RP}^3 in \mathbb{CP}^3 , $\rightsquigarrow \mathbb{PT}_{\mathbb{R}} := \{\beta \text{ surfaces in } M\} = \{\text{graph of map } F : \mathbb{RP}^3 \to \mathbb{R}^3\}$

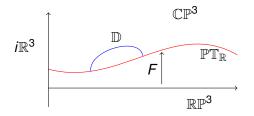


Figure: $\mathbb{D} = \text{hol. disc} \subset \mathbb{CP}^3$ with $\partial \mathbb{D} \subset \mathbb{PT}_{\mathbb{R}}$.

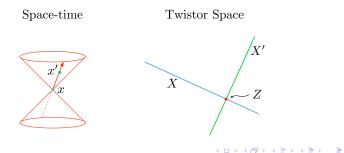
Reconstruction of M^4 from twistor space $\mathbb{PT}_{\mathbb{R}}$

Each $x \in M^4$ \leftrightarrow holomorphic disc $\mathbb{D}_x \subset \mathbb{CP}^3$ with $\partial \mathbb{D}_x \subset \mathbb{PT}_{\mathbb{R}}$.

- \mathbb{D}_x has topological degree one.
- ▶ Reconstruct M^4 from $\mathbb{PT}_{\mathbb{R}}$ space of all such disks:

 $M = \{$ Moduli of degree-1 hol. disks: $\mathbb{D}_x \subset \mathbb{CP}^3, \partial \mathbb{D}_x \subset \mathbb{PT}_{\mathbb{R}} \}$

- Gives compact 4d moduli space
- M admits a conformal structure for which ∂D_x ∩ ∂D_{x'} = Z means that x, x' sit on same β-plane:



Restriction to Einstein vacuum case

Adapting Penrose nonlinear graviton (1976) to split signature

Which $\mathbb{PT}_{\mathbb{R}} \subset \mathbb{CP}^3$ give SD Einstein $g \in [g]$ on $S^2 \times S^2$?

- Let $Z^A = (\lambda_{\alpha}, \mu^{\dot{\alpha}}), \alpha = 0, 1, \dot{\alpha} = \dot{0}, \dot{1}$ be homogenous coordinates for \mathbb{CP}^3 .
- Introduce Poisson structure and 1-form

$$\{f, g\} := arepsilon^{\dot{lpha}\dot{eta}} rac{\partial f}{\partial \mu^{\dot{lpha}}} rac{\partial g}{\partial \mu^{\dot{eta}}} = \left[rac{\partial f}{\partial \mu} rac{\partial g}{\partial \mu}
ight], \ heta := \epsilon^{lphaeta} \lambda_{lpha} d\lambda_{eta} = \langle \lambda d\lambda
angle$$

of rank 2 and homogeneity degree –2 and 2 respectively.

A vacuum $g \in [g]$ exists when $\theta|_{\mathbb{PT}_{\mathbb{R}}}$ & { , }_{\mathbb{PT}_{\mathbb{R}}} are real.

Poisson diffeos of plane & $Lw_{1+\infty}$

 $W_N = higher spin symmetries in 2d CFT$ [Zamolodchikov 1980s].

For $N \rightarrow \infty$ classical limit w_{∞} = Poisson diffeos of plane [Hoppe].

▶ Plane has coords $\mu^{\dot{\alpha}}$, $\dot{\alpha} = 0, 1$ with Poisson bracket

$$\{f, g\} := \varepsilon^{\dot{\alpha}\dot{\beta}} \frac{\partial f}{\partial \mu^{\dot{\alpha}}} \frac{\partial g}{\partial \mu^{\dot{\alpha}}}, \qquad \varepsilon^{\dot{\alpha}\dot{\beta}} = \varepsilon^{[\dot{\alpha}\dot{\beta}]}, \quad \varepsilon^{\dot{0}\dot{1}} = 1.$$

▶ Basis of $w_{1+\infty} \leftrightarrow$ polynomial hamiltonians

$$w^{
ho}_m = (\mu^{\dot{0}})^{p-m-1} (\mu^{\dot{1}})^{p+m-1}, \qquad |m| \leq p-1, \quad 2p-2 \in \mathbb{N}$$

Poisson brackets ↔ commutation relations of w_{1+∞}:

$$\{w_m^p, w_n^q\} = (2(p-1)n - 2(q-1)m)w_{m+n}^{p+q-2}$$

► Loop algebra $Lw_{1+\infty}$, loop coord $\frac{\lambda_1}{\lambda_0} = \tan \frac{\theta}{2}$, generators

$$g^{p}_{m,r} = w^{p}_{m} \mathrm{e}^{ir\theta}, \qquad r \in \mathbb{Z}.$$

Poisson brackets now

$$\{g_{m,r}^{p}, g_{n,s}^{q}\} = (2(p-1)n - 2(q-1)m)g_{m+n,r+s}^{p+q-2}$$

This is the structure preserving diffeomorphism group of $\mathbb{PT}_{\mathbb{R}}$.

Generating functions for Einstein embeddings

Explicitly in homogeneous coordinates:

- Let $Z^A = U^A + iV^A$, with U^A , $V^A \in \mathbb{R}^4$.
- Let h(U) be an arbtrary function of homogeneity degree 2,

$$U\cdot\frac{\partial h}{\partial U}=2h.$$

Proposition

All 'small' Einstein vacuum twistor data $\leftrightarrow h(U)$ by setting

$$\mathbb{T}_{\mathbb{R}} = \left\{ V^{\mathsf{A}} = \left\{ h, U^{\mathsf{A}} \right\} \right\} = \left\{ v_{\alpha} = \mathbf{0}, v^{\dot{\alpha}} = \varepsilon^{\dot{\alpha}\dot{\beta}} \frac{\partial h}{\partial u^{\dot{\beta}}} \right\}$$

projectivising gives $\mathbb{PT}_{\mathbb{R}}$.

The corresponding self-dual (2,2) vacuum metrics are Zollfrei on $S^2 \times S^2$ with null \mathscr{I} modelled by $x_3 = y_3$.

The Poisson bracket underpins Strominger's $Lw_{1+\infty}$ structure, [Adamo, M., Sharma, 2110.06066.]. Here $Lw_{1+\infty}$ acts canonically on

 $\{\text{SD gravity phase space}\} = Lw_{1+\infty}^{\mathbb{C}} / Lw_{1+\infty} \ni h(U)$

Flat holography: the split signature story from *I*

Now $\mathscr{I} = \mathbb{R} \times S^1 \times S^1$ with real coords $(u, \lambda, \tilde{\lambda}), \lambda = \lambda_1 / \lambda_0$.

$$ds^2 = rac{1}{R^2} \left(du dR - d\lambda d ilde{\lambda} + R\sigma d ilde{\lambda}^2 + R ilde{\sigma} d\lambda^2 + \ldots
ight) \,,$$

where R = 1/r, and $\mathscr{I} = \{R = 0\}$.

- The σ, σ̃ are now real asymptotic shears that encode respectively SD and ASD gravitational data.
- Twistors intersect \mathscr{I} in null geodesic circles in $\lambda = \text{const.}$:

$$u = Z(\lambda, \tilde{\lambda}), \qquad rac{\partial^2 Z}{\partial \tilde{\lambda}^2} = \sigma(Z, \lambda, \tilde{\lambda}).$$

 \rightsquigarrow Zollfrei projective structure on each $\lambda = \text{const.}$

▶ In general ∃ nonlinear correspondence [Lebrun & M, JDiffGeom. '02]:

{Zollfrei proj. str.
$$\leftrightarrow \sigma$$
} \longleftrightarrow { $h(U)$ }.

In linear theory map is analogue of radon transform

$$\sigma(u,\tilde{\lambda},\lambda) = \partial_u^2 \int_{-\infty}^{\infty} dt \ h(\mu^{\dot{\alpha}} + t\tilde{\lambda}^{\dot{\alpha}},\lambda_{\alpha}).$$

Open chiral twistor sigma models

- Express disk as upper-half-plane $\mathbb{D} = \{ \sigma \in \mathbb{C}, \operatorname{Im} \sigma \ge \mathbf{0} \}.$
- Represent $\mathbb{D} \subset \mathbb{PT}$ with $\partial \mathbb{D} \subset \mathbb{PT}_{\mathbb{R}}$ in hgs coords by

$$Z^{\mathcal{A}}(\sigma):\mathbb{D} o\mathbb{T}\,,\qquad Z^{\mathcal{A}}|_{\sigma=ar{\sigma}}\in\mathbb{T}_{\mathbb{R}}\,.$$

For k points $\sigma_i \in \mathbb{R}$, and $Z_i^A \in \mathbb{T}_{\mathbb{R}}$, $\exists ! \deg k - 1 \operatorname{disk} \operatorname{thru} Z_i :$

$$Z^{A}(\sigma) = \sum_{i=1}^{k} \frac{Z_{i}^{A}}{\sigma - \sigma_{i}} + M(\sigma), \qquad M(\sigma) \text{ holomorphic on } \mathbb{D}.$$

- For $Z = (\lambda_{\alpha}, \mu^{\dot{\alpha}}) \in \mathbb{T}_{\mathbb{R}}$ implies λ_{α} real.
- Therefore $M^A = (0, m^{\dot{\alpha}})$, but $m^{\dot{\alpha}} \neq 0$ unless h = 0.
- Action for holomorphy and boundary conditions:

$$S_D[Z(\sigma), Z_i] = \operatorname{Im} \int_{\mathbb{D}} [m \, \bar{\partial} m] d\sigma + \oint_{\partial \mathbb{D}} h(Z) d\sigma$$

using *spinor-helicity* notation $[\mu \nu] := \mu_{\dot{\alpha}} \nu^{\dot{\alpha}}, \langle 1 2 \rangle := \kappa_{1\alpha} \kappa_{2}^{\alpha}.$

Gravity S-matrix on SD background via sigma model

Amplitudes are functionals $\mathcal{M}[h, \tilde{h}_i]$ of gravitational data:

- ▶ $h \in C^{\infty}(\mathbb{PT}_{\mathbb{R}}, \mathcal{O}(2))$ for fully nonlinear SD part,
- ▶ $\tilde{h}_i \in C^{\infty}(\mathbb{PT}_{\mathbb{R}}, \mathcal{O}(-6)), i = 1, ..., k$, ASD perturbations.
- For eigenstates of momentum $k_{i\alpha\dot{\alpha}} = \kappa_{i\alpha}\tilde{\kappa}_{i\dot{\alpha}}$ take:

$$h_{i} = \int \frac{dt}{t^{3}} \delta^{2}(t\lambda_{\alpha} - \kappa_{i\alpha}) e^{it[\mu, \tilde{\kappa}_{i}]}, \quad \tilde{h}_{i} = \int \frac{dt}{t^{-5}} \delta^{2}(t\lambda_{\alpha} - \kappa_{i\alpha}) e^{it[\mu, \tilde{\kappa}_{i}]}$$

Proposition (Adapted from [Adamo, M. & Sharma, 2103.16984] to split signature.) The amplitude for k ASD perturbations on SD background h is

$$\mathcal{M}(h, \tilde{h}_i) = \int_{(\mathcal{S}^1 imes \mathbb{PT}_{\mathbb{R}})^k} S_D^{os}[h, Z_i, \sigma_i] \det ' \tilde{\mathbb{H}} \prod_{i=1}^k \tilde{h}_i(Z_i) D^3 Z_i d\sigma_i \,.$$

Here $S_D^{os}[h, Z_i, \sigma_i]$ is the on-shell Sigma model action and

$$\tilde{\mathbb{H}}_{ij}(Z_i) = \begin{cases} \frac{\langle \lambda_i \lambda_j \rangle}{\sigma_i - \sigma_j} & i \neq j \\ -\sum_l \frac{\langle \lambda_i \lambda_l \rangle}{\sigma_i - \sigma_j}, & i = j. \end{cases}$$

Ideas in proof: the complete tree-level S-matrix

- Expand $h = h_{k+1} + \ldots + h_n$ to 1st order in momentum e-states h_i to give flat background perturbative amplitude.
- On shell action expands as tree correlator

 $S_D^{os}[h_{k+1} + \ldots + h_n, Z_i, \sigma_i] = \langle V_{h_{k+1}} \ldots V_{h_n} \rangle_{tree} + O(h_i^2).$

► Here the 'vertex operators' are $V_{h_i} = \int_{\partial D} h_i(\sigma_i) d\sigma_i$.

Propagators for S_D give Poisson bracket {,}

$$\langle h_i h_j \rangle_{\text{tree}} = \frac{[\partial_\mu h_i \partial_\mu h_j]}{\sigma_i - \sigma_j} = \frac{[ij]}{\sigma_i - \sigma_j} h_i h_j, \qquad i \neq j.$$

Matrix-tree theorem then gives

$$\langle h_{k+1} \dots h_n \rangle_{\text{tree}} = \det' \mathbb{H} \prod_{i=k+1}^n h_i, \qquad \mathbb{H}_{ij} = \frac{[ij]}{\sigma_i - \sigma_j}, \quad i \neq j \text{ etc.}$$

$$\rightarrow \qquad \mathcal{M}(h_i, \tilde{h}_i) = \int_{(S^1)^n \times (\mathbb{RP}^3)^k} \det' \tilde{\mathbb{H}} \prod_{j=k+1}^n h_j d\sigma_j \prod_{i=1}^k \tilde{h}_i(Z_i) D^3 Z_i d\sigma_i \, .$$

-

This is now equivalent to the Cachazo-Skinner formula.

Summary & conclusions

Geometry:

- Split signature twistors avoid 'lightray' or Čech-Dolbeault transform manifesting Lw_{1+∞} directly.
 Slogan: SD gravity phase space = Lw^C_{1+∞}/Lw_{1+∞}
- Similar results follow for Λ ≠ 0 where h ↔ 2 + 1 signature conformal structure of 𝒴 = 𝔅² × 𝔅¹.

Sigma model:

- Reconstruction via open holomorphic discs leads to chiral open sigma model that computes gravity amplitudes.
- MHV formula gives theory underlying tree formalism of Bern et. al. from 1998 & equals the Einstein-Hilbert action.
- Framework gives Lw^C_{1+∞} action on *full amplitude* via vertex operators that generate gravitons.
 (Real generators are passive with vanishing charges).

Discussion

Double copy

- Yang-Mills Parke Taylor $\leftrightarrow \det' \mathbb{H} \det' \tilde{\mathbb{H}}$ for GR.
- This comes from $Lw_{1+\infty} \otimes Lw_{1+\infty}^-$.
- Lw_{1+∞} is sufficient at MHV, but both are needed for kinematic algebra beyond MHV but dont play so nicely!
- In ambitwistor-string, we can analyse vertex operators for both sectors V_h, V_h with OPEs

 $V_h \cdot V_{h'} \sim V_{\{h,h'\}} + \dots,$ but $V_h \cdot V_{\tilde{h}} \sim$ mess (1)

But see Wei's talk.

1-loop all +

- 1-loop all + becomes bubble in background on disc.
- **•** Remains $Lw_{1+\infty}$ invariant.

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$Lw_{1+\infty}$ symmetries of sigma model

Recall, *Lw*_{1+∞} = λ-dependent Poisson diffeos of μ^α-plane.
For sigma model action

$$\mathcal{S}[\mathbf{Z}\sigma)] = \operatorname{Im}\,\int_{\mathbb{D}} \mathbf{d}\sigma\left[\mu ar{\partial}_{\sigma} \mu
ight] + \oint_{\partial \mathbb{D}} \mathbf{2}h \mathbf{d}\sigma$$

Poisson diffeo with Hamiltonian g(W) gives

$$\delta\mu^{\dot{lpha}} = \{ oldsymbol{g}, \mu^{\dot{lpha}} \} = arepsilon^{\dot{lpha}\dot{eta}} rac{\partialoldsymbol{g}}{\partial\mu^{\dot{eta}}} \,, \qquad \deltaoldsymbol{h} = \{oldsymbol{h},oldsymbol{g}\} \,.$$

- Symmetry $\Rightarrow \delta h = 0 \Rightarrow g$ holomorphic, $\bar{\partial}_h g = 0$.
- If g is real → diffeomorphism of PT_R, coordinate freedom. Cf, supertranslations, BMS etc..
- If g is imaginary, defines an infinitesimal generating function ~> perturbation i.e. graviton, perturbation of metric.

Quantization

- Einstein gravity tree = tree sigma model correlator (MHV).
- ► Does full quantum sigma model correlator ↔ gravity loops?

$$\langle \mathbf{1} \, \mathbf{2} \rangle^{2n} \prod_{i=3}^{n} \frac{1}{\langle \mathbf{1} \, i \rangle^2 \, \langle \mathbf{2} \, i \rangle^2} \, \exp\left[-\frac{\mathrm{i} \, \alpha}{8\pi} \sum_{j \neq i} \frac{[i \, j]}{\langle i \, j \rangle} \, \frac{\langle \mathbf{1} \, i \rangle^2 \, \langle \mathbf{2} \, j \rangle^2}{\langle \mathbf{1} \, \mathbf{2} \rangle^2}\right]$$

- ► Does quantum sigma model realize $W_{1+\infty}$ or W-gravity?
- Moyal quantization of $\mu^{\dot{\alpha}}$ -plane and 'palatial twistors'? Questions:
 - N = 8 formulation with S_n symmetry?
 - Axiomatize correspondence between celestial OPES and twistor sigma model/ambitwistor string OPEs.

[Adamo, Casali, Sharma, Wei, arxiv: 2111.02279]