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Motivation and overview
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Two-body problem: Amplitudes approach

▶ Exploit the power of unitarity: Start from building blocks An

▶ Better make sure we have the correct building blocks !!
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Do minimal coupling spinning amplitudes have actually
anything to do with Kerr ?

One can only be sure by matching amplitudes to actual GR
computations!
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Matching to static solutions
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Kerr Black hole as elementary particles

1. Theminimal coupling 3 pt. amplitude encodes essentially the same information as
the linearized Kerr metric [Guevara et al 2018;Huang et al 2028;Arkani-Hamed et al 2019 ]
(See also Johansson tak)

hµν(k±) = pµpνδ(p·k)

⟨ε′A|e
∓k·a︷︸︸︷

⟨εB| e

Pauli-Lubansky︷ ︸︸ ︷
±2k · a |εA⟩︸ ︷︷ ︸

spin states

→ pµpνδ(p·k)⟨ε′A| e±k·a|εA⟩

▶ Hilbert space matching and classical limit combines the spin exponential operators (trivial
at 3pt, but not at 4pts)

▶ No-radiation in (3, 1) signature, but in (2, 2) ⇒ Radiation modes

On the gravitational side: O(G)-Kerr metric [Vines 2017]

hKerrµν = Pµναβpα
[
pβ cosh(a · ∂) + ϵβγρσpγaρ∂σ

sinh(a · ∂)
a · ∂

]
Gm
r

(2, 2)
−−−→

Pµνρσpρpσe±a·∂ Gm
r

Same exponential structure as for the infinite spin amplitude!

▶ Linearization erases the BH horizon, a
GM < 1 ⇒ a

GM ≫ 1 Not Kerr but rather a naked ring
singularity
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Dynamics matching

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation



7

Kerr Linear perturbations

2. Linear perturbations of Kerr sourced by a small orbiting body (aligned-spins, equatorial
scattering) [Siemonsen-Vines 2019]. Checks through a3 at G2. red-shift and procession
frequency ⇒geodesic motion deviation due to Gravitational self-force of the perturbation

3. In this talk: BH stability under small wave perturbation (generic spin-orientation).Checks
through a6 for GWs
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The higher spin Gravitational Compton amplitude
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Gravitational Compton amplitude: BCFW extrapolation

The same helicity configuration

A++
h=2 ∼

M4[23]4

(s−M2)2t
e−(k2−k3)·a

▶ Only physical poles for any a.

In principle, a good higher spin amplitude

The opposite helicity configuration ϵ2 =
√
2|3]⟨2|
[32] ∝ ϵ̃3

A+−
h=2 ∼

(⟨2|p1|3])4

(s−M2)2t
e(2w−k3−k2)·a , with wµ =

s−M2

2p1 · ϵ2
ϵµ2

▶ Unphysical pole starting at a5. Not a good higher spin amplitude
Still useful exponential, Just need to cure uphysical behavior. At a given order in
spin, we seek an ansatz of the form

⟨AS
h=2⟩ = ⟨A0

h=2⟩︸ ︷︷ ︸
Helicity-weights

×
(
e(2w−k3−k2)·a + fξ(k2 · a, k3 · a,w · a)

)
2S︸ ︷︷ ︸

spin-Information

.
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The higher spin ansatz

Build the function fξ spin basis {k2 · a, k3 · a,w · a} under certain physical
assumptions:

▶ Locality and Unitarity; correct 3-pt factorization. ⇒ ⟨A0
4⟩ × fξ can only contain

contact terms
▶ Crossing symmetry: Same classical amplitude in chiral and anti-chiral basis

Ah=2,S
n = ⟨εn|Achir.

n |ε1⟩ = [εn|Aantichir.
n |ε1] ,⇒ fξ(k2, k3,w) = fξ(k3, k2,w)

▶ ⟨A0
4⟩ × fξ must cancel unphysical pole ⟨2|p1|3] ∝ 1+ ξ Here

ξ−1 =
M2t

(s−M2)2
= − sin2(θ/2) → −1

starting at a5. Strategy: Laurent-expand in ξ:

fξ(k2 · a,−k3 · a,w · a) =
∑
m

ξmf(m)(k2 · a,−k3 · a,w · a) ,

▶ Laurent expansion introduces poles in ξ (s−M2), each cancelled by operator
(w·a)2. Furthermore, ⟨A0

4⟩ contains a simple pole in ξ. This gives

f(m) ∝ (w · a)2−2m for m ≤ 1 .

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation
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▶ Each power of ξ introduces poles in t = [23]⟨32⟩. To cancel such poles we
invoke:

wµ → kµ2 as ⟨23⟩ → 0
wµ → kµ3 as [23] → 0 .

Then, a pole in t is cancelled by (w · a− k2 · a)(w · a− k3 · a): This implies

f(m) ∝ (w · a− k2 · a)m+1(w · a− k3 · a)m+1 for m ≥ −1 ,

▶ Caveat: The identity The classical identity [Gram determinant relation in
Aoude’s talk]

− (s−M2)(u−M2)

4M2 a2 ≈ ω2a2 ≈ ξ(w · a− k2 · a)(w · a− k3 · a) + (w · a)2

⇒ the quadratic Casimir is not independent of our {k2·a, k3·a,w·a} basis. But |a| is!
So we can implement operators proportional to |a|ω, with ω = s−M2

2M
▶ Special role: Track BH horizon dynamics!!

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation
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So we can implement operators proportional to |a|ω, with ω = s−M2

2M
▶ Special role: Track BH horizon dynamics!!
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After putting all the ingredients together we can parametrize the Compton ansatz via

fξ =
2∑

m=0

ξm−1(w · a)4−2m(w · a− k2 · a)m(w · a− k3 · a)mr(m)
|a| (k2 · a, k3 · a,w · a)

+
∞∑
m=0

[
(w · a)2m+6

ξm+2 p(m)
|a| (k2 · a, k3 · a,w · a)

+ξm+2(w · a− k2 · a)m+3(w · a− k3 · a)m+3 q(m)
|a| (k2 · a, k3 · a,w · a)

]
(1)

▶ p(m)
|a| , q

(m)
|a| , r

(m)
|a| are polynomials, symmetric in their first two arguments

▶ Polynomial include linear correction in ω|a|
▶ Contact terms starting at a4 [ Huang + 2018; Bern+ 2022; Aoude + 2022 ]
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Compton up to sixth order in spin

The r-polynomial

r(m)
|a| = c(m)

1 + c(m)
2 (k2·a+ k3·a) + c(m)

3 w·a+ c(m)
4 |a|ω

+ c(m)
5 (w·a− k2·a)(w·a− k3·a)

+ c(m)
6 (2w·a− k2·a− k3·a)w·a

+ c(m)
7 (2w·a− k2·a− k3·a)2 + c(m)

8 (w·a)2

+ c(m)
9 (k2·a+ k3·a)|a|ω + c(m)

10 w·a|a|ω +O(a3)

(2)

The p− and q−polynomilas

p(m)
|a| = d(m)

1 +O(a) , q(m)
|a| = f(m)

1 +O(a) , (3)

▶ 3-free conservative operators at a4

▶ 5 conservative + 3 dissipative free operators at a5

▶ 12 conservative (19 LD operators in [Aoude+2022]) +5 dissipative free operators
at a6
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The gravitational setup
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BHPT

Parameters:

{
ϵ = 2GMω PM
a⋆ = a

GM spin
a⋆ϵ = 2aω

▶ [Teukolsky 1972]. NP formalism: Linear perturbationsΨ4 = ΨB
4 + δΨ4. ⇒

Separation of variables in Kerr [See C. Kavanagh self-force review talk].
Radiative content in the scalar

hψ ∼
∑
ℓm

e−iωt
hZℓmωhRℓmω(r)hSℓm(ϑ, φ, aω) ∼ Ah

▶ Asymptotic behavior:

hRlmω ∼


B(inc)lmω

(a⋆,ϵ)
r e−iωr∗ +

B(ref)lmω
(a⋆,ϵ)

r2h+1 eiωr∗ r∗ → ∞, (r → ∞)

Btranslmω (a⋆, ϵ)
e−iΩ+r∗

∆h︸ ︷︷ ︸
purelly ingoing@ r+

r∗ → −∞, (r → r+)
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Tree-level Scattering amplitude. Spin 4

▶ Remove the PW from the asymptotic Teukolsky solution −2ψ = ψPW + ψSW

▶ Expand the scattering amplitude f = rψSW in the harmonic basis

f(θ, ϕ′) =
∞∑
l=2

∞∑
m=−∞

−2Ylm(θ, ϕ′)f′lm(γ, ϵ, a
⋆) .

▶ Mode functions completely determined by B(refl)sℓm

B(inc)sℓm
. Complicated functions of ϵ, a⋆

▶ Low energy solutions ϵ≪ 1. Keep a⋆ < 1 ⇒ use BHPT tools

f′BHPTlm (γ) = eiΦ
Γ(l+ 1− iϵ)
Γ(l+ 1+ iϵ)

(
1+ β

(1)
lm (γ, a⋆)ϵ+ β

(2)
lm (γ, a⋆)ϵ2 + β

(3)
lm (γ, a⋆)ϵ3 + · · ·

)
▶ Point particle description⇒ a⋆ ≫ 1. Delete BH horizon, naked singularity.

keep a⋆ϵ = 2aω fixed.
▶ Up to i ≤ 4, the β(i)

lm (γ, a
⋆) are REAL, and polynomial in a⋆. Unique analytic

extension Complete agreement with the exponential
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Spin 5 and 6, anomalous terms

▶ Non-polynomilas for i > 4.

β
(5)
2,−1(γ) =

√
π/5 sin3 γ

42247941120

[
− 43659(12017 + 17775 cos(2γ))a⋆5 − 1408264704 cos(γ) ia⋆4κ̂

− 704132352
(
(1 − 2 cos γ)ψ(0)(−ia⋆/κ̂) + (1 + 2 cos γ)ψ(0)(ia⋆/κ̂)

)
a⋆3

− 5633058816
(
sin2(γ/2)ψ(0)(−2ia⋆/κ̂) + cos2(γ/2)ψ(0)(2ia⋆/κ̂)

)
a⋆3

]
,

here κ̂ =
√
1− a⋆2

▶ Absorption (imaginary contributions) [Dolan 2008]
▶ Non-rational functions
▶ Discontinuity at a⋆ = 1. Choice of a branch for analytic extension
▶ Conservative amplitude: Absorption removal by dropping the imaginary parts
▶ Or keep them but keep track of them
▶ Digamma functions contributing or not to a given branch choice. Conjugate

choice

β
(5)η
2,−1(γ) = −

√
π/5

967680
a5 sin3 γ

[(
12017 + 17775 cos(2γ)

)
+ 96768α− η32256(1 + 4α) cos γ

]
.

Conservative η = 0. Absorption η = ±1.Outgoing boundary conditions at r+ results
η → −η terms. . η = 0 ⇒ Reflective boundary conditions

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation



17

Spin 5 and 6, anomalous terms

▶ Non-polynomilas for i > 4.

β
(5)
2,−1(γ) =

√
π/5 sin3 γ

42247941120

[
− 43659(12017 + 17775 cos(2γ))a⋆5 − 1408264704 cos(γ) ia⋆4κ̂

− 704132352
(
(1 − 2 cos γ)ψ(0)(−ia⋆/κ̂) + (1 + 2 cos γ)ψ(0)(ia⋆/κ̂)

)
a⋆3

− 5633058816
(
sin2(γ/2)ψ(0)(−2ia⋆/κ̂) + cos2(γ/2)ψ(0)(2ia⋆/κ̂)

)
a⋆3

]
,

here κ̂ =
√
1− a⋆2

▶ Absorption (imaginary contributions) [Dolan 2008]

▶ Non-rational functions
▶ Discontinuity at a⋆ = 1. Choice of a branch for analytic extension
▶ Conservative amplitude: Absorption removal by dropping the imaginary parts
▶ Or keep them but keep track of them
▶ Digamma functions contributing or not to a given branch choice. Conjugate

choice

β
(5)η
2,−1(γ) = −

√
π/5

967680
a5 sin3 γ

[(
12017 + 17775 cos(2γ)

)
+ 96768α− η32256(1 + 4α) cos γ

]
.

Conservative η = 0. Absorption η = ±1.Outgoing boundary conditions at r+ results
η → −η terms. . η = 0 ⇒ Reflective boundary conditions

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation



17

Spin 5 and 6, anomalous terms

▶ Non-polynomilas for i > 4.

β
(5)
2,−1(γ) =

√
π/5 sin3 γ

42247941120

[
− 43659(12017 + 17775 cos(2γ))a⋆5 − 1408264704 cos(γ) ia⋆4κ̂

− 704132352
(
(1 − 2 cos γ)ψ(0)(−ia⋆/κ̂) + (1 + 2 cos γ)ψ(0)(ia⋆/κ̂)

)
a⋆3

− 5633058816
(
sin2(γ/2)ψ(0)(−2ia⋆/κ̂) + cos2(γ/2)ψ(0)(2ia⋆/κ̂)

)
a⋆3

]
,

here κ̂ =
√
1− a⋆2

▶ Absorption (imaginary contributions) [Dolan 2008]
▶ Non-rational functions
▶ Discontinuity at a⋆ = 1. Choice of a branch for analytic extension

▶ Conservative amplitude: Absorption removal by dropping the imaginary parts
▶ Or keep them but keep track of them
▶ Digamma functions contributing or not to a given branch choice. Conjugate

choice

β
(5)η
2,−1(γ) = −

√
π/5

967680
a5 sin3 γ

[(
12017 + 17775 cos(2γ)

)
+ 96768α− η32256(1 + 4α) cos γ

]
.

Conservative η = 0. Absorption η = ±1.Outgoing boundary conditions at r+ results
η → −η terms. . η = 0 ⇒ Reflective boundary conditions

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation



17

Spin 5 and 6, anomalous terms

▶ Non-polynomilas for i > 4.

β
(5)
2,−1(γ) =

√
π/5 sin3 γ

42247941120

[
− 43659(12017 + 17775 cos(2γ))a⋆5 − 1408264704 cos(γ) ia⋆4κ̂

− 704132352
(
(1 − 2 cos γ)ψ(0)(−ia⋆/κ̂) + (1 + 2 cos γ)ψ(0)(ia⋆/κ̂)

)
a⋆3

− 5633058816
(
sin2(γ/2)ψ(0)(−2ia⋆/κ̂) + cos2(γ/2)ψ(0)(2ia⋆/κ̂)

)
a⋆3

]
,

here κ̂ =
√
1− a⋆2

▶ Absorption (imaginary contributions) [Dolan 2008]
▶ Non-rational functions
▶ Discontinuity at a⋆ = 1. Choice of a branch for analytic extension
▶ Conservative amplitude: Absorption removal by dropping the imaginary parts

▶ Or keep them but keep track of them
▶ Digamma functions contributing or not to a given branch choice. Conjugate

choice

β
(5)η
2,−1(γ) = −

√
π/5

967680
a5 sin3 γ

[(
12017 + 17775 cos(2γ)

)
+ 96768α− η32256(1 + 4α) cos γ

]
.

Conservative η = 0. Absorption η = ±1.Outgoing boundary conditions at r+ results
η → −η terms. . η = 0 ⇒ Reflective boundary conditions

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation



17

Spin 5 and 6, anomalous terms

▶ Non-polynomilas for i > 4.

β
(5)
2,−1(γ) =

√
π/5 sin3 γ

42247941120

[
− 43659(12017 + 17775 cos(2γ))a⋆5 − 1408264704 cos(γ) ia⋆4κ̂

− 704132352
(
(1 − 2 cos γ)ψ(0)(−ia⋆/κ̂) + (1 + 2 cos γ)ψ(0)(ia⋆/κ̂)

)
a⋆3

− 5633058816
(
sin2(γ/2)ψ(0)(−2ia⋆/κ̂) + cos2(γ/2)ψ(0)(2ia⋆/κ̂)

)
a⋆3

]
,

here κ̂ =
√
1− a⋆2

▶ Absorption (imaginary contributions) [Dolan 2008]
▶ Non-rational functions
▶ Discontinuity at a⋆ = 1. Choice of a branch for analytic extension
▶ Conservative amplitude: Absorption removal by dropping the imaginary parts
▶ Or keep them but keep track of them

▶ Digamma functions contributing or not to a given branch choice. Conjugate
choice

β
(5)η
2,−1(γ) = −

√
π/5

967680
a5 sin3 γ

[(
12017 + 17775 cos(2γ)

)
+ 96768α− η32256(1 + 4α) cos γ

]
.

Conservative η = 0. Absorption η = ±1.Outgoing boundary conditions at r+ results
η → −η terms. . η = 0 ⇒ Reflective boundary conditions

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation



17

Spin 5 and 6, anomalous terms

▶ Non-polynomilas for i > 4.

β
(5)
2,−1(γ) =

√
π/5 sin3 γ

42247941120

[
− 43659(12017 + 17775 cos(2γ))a⋆5 − 1408264704 cos(γ) ia⋆4κ̂

− 704132352
(
(1 − 2 cos γ)ψ(0)(−ia⋆/κ̂) + (1 + 2 cos γ)ψ(0)(ia⋆/κ̂)

)
a⋆3

− 5633058816
(
sin2(γ/2)ψ(0)(−2ia⋆/κ̂) + cos2(γ/2)ψ(0)(2ia⋆/κ̂)

)
a⋆3

]
,

here κ̂ =
√
1− a⋆2

▶ Absorption (imaginary contributions) [Dolan 2008]
▶ Non-rational functions
▶ Discontinuity at a⋆ = 1. Choice of a branch for analytic extension
▶ Conservative amplitude: Absorption removal by dropping the imaginary parts
▶ Or keep them but keep track of them
▶ Digamma functions contributing or not to a given branch choice. Conjugate

choice

β
(5)η
2,−1(γ) = −

√
π/5

967680
a5 sin3 γ

[(
12017 + 17775 cos(2γ)

)
+ 96768α− η32256(1 + 4α) cos γ

]
.

Conservative η = 0. Absorption η = ±1.Outgoing boundary conditions at r+ results
η → −η terms. . η = 0 ⇒ Reflective boundary conditions

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation



17

Spin 5 and 6, anomalous terms

▶ Non-polynomilas for i > 4.

β
(5)
2,−1(γ) =

√
π/5 sin3 γ

42247941120

[
− 43659(12017 + 17775 cos(2γ))a⋆5 − 1408264704 cos(γ) ia⋆4κ̂

− 704132352
(
(1 − 2 cos γ)ψ(0)(−ia⋆/κ̂) + (1 + 2 cos γ)ψ(0)(ia⋆/κ̂)

)
a⋆3

− 5633058816
(
sin2(γ/2)ψ(0)(−2ia⋆/κ̂) + cos2(γ/2)ψ(0)(2ia⋆/κ̂)

)
a⋆3

]
,

here κ̂ =
√
1− a⋆2

▶ Absorption (imaginary contributions) [Dolan 2008]
▶ Non-rational functions
▶ Discontinuity at a⋆ = 1. Choice of a branch for analytic extension
▶ Conservative amplitude: Absorption removal by dropping the imaginary parts
▶ Or keep them but keep track of them
▶ Digamma functions contributing or not to a given branch choice. Conjugate

choice

β
(5)η
2,−1(γ) = −

√
π/5

967680
a5 sin3 γ

[(
12017 + 17775 cos(2γ)

)
+ 96768α− η32256(1 + 4α) cos γ

]
.

Conservative η = 0. Absorption η = ±1.

Outgoing boundary conditions at r+ results
η → −η terms. . η = 0 ⇒ Reflective boundary conditions
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Compton Matching

Compton modes are given as integrals on the 2-sphere

f′QFTlm (γ) =

∫
dΩ′

−2Y∗lm(θ, ϕ
′)⟨A4(γ, θ, ϕ

′)⟩, (4)

For our mode example

β
(5)QFT
2,−1 (γ) = −

√
π/5

967680
a5 sin3 γ

[
12017 + 17775 cos(2γ) + 20160(4 + 3 cos(2γ))c(0)2 + 60480c(0)3

− 10080(7 + 6 cos(2γ))c(1)2 − 30240c(1)3 + 120960 cos γ
(
c(2)2 cos γ − c(0+1+2)

4
)]
,

(5)

Agreement of the QFT and BHPT results means the equality

f′QFTlm (γ) = f′BHPTlm (γ) , (6)

is satisfied for all values of l,m.
▶ Linear system of equations for the Compton coefficients
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Spin 6 results

▶ Not shift symmetry, even for η = 0
▶ up to a5, for η = α = 0, Shift-symmetric amplitude, Not true at a6 :(
▶ Same helicity: e(k2−k3)·a does not changes up to a6.
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Exact Kerr matching

▶ No ambiguity in the interpretation of the Compton operators for exact Kerr
matching
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Conclusions
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Conclusions

▶ We have extracted a unique conservative (η = 0) amplitude up to the sixth order in spin
from solutions of the Teukolsky equation. Unfortunately the solutions do not preserve
spin-shift-symmetry

▶ BH horizon dissipative effects can be accounted for in a gravitational Compton ansatz,
with operators proportional to |a|. Imaginary contributions: branch choice subtlety that
needs further investigation.

▶ How does the Spin supplementary condition change by allowing |a| operators?

▶ But how about real Kerr? (a⋆ < 1). Extract all orders in G solutions from Teukolsky.
▶ Future: Higher spins, higher loops.
▶ Double copy and the relation to

√
Kerr ?: Linear electromagnetic perturbations of

Kerr-Newman in the GM → 0 limit
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Extra slides
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Gravitational waves era and templates demand

GW templates should have into account as much information about the binary as
possible. In particular:

▶ spin effects: Expected to be measured with great precision in LISA for nearly
extremal BH [Burke et al 2020]

▶ Astrophysical implications: Spin effects⇒ information about the Binary’s
formation mechanism

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation
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Spin-shift symmetry

▶ Low spin observations [Bern + 2022, Aoude+ 2022]: Opposite helicity
amplitude e(2w−k2−k3)·a invariant under (See R. Roiban review talk)

aµ → aµ + ςbqµ/q2 ,

but not same helicity amplutude e(k2−k3)·a

▶ In this talk: Does this symmetry emerge from Teukolsky solutions?
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Near/Far zone separation

Love proposal [Ivanov +, 2022]

B(refl)sℓm

B(inc)sℓm

=
1
ω2s

1 + ieiπν K−ν−1
Kν

1 + ie−iπν sin(π(ν−s+iϵ))
sin(π(ν+s−iϵ))

K−ν−1
Kν︸ ︷︷ ︸

Near zone

×
Aν
−

Aν
+

eiϵ(2 ln ϵ−(1−κ))

︸ ︷︷ ︸
Far zone

⇒

▶ Match the exponential up to a3

▶ Contact deformations at a4

▶ Extra, non-contact contribution to the Compton at a5

∆fξ =e(0)1
(w·a)5

ξ2
+ e(1)1

(w·a)5(k2·a)(−k3·a)
ξ

+ (w·a − k2·a)(w·a + k3·a)w·a
(
e(2)1 (k2·a)(−k3·a) − e(0)1 (w·a)2

)
▶ On the good side, only polynomials in a⋆
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2PM aligned-spins scattering angle

θ
(4)
◁ = θ

(4)
◁ ,GOV −

45πG2m2Eb
32v2γ2(b2 − a22)7/2

c(0+1+2)
1

▶ Digamma contributions drop out from the scattering angle

▶ Kerr: c(0+1+2)
1 = 0, c(0+1+2)

2 = 0 , c(0+1+2)
6 = 8

45 , and c
(0+1+2)
7 = 0
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Famous BBH formation mechanisms

Credits: [Sylvia Biscoveanu 2021 talk @ PI]
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