Higher Spin Amplitudes from the Teukolsky Equation

Yilber Fabian Bautista With: A. Guevara, C. Kavanagh, J. Vines
IPhT-Saclay

2212.07965 and 2107.10179

December 16th, 2022

Motivation and overview

Two-body problem: Amplitudes approach

Two-body problem: Amplitudes approach

- Exploit the power of unitarity: Start from building blocks A_{n}

- Exploit the power of unitarity: Start from building blocks A_{n}
- Better make sure we have the correct building blocks !!

Do minimal coupling spinning amplitudes have actually anything to do with Kerr?

Do minimal coupling spinning amplitudes have actually
anything to do with Kerr?
One can only be sure by matching amplitudes to actual GR computations!

Matching to static solutions

Kerr Black hole as elementary particles

1. The minimal coupling 3 pt. amplitude encodes essentially the same information the linearized Kerr metric [Guevara et al 2018;Huang et al 2028;Arkani-Hamed et al 2019] (See also Johansson tak)

Kerr Black hole as elementary particles

1. The minimal coupling 3 pt. amplitude encodes essentially the same information the linearized Kerr metric [Guevara et al 2018;Huang et al 2028;Arkani-Hamed et al 2019] (See also Johansson tak)

- Hilbert space matching and classical limit combines the spin exponential operators (trivial at 3pt, but not at 4pts)
- No-radiation in $(3,1)$ signature, but in $(2,2) \Rightarrow$ Radiation modes

Kerr Black hole as elementary particles

1. The minimal coupling 3 pt. amplitude encodes essentially the same information the linearized Kerr metric [Guevara et al 2018;Huang et al 2028;Arkani-Hamed et al 2019]
(See also Johansson tak)

- Hilbert space matching and classical limit combines the spin exponential operators (trivial at 3pt, but not at 4pts)
- No-radiation in $(3,1)$ signature, but in $(2,2) \Rightarrow$ Radiation modes

On the gravitational side: $\mathcal{O}(G)$-Kerr metric [Vines 2017]
$h_{\mu \nu}^{\text {Kerr }}=P_{\mu \nu \alpha \beta} p^{\alpha}\left[p^{\beta} \cosh (a \cdot \partial)+\epsilon^{\beta \gamma \rho \sigma} p_{\gamma} a_{\rho} \partial_{\sigma} \frac{\sinh (a \cdot \partial)}{a \cdot \partial}\right] \frac{G m}{r} \xrightarrow{(2,2)} P_{\mu \nu \rho \sigma} p^{\rho} p^{\sigma} e^{ \pm a \cdot \partial} \frac{G m}{r}$

Kerr Black hole as elementary particles

1. The minimal coupling 3 pt. amplitude encodes essentially the same information the linearized Kerr metric [Guevara et al 2018;Huang et al 2028;Arkani-Hamed et al 2019] (See also Johansson tak)

- Hilbert space matching and classical limit combines the spin exponential operators (trivial at 3pt, but not at 4pts)
- No-radiation in $(3,1)$ signature, but in $(2,2) \Rightarrow$ Radiation modes

On the gravitational side: $\mathcal{O}(G)$-Kerr metric [Vines 2017]
$h_{\mu \nu}^{\text {Kerr }}=P_{\mu \nu \alpha \beta} p^{\alpha}\left[p^{\beta} \cosh (a \cdot \partial)+\epsilon^{\beta \gamma \rho \sigma} p_{\gamma} a_{\rho} \partial_{\sigma} \frac{\sinh (a \cdot \partial)}{a \cdot \partial}\right] \frac{G m}{r} \xrightarrow{(2,2)} P_{\mu \nu \rho \sigma} p^{\rho} p^{\sigma} e^{ \pm a \cdot \partial} \frac{G m}{r}$

Same exponential structure as for the infinite spin amplitude!

- Linearization erases the BH horizon, $\frac{a}{\mathrm{GM}}<1 \Rightarrow \frac{a}{\mathrm{GM}} \gg 1$ Not Kerr but rather a naked ring singularity

Dynamics matching

Kerr Linear perturbations

2. Linear perturbations of Kerr sourced by a small orbiting body (aligned-spins, equatorial scattering) [Siemonsen-Vines 2019]. Checks through a^{3} at G^{2}. red-shift and procession frequency \Rightarrow geodesic motion deviation due to Gravitational self-force of the perturbation

Kerr Linear perturbations

2. Linear perturbations of Kerr sourced by a small orbiting body (aligned-spins, equatorial scattering) [Siemonsen-Vines 2019]. Checks through a^{3} at G^{2}. red-shift and procession frequency \Rightarrow geodesic motion deviation due to Gravitational self-force of the perturbation

3. In this talk: BH stability under small wave perturbation (generic spin-orientation).Checks through a^{6} for GWs

The higher spin Gravitational Compton amplitude

Gravitational Compton amplitude: BCFW extrapolation

The same helicity configuration

$$
A_{h=2}^{++} \sim \frac{M^{4}[23]^{4}}{\left(s-M^{2}\right)^{2} t} e^{-\left(k_{2}-k_{3}\right) \cdot a}
$$

- Only physical poles for any a.

Gravitational Compton amplitude: BCFW extrapolation

The same helicity configuration

$$
A_{h=2}^{++} \sim \frac{M^{4}[23]^{4}}{\left(s-M^{2}\right)^{2} t} e^{-\left(k_{2}-k_{3}\right) \cdot a}
$$

- Only physical poles for any a. In principle, a good higher spin amplitude

Gravitational Compton amplitude: BCFW extrapolation

The same helicity configuration

$$
A_{h=2}^{++} \sim \frac{M^{4}[23]^{4}}{\left(s-M^{2}\right)^{2} t} e^{-\left(k_{2}-k_{3}\right) \cdot a}
$$

- Only physical poles for any a. In principle, a good higher spin amplitude The opposite helicity configuration $\epsilon_{2}=\frac{\sqrt{2} \mid 3]\langle 2|}{[32]} \propto \tilde{\epsilon}_{3}$

$$
A_{h=2}^{+-} \sim \frac{\left.\left(\langle 2| p_{1} \mid 3\right]\right)^{4}}{\left(s-M^{2}\right)^{2} t} e^{\left(2 w-k_{3}-k_{2}\right) \cdot a}, \text { with } w^{\mu}=\frac{s-M^{2}}{2 p_{1} \cdot \epsilon_{2}} \epsilon_{2}^{\mu}
$$

- Unphysical pole starting at a^{5}.

Gravitational Compton amplitude: BCFW extrapolation

The same helicity configuration

$$
A_{h=2}^{++} \sim \frac{M^{4}[23]^{4}}{\left(s-M^{2}\right)^{2} t} e^{-\left(k_{2}-k_{3}\right) \cdot a}
$$

- Only physical poles for any a. In principle, a good higher spin amplitude The opposite helicity configuration $\epsilon_{2}=\frac{\sqrt{2} \mid 3]\langle 2|}{[32]} \propto \tilde{\epsilon}_{3}$

$$
A_{h=2}^{+-} \sim \frac{\left.\left(\langle 2| p_{1} \mid 3\right]\right)^{4}}{\left(s-M^{2}\right)^{2} t} e^{\left(2 w-k_{3}-k_{2}\right) \cdot a}, \text { with } w^{\mu}=\frac{s-M^{2}}{2 p_{1} \cdot \epsilon_{2}} \epsilon_{2}^{\mu}
$$

- Unphysical pole starting at a^{5}. Not a good higher spin amplitude \because

Gravitational Compton amplitude: BCFW extrapolation

The same helicity configuration

$$
A_{h=2}^{++} \sim \frac{M^{4}[23]^{4}}{\left(s-M^{2}\right)^{2} t} e^{-\left(k_{2}-k_{3}\right) \cdot a}
$$

- Only physical poles for any a. In principle, a good higher spin amplitude The opposite helicity configuration $\epsilon_{2}=\frac{\sqrt{2} \mid 3]\langle 2|}{[32]} \propto \tilde{\epsilon}_{3}$

$$
A_{h=2}^{+-} \sim \frac{\left.\left(\langle 2| p_{1} \mid 3\right]\right)^{4}}{\left(s-M^{2}\right)^{2} t} e^{\left(2 w-k_{3}-k_{2}\right) \cdot a}, \text { with } w^{\mu}=\frac{s-M^{2}}{2 p_{1} \cdot \epsilon_{2}} \epsilon_{2}^{\mu}
$$

- Unphysical pole starting at a^{5}. Not a good higher spin amplitude \Rightarrow Still useful exponential, Just need to cure uphysical behavior.

Gravitational Compton amplitude: BCFW extrapolation

The same helicity configuration

$$
A_{h=2}^{++} \sim \frac{M^{4}[23]^{4}}{\left(s-M^{2}\right)^{2} t} e^{-\left(k_{2}-k_{3}\right) \cdot a}
$$

- Only physical poles for any a. In principle, a good higher spin amplitude
 The opposite helicity configuration $\epsilon_{2}=\frac{\sqrt{2} \mid 3]\langle 2|}{[32]} \propto \tilde{\epsilon}_{3}$

$$
A_{h=2}^{+-} \sim \frac{\left.\left(\langle 2| p_{1} \mid 3\right]\right)^{4}}{\left(s-M^{2}\right)^{2} t} e^{\left(2 w-k_{3}-k_{2}\right) \cdot a}, \text { with } w^{\mu}=\frac{s-M^{2}}{2 p_{1} \cdot \epsilon_{2}} \epsilon_{2}^{\mu}
$$

- Unphysical pole starting at a^{5}. Not a good higher spin amplitude \Rightarrow

Still useful exponential, Just need to cure uphysical behavior. At a given order in spin, we seek an ansatz of the form

$$
\left\langle A_{h=2}^{S}\right\rangle=\underbrace{\left\langle A_{h=2}^{\circ}\right\rangle}_{\text {Helicity-weights }} \times \underbrace{\left(e^{\left(2 w-k_{3}-k_{2}\right) \cdot a}+f_{\xi}\left(k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right)\right)_{2 S}}_{\text {spin-Information }} \cdot
$$

The higher spin ansatz

Build the function f_{ξ} spin basis $\left\{k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right\}$ under certain physical assumptions:

The higher spin ansatz

Build the function f_{ξ} spin basis $\left\{k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right\}$ under certain physical assumptions:

- Locality and Unitarity; correct 3-pt factorization. $\Rightarrow\left\langle A_{4}^{\circ}\right\rangle \times f_{\xi}$ can only contain contact terms

The higher spin ansatz

Build the function f_{ξ} spin basis $\left\{k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right\}$ under certain physical assumptions:

- Locality and Unitarity; correct 3-pt factorization. $\Rightarrow\left\langle A_{4}^{\circ}\right\rangle \times f_{\xi}$ can only contain contact terms
- Crossing symmetry: Same classical amplitude in chiral and anti-chiral basis $A_{n}^{h=2, s}=\left\langle\varepsilon_{n}\right| A_{n}^{\text {chir. }}\left|\varepsilon_{1}\right\rangle=\left[\varepsilon_{n}\left|A_{n}^{\text {antichir. }}\right| \varepsilon_{1}\right], \Rightarrow f_{\xi}(k 2, k 3, w)=f_{\xi}(k 3, k 2, w)$

The higher spin ansatz

Build the function f_{ξ} spin basis $\left\{k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right\}$ under certain physical assumptions:

- Locality and Unitarity; correct 3-pt factorization. $\Rightarrow\left\langle A_{4}^{\circ}\right\rangle \times f_{\xi}$ can only contain contact terms
- Crossing symmetry: Same classical amplitude in chiral and anti-chiral basis $A_{n}^{h=2, s}=\left\langle\varepsilon_{n}\right| A_{n}^{\text {chir. }}\left|\varepsilon_{1}\right\rangle=\left[\varepsilon_{n}\left|A_{n}^{\text {antichir. }}\right| \varepsilon_{1}\right], \Rightarrow f_{\xi}\left(k 2, k_{3}, w\right)=f_{\xi}\left(k_{3}, k_{2}, w\right)$
$-\left\langle A_{4}^{\circ}\right\rangle \times f_{\xi}$ must cancel unphysical pole $\left.\langle 2| p_{1} \mid 3\right] \propto 1+\xi$ Here

$$
\xi^{-1}=\frac{M^{2} t}{\left(s-M^{2}\right)^{2}}=-\sin ^{2}(\theta / 2) \rightarrow-1
$$

starting at a^{5}.

The higher spin ansatz

Build the function f_{ξ} spin basis $\left\{k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right\}$ under certain physical assumptions:

- Locality and Unitarity; correct 3-pt factorization. $\Rightarrow\left\langle A_{4}^{\circ}\right\rangle \times f_{\xi}$ can only contain contact terms
- Crossing symmetry: Same classical amplitude in chiral and anti-chiral basis $A_{n}^{h=2, s}=\left\langle\varepsilon_{n}\right| A_{n}^{\text {chir. }}\left|\varepsilon_{1}\right\rangle=\left[\varepsilon_{n}\left|A_{n}^{\text {antichir. }}\right| \varepsilon_{1}\right], \Rightarrow f_{\xi}(k 2, k 3, w)=f_{\xi}\left(k_{3}, k_{2}, w\right)$
$-\left\langle A_{4}^{\circ}\right\rangle \times f_{\xi}$ must cancel unphysical pole $\left.\langle 2| p_{1} \mid 3\right] \propto 1+\xi$ Here

$$
\xi^{-1}=\frac{M^{2} t}{\left(s-M^{2}\right)^{2}}=-\sin ^{2}(\theta / 2) \rightarrow-1
$$

starting at a^{5}. Strategy: Laurent-expand in ξ :

$$
f_{\xi}\left(k_{2} \cdot a,-k_{3} \cdot a, w \cdot a\right)=\sum_{m} \xi^{m} f^{(m)}\left(k_{2} \cdot a,-k_{3} \cdot a, w \cdot a\right)
$$

The higher spin ansatz

Build the function f_{ξ} spin basis $\left\{k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right\}$ under certain physical assumptions:

- Locality and Unitarity; correct 3-pt factorization. $\Rightarrow\left\langle A_{4}^{\circ}\right\rangle \times f_{\xi}$ can only contain contact terms
- Crossing symmetry: Same classical amplitude in chiral and anti-chiral basis $A_{n}^{h=2, s}=\left\langle\varepsilon_{n}\right| A_{n}^{\text {chir. }}\left|\varepsilon_{1}\right\rangle=\left[\varepsilon_{n}\left|A_{n}^{\text {antichir. }}\right| \varepsilon_{1}\right], \Rightarrow f_{\xi}(k 2, k 3, w)=f_{\xi}(k 3, k 2, w)$
$-\left\langle A_{4}^{\circ}\right\rangle \times f_{\xi}$ must cancel unphysical pole $\left.\langle 2| p_{1} \mid 3\right] \propto 1+\xi$ Here

$$
\xi^{-1}=\frac{M^{2} t}{\left(s-M^{2}\right)^{2}}=-\sin ^{2}(\theta / 2) \rightarrow-1
$$

starting at a^{5}. Strategy: Laurent-expand in ξ :

$$
f_{\xi}\left(k_{2} \cdot a,-k_{3} \cdot a, w \cdot a\right)=\sum_{m} \xi^{m} f^{(m)}\left(k_{2} \cdot a,-k_{3} \cdot a, w \cdot a\right)
$$

- Laurent expansion introduces poles in $\xi\left(s-M^{2}\right)$, each cancelled by operator $(w \cdot a)^{2}$. Furthermore, $\left\langle A_{4}^{0}\right\rangle$ contains a simple pole in ξ. This gives

$$
f^{(m)} \propto(w \cdot a)^{2-2 m} \quad \text { for } \quad m \leq 1
$$

- Each power of ξ introduces poles in $t=[23]\langle 32\rangle$. To cancel such poles we invoke:

$$
\begin{array}{lll}
\mathrm{w}^{\mu} \rightarrow k_{2}^{\mu} & \text { as } & \langle 23\rangle \rightarrow 0 \\
\mathrm{w}^{\mu} \rightarrow k_{3}^{\mu} & \text { as } & {[23] \rightarrow 0 .}
\end{array}
$$

- Each power of ξ introduces poles in $t=[23]\langle 32\rangle$. To cancel such poles we invoke:

$$
\begin{array}{lll}
w^{\mu} \rightarrow k_{2}^{\mu} & \text { as } & \langle 23\rangle \rightarrow 0 \\
w^{\mu} \rightarrow k_{3}^{\mu} & \text { as } & {[23] \rightarrow 0 .}
\end{array}
$$

Then, a pole in t is cancelled by $\left(w \cdot a-k_{2} \cdot a\right)\left(w \cdot a-k_{3} \cdot a\right)$: This implies

$$
f^{(m)} \propto\left(w \cdot a-k_{2} \cdot a\right)^{m+1}\left(w \cdot a-k_{3} \cdot a\right)^{m+1} \quad \text { for } \quad m \geq-1
$$

Each power of ξ introduces poles in $t=[23]\langle 32\rangle$. To cancel such poles we invoke:

$$
\begin{array}{lll}
w^{\mu} \rightarrow k_{2}^{\mu} & \text { as } & \langle 23\rangle \rightarrow 0 \\
w^{\mu} \rightarrow k_{3}^{\mu} & \text { as } & {[23] \rightarrow 0 .}
\end{array}
$$

Then, a pole in t is cancelled by $\left(w \cdot a-k_{2} \cdot a\right)\left(w \cdot a-k_{3} \cdot a\right)$: This implies

$$
f^{(m)} \propto\left(w \cdot a-k_{2} \cdot a\right)^{m+1}\left(w \cdot a-k_{3} \cdot a\right)^{m+1} \quad \text { for } \quad m \geq-1
$$

- Caveat: The identity The classical identity [Gram determinant relation in Aoude's talk]

$$
-\frac{\left(s-M^{2}\right)\left(u-M^{2}\right)}{4 M^{2}} a^{2} \approx \omega^{2} a^{2} \approx \xi\left(w \cdot a-k_{2} \cdot a\right)\left(w \cdot a-k_{3} \cdot a\right)+(w \cdot a)^{2}
$$

\Rightarrow the quadratic Casimir is not independent of our $\left\{k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right\}$ basis. But $|a|$ is! So we can implement operators proportional to $|a| \omega$, with $\omega=\frac{s-M^{2}}{2 M}$

Each power of ξ introduces poles in $t=[23]\langle 32\rangle$. To cancel such poles we invoke:

$$
\begin{array}{lll}
w^{\mu} \rightarrow k_{2}^{\mu} & \text { as } & \langle 23\rangle \rightarrow 0 \\
w^{\mu} \rightarrow k_{3}^{\mu} & \text { as } & {[23] \rightarrow 0 .}
\end{array}
$$

Then, a pole in t is cancelled by $\left(w \cdot a-k_{2} \cdot a\right)\left(w \cdot a-k_{3} \cdot a\right)$: This implies

$$
f^{(m)} \propto\left(w \cdot a-k_{2} \cdot a\right)^{m+1}\left(w \cdot a-k_{3} \cdot a\right)^{m+1} \quad \text { for } \quad m \geq-1
$$

- Caveat: The identity The classical identity [Gram determinant relation in Aoude's talk]

$$
-\frac{\left(s-M^{2}\right)\left(u-M^{2}\right)}{4 M^{2}} a^{2} \approx \omega^{2} a^{2} \approx \xi\left(w \cdot a-k_{2} \cdot a\right)\left(w \cdot a-k_{3} \cdot a\right)+(w \cdot a)^{2}
$$

\Rightarrow the quadratic Casimir is not independent of our $\left\{k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right\}$ basis. But $|a|$ is! So we can implement operators proportional to $|a| \omega$, with $\omega=\frac{s-M^{2}}{2 M}$

- Special role: Track BH horizon dynamics!!

After putting all the ingredients together we can parametrize the Compton ansatz via

$$
\begin{align*}
f_{\xi}= & \sum_{m=0}^{2} \xi^{m-1}(w \cdot a)^{4-2 m}\left(w \cdot a-k_{2} \cdot a\right)^{m}\left(w \cdot a-k_{3} \cdot a\right)^{m} r_{|a|}^{(m)}\left(k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right) \\
& +\sum_{m=0}^{\infty}\left[\frac{(w \cdot a)^{2 m+6}}{\xi^{m+2}} p_{|a|}^{(m)}\left(k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right)\right. \\
& \left.+\xi^{m+2}\left(w \cdot a-k_{2} \cdot a\right)^{m+3}\left(w \cdot a-k_{3} \cdot a\right)^{m+3} a_{|a|}^{(m)}\left(k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right)\right] \tag{1}
\end{align*}
$$

After putting all the ingredients together we can parametrize the Compton ansatz via

$$
\begin{align*}
f_{\xi}= & \sum_{m=0}^{2} \xi^{m-1}(w \cdot a)^{4-2 m}\left(w \cdot a-k_{2} \cdot a\right)^{m}\left(w \cdot a-k_{3} \cdot a\right)^{m} r_{|a|}^{(m)}\left(k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right) \\
& +\sum_{m=0}^{\infty}\left[\frac{(w \cdot a)^{2 m+6}}{\xi^{m+2}} p_{|a|}^{(m)}\left(k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right)\right. \\
& \left.+\xi^{m+2}\left(w \cdot a-k_{2} \cdot a\right)^{m+3}\left(w \cdot a-k_{3} \cdot a\right)^{m+3} q_{|a|}^{(m)}\left(k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right)\right] \tag{1}
\end{align*}
$$

$-p_{|a|}^{(m)}, a_{|a|}^{(m)}, r_{|a|}^{(m)}$ are polynomials, symmetric in their first two arguments

- Polynomial include linear correction in $\omega|a|$

After putting all the ingredients together we can parametrize the Compton ansatz via

$$
\begin{align*}
f_{\xi}= & \sum_{m=0}^{2} \xi^{m-1}(w \cdot a)^{4-2 m}\left(w \cdot a-k_{2} \cdot a\right)^{m}\left(w \cdot a-k_{3} \cdot a\right)^{m} r_{|a|}^{(m)}\left(k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right) \\
& +\sum_{m=0}^{\infty}\left[\frac{(w \cdot a)^{2 m+6}}{\xi^{m+2}} p_{|a|}^{(m)}\left(k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right)\right. \\
& \left.+\xi^{m+2}\left(w \cdot a-k_{2} \cdot a\right)^{m+3}\left(w \cdot a-k_{3} \cdot a\right)^{m+3} q_{|a|}^{(m)}\left(k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right)\right] \tag{1}
\end{align*}
$$

$-p_{|a|}^{(m)}, a_{|a|}^{(m)}, r_{|a|}^{(m)}$ are polynomials, symmetric in their first two arguments

- Polynomial include linear correction in $\omega|a|$
- Contact terms starting at a^{4} [Huang + 2018; Bern+ 2022; Aoude + 2O22]

Compton up to sixth order in spin

The r-polynomial

$$
\begin{align*}
r_{|a|}^{(m)}= & c_{1}^{(m)}+c_{2}^{(m)}\left(k_{2} \cdot a+k_{3} \cdot a\right)+c_{3}^{(m)} w \cdot a+c_{4}^{(m)}|a| \omega \\
& +c_{5}^{(m)}\left(w \cdot a-k_{2} \cdot a\right)\left(w \cdot a-k_{3} \cdot a\right) \\
& +c_{6}^{(m)}\left(2 w \cdot a-k_{2} \cdot a-k_{3} \cdot a\right) w \cdot a \tag{2}\\
& +c_{7}^{(m)}\left(2 w \cdot a-k_{2} \cdot a-k_{3} \cdot a\right)^{2}+c_{8}^{(m)}(w \cdot a)^{2} \\
& +c_{9}^{(m)}\left(k_{2} \cdot a+k_{3} \cdot a\right)|a| \omega+c_{10}^{(m)} w \cdot a|a| \omega+\mathcal{O}\left(a^{3}\right)
\end{align*}
$$

The $p-$ and q-polynomilas

$$
\begin{equation*}
p_{|a|}^{(m)}=d_{1}^{(m)}+\mathcal{O}(a), \quad q_{|a|}^{(m)}=f_{1}^{(m)}+\mathcal{O}(a) \tag{3}
\end{equation*}
$$

Compton up to sixth order in spin

The r-polynomial

$$
\begin{align*}
r_{|a|}^{(m)}= & c_{1}^{(m)}+c_{2}^{(m)}\left(k_{2} \cdot a+k_{3} \cdot a\right)+c_{3}^{(m)} w \cdot a+c_{4}^{(m)}|a| \omega \\
& +c_{5}^{(m)}\left(w \cdot a-k_{2} \cdot a\right)\left(w \cdot a-k_{3} \cdot a\right) \\
& +c_{6}^{(m)}\left(2 w \cdot a-k_{2} \cdot a-k_{3} \cdot a\right) w \cdot a \tag{2}\\
& +c_{7}^{(m)}\left(2 w \cdot a-k_{2} \cdot a-k_{3} \cdot a\right)^{2}+c_{8}^{(m)}(w \cdot a)^{2} \\
& +c_{9}^{(m)}\left(k_{2} \cdot a+k_{3} \cdot a\right)|a| \omega+c_{10}^{(m)} w \cdot a|a| \omega+\mathcal{O}\left(a^{3}\right)
\end{align*}
$$

The p - and q-polynomilas

$$
\begin{equation*}
p_{|a|}^{(m)}=d_{1}^{(m)}+\mathcal{O}(a), \quad q_{|a|}^{(m)}=f_{1}^{(m)}+\mathcal{O}(a) \tag{3}
\end{equation*}
$$

- 3-free conservative operators at a^{4}
- 5 conservative +3 dissipative free operators at a^{5}
- 12 conservative (19 LD operators in [Aoude+2022]) +5 dissipative free operators at a^{6}

The gravitational setup

BHPT

BHPT

- [Teukolsky 1972]. NP formalism: Linear perturbations $\Psi_{4}=\Psi_{4}^{B}+\delta \Psi_{4} . \Rightarrow$ Separation of variables in Kerr [See C. Kavanagh self-force review talk]. Radiative content in the scalar

$$
{ }_{h} \psi \sim \sum_{\ell m} e^{-i \omega t}{ }_{h} Z_{\ell m \omega h} R_{\ell m \omega}(r)_{h} S_{\ell m}(\vartheta, \varphi, a \omega) \sim A_{h}
$$

BHPT

- [Teukolsky 1972]. NP formalism: Linear perturbations $\Psi_{4}=\Psi_{4}^{B}+\delta \Psi_{4} . \Rightarrow$ Separation of variables in Kerr [See C. Kavanagh self-force review talk]. Radiative content in the scalar

$$
{ }_{h} \psi \sim \sum_{\ell m} e^{-i \omega t}{ }_{h} Z_{\ell m \omega h} R_{\ell m \omega}(r)_{h} S_{\ell m}(\vartheta, \varphi, a \omega) \sim A_{h}
$$

- Asymptotic behavior:

$$
{ }_{h} R_{\operatorname{lm} \omega} \sim \begin{cases}\frac{B_{l m \omega}^{(\text {inc) }}\left(a^{\star}, \epsilon\right)}{r} e^{-i \omega r^{*}}+\frac{B_{I m \omega}^{(r e f)}\left(a^{\star}, \epsilon\right)}{r^{(\text {(r) }}} e^{i \omega r^{*}} & r^{*} \rightarrow \infty,(r \rightarrow \infty) \\ \underbrace{B_{l m \omega}^{\text {trans }}\left(a^{\star}, \epsilon\right) \frac{e^{-i \Omega_{+} r^{*}}}{\Delta^{h}}}_{\text {purelly ingoing @ } r_{+}} & r^{*} \rightarrow-\infty,\left(r \rightarrow r_{+}\right)\end{cases}
$$

Tree-level Scattering amplitude. Spin 4

- Remove the PW from the asymptotic Teukolsky solution ${ }_{-2} \psi=\psi^{\mathrm{PW}}+\psi^{\mathrm{sW}}$

Tree-level Scattering amplitude. Spin 4

- Remove the PW from the asymptotic Teukolsky solution ${ }_{-2} \psi=\psi^{\mathrm{PW}}+\psi^{\mathrm{SW}}$
- Expand the scattering amplitude $f=r \psi^{\mathrm{sW}}$ in the harmonic basis

$$
f\left(\theta, \phi^{\prime}\right)=\sum_{l=2}^{\infty} \sum_{m=-\infty}^{\infty}{ }_{-2} Y_{l m}\left(\theta, \phi^{\prime}\right) f_{l m}^{\prime}\left(\gamma, \epsilon, a^{\star}\right)
$$

- Mode functions completely determined by $\frac{B_{s m}^{(\text {refl })}}{B_{s e m}^{(\text {(cic) })}}$. Complicated functions of ϵ, a^{\star}

Tree-level Scattering amplitude. Spin 4

- Remove the PW from the asymptotic Teukolsky solution ${ }_{-2} \psi=\psi^{\mathrm{PW}}+\psi^{\mathrm{SW}}$
- Expand the scattering amplitude $f=r \psi^{\mathrm{sW}}$ in the harmonic basis

$$
f\left(\theta, \phi^{\prime}\right)=\sum_{l=2}^{\infty} \sum_{m=-\infty}^{\infty}{ }_{-2} Y_{l m}\left(\theta, \phi^{\prime}\right) f_{l m}^{\prime}\left(\gamma, \epsilon, a^{\star}\right)
$$

- Low energy solutions $\epsilon \ll 1$. Keep $a^{\star}<1 \Rightarrow$ use BHPT tools
$f_{l m}^{\prime \text { BHPT }}(\gamma)=e^{i \phi} \frac{\Gamma(I+1-i \epsilon)}{\Gamma(I+1+i \epsilon)}\left(1+\beta_{l m}^{(1)}\left(\gamma, a^{\star}\right) \epsilon+\beta_{l m}^{(2)}\left(\gamma, a^{\star}\right) \epsilon^{2}+\beta_{l m}^{(3)}\left(\gamma, a^{\star}\right) \epsilon^{3}+\cdots\right)$
- Point particle description $\Rightarrow a^{\star} \gg 1$. Delete BH horizon, naked singularity. keep $a^{\star} \epsilon=2 a \omega$ fixed.

Tree-level Scattering amplitude. Spin 4

- Remove the PW from the asymptotic Teukolsky solution ${ }_{-2} \psi=\psi^{\mathrm{PW}}+\psi^{\mathrm{SW}}$
- Expand the scattering amplitude $f=r \psi^{\mathrm{sW}}$ in the harmonic basis

$$
f\left(\theta, \phi^{\prime}\right)=\sum_{l=2}^{\infty} \sum_{m=-\infty}^{\infty}{ }_{-2} Y_{l m}\left(\theta, \phi^{\prime}\right) f_{l m}^{\prime}\left(\gamma, \epsilon, a^{\star}\right)
$$

- Low energy solutions $\epsilon \ll 1$. Keep $a^{\star}<1 \Rightarrow$ use BHPT tools
$f_{l m}^{\prime \text { BHPT }}(\gamma)=e^{i \phi} \frac{\Gamma(I+1-i \epsilon)}{\Gamma(I+1+i \epsilon)}\left(1+\beta_{l m}^{(1)}\left(\gamma, a^{\star}\right) \epsilon+\beta_{l m}^{(2)}\left(\gamma, a^{\star}\right) \epsilon^{2}+\beta_{l m}^{(3)}\left(\gamma, a^{\star}\right) \epsilon^{3}+\cdots\right)$
- Point particle description $\Rightarrow a^{\star} \gg 1$. Delete BH horizon, naked singularity. keep $a^{\star} \epsilon=2 a \omega$ fixed.
- Up to $i \leq 4$, the $\beta_{l m}^{(i)}\left(\gamma, a^{\star}\right)$ are REAL, and polynomial in a^{\star}. Unique analytic extension Complete agreement with the exponential

Spin 5 and 6, anomalous terms

- Non-polynomilas for $\mathrm{i}>4$.

$$
\begin{aligned}
\beta_{2,-1}^{(5)}(\gamma)= & \frac{\sqrt{\pi / 5} \sin ^{3} \gamma}{42247941120}\left[-43659(12017+17775 \cos (2 \gamma)) a^{\star 5}-1408264704 \cos (\gamma) i a^{\star 4} \hat{\kappa}\right. \\
& -704132352\left((1-2 \cos \gamma) \psi^{(0)}\left(-i a^{\star} / \hat{\kappa}\right)+(1+2 \cos \gamma) \psi^{(o)}\left(i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3} \\
& \left.-5633058816\left(\sin ^{2}(\gamma / 2) \psi^{(0)}\left(-2 i a^{\star} / \hat{\kappa}\right)+\cos ^{2}(\gamma / 2) \psi^{(o)}\left(2 i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3}\right],
\end{aligned}
$$

here $\hat{\kappa}=\sqrt{1-a^{\star 2}}$

Spin 5 and 6, anomalous terms

- Non-polynomilas for $\mathrm{i}>4$.

$$
\begin{aligned}
\beta_{2,-1}^{(5)}(\gamma)= & \frac{\sqrt{\pi / 5} \sin ^{3} \gamma}{42247941120}\left[-43659(12017+17775 \cos (2 \gamma)) a^{\star 5}-1408264704 \cos (\gamma) i a^{\star 4} \hat{\kappa}\right. \\
& -704132352\left((1-2 \cos \gamma) \psi^{(0)}\left(-i a^{\star} / \hat{\kappa}\right)+(1+2 \cos \gamma) \psi^{(o)}\left(i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3} \\
& \left.-5633058816\left(\sin ^{2}(\gamma / 2) \psi^{(0)}\left(-2 i a^{\star} / \hat{\kappa}\right)+\cos ^{2}(\gamma / 2) \psi^{(o)}\left(2 i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3}\right],
\end{aligned}
$$

here $\hat{\kappa}=\sqrt{1-a^{\star 2}}$

- Absorption (imaginary contributions) [Dolan 2008]

Spin 5 and 6, anomalous terms

- Non-polynomilas for $i>4$.

$$
\begin{aligned}
\beta_{2,-1}^{(5)}(\gamma)= & \frac{\sqrt{\pi / 5} \sin ^{3} \gamma}{42247941120}\left[-43659(12017+17775 \cos (2 \gamma)) a^{\star 5}-1408264704 \cos (\gamma) i a^{\star 4} \hat{\kappa}\right. \\
& -704132352\left((1-2 \cos \gamma) \psi^{(0)}\left(-i a^{\star} / \hat{\kappa}\right)+(1+2 \cos \gamma) \psi^{(0)}\left(i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3} \\
& \left.-5633058816\left(\sin ^{2}(\gamma / 2) \psi^{(0)}\left(-2 i a^{\star} / \hat{\kappa}\right)+\cos ^{2}(\gamma / 2) \psi^{(0)}\left(2 i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3}\right],
\end{aligned}
$$

here $\hat{\kappa}=\sqrt{1-a^{\star 2}}$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^{\star}=1$. Choice of a branch for analytic extension

Spin 5 and 6, anomalous terms

- Non-polynomilas for $\mathrm{i}>4$.

$$
\begin{aligned}
\beta_{2,-1}^{(5)}(\gamma)= & \frac{\sqrt{\pi / 5} \sin ^{3} \gamma}{42247941120}\left[-43659(12017+17775 \cos (2 \gamma)) a^{\star 5}-1408264704 \cos (\gamma) i a^{\star 4} \hat{\kappa}\right. \\
& -704132352\left((1-2 \cos \gamma) \psi^{(0)}\left(-i a^{\star} / \hat{\kappa}\right)+(1+2 \cos \gamma) \psi^{(o)}\left(i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3} \\
& \left.-5633058816\left(\sin ^{2}(\gamma / 2) \psi^{(o)}\left(-2 i a^{\star} / \hat{\kappa}\right)+\cos ^{2}(\gamma / 2) \psi^{(o)}\left(2 i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3}\right],
\end{aligned}
$$

here $\hat{\kappa}=\sqrt{1-a^{\star 2}}$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^{\star}=1$. Choice of a branch for analytic extension
- Conservative amplitude: Absorption removal by dropping the imaginary parts

Spin 5 and 6, anomalous terms

- Non-polynomilas for $\mathrm{i}>4$.

$$
\begin{aligned}
\beta_{2,-1}^{(5)}(\gamma)= & \frac{\sqrt{\pi / 5} \sin ^{3} \gamma}{42247941120}\left[-43659(12017+17775 \cos (2 \gamma)) a^{\star 5}-1408264704 \cos (\gamma) i a^{\star 4} \hat{\kappa}\right. \\
& -704132352\left((1-2 \cos \gamma) \psi^{(0)}\left(-i a^{\star} / \hat{\kappa}\right)+(1+2 \cos \gamma) \psi^{(o)}\left(i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3} \\
& \left.-5633058816\left(\sin ^{2}(\gamma / 2) \psi^{(0)}\left(-2 i a^{\star} / \hat{\kappa}\right)+\cos ^{2}(\gamma / 2) \psi^{(o)}\left(2 i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3}\right],
\end{aligned}
$$

here $\hat{\kappa}=\sqrt{1-a^{\star 2}}$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^{\star}=1$. Choice of a branch for analytic extension
- Conservative amplitude: Absorption removal by dropping the imaginary parts
- Or keep them but keep track of them

Spin 5 and 6, anomalous terms

- Non-polynomilas for $\mathrm{i}>4$.

$$
\begin{aligned}
\beta_{2,-1}^{(5)}(\gamma)= & \frac{\sqrt{\pi / 5} \sin ^{3} \gamma}{42247941120}\left[-43659(12017+17775 \cos (2 \gamma)) a^{\star 5}-1408264704 \cos (\gamma) i a^{\star 4} \hat{\kappa}\right. \\
& -704132352\left((1-2 \cos \gamma) \psi^{(0)}\left(-i a^{\star} / \hat{\kappa}\right)+(1+2 \cos \gamma) \psi^{(o)}\left(i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3} \\
& \left.-5633058816\left(\sin ^{2}(\gamma / 2) \psi^{(0)}\left(-2 i a^{\star} / \hat{\kappa}\right)+\cos ^{2}(\gamma / 2) \psi^{(o)}\left(2 i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3}\right],
\end{aligned}
$$

here $\hat{\kappa}=\sqrt{1-a^{\star 2}}$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^{\star}=1$. Choice of a branch for analytic extension
- Conservative amplitude: Absorption removal by dropping the imaginary parts
- Or keep them but keep track of them
- Digamma functions contributing or not to a given branch choice. Conjugate choice

$$
\beta_{2,-1}^{(5) \eta}(\gamma)=-\frac{\sqrt{\pi / 5}}{967680} a^{5} \sin ^{3} \gamma[(12017+17775 \cos (2 \gamma))+96768 \alpha-\eta 32256(1+4 \alpha) \cos \gamma]
$$

Spin 5 and 6, anomalous terms

- Non-polynomilas for $i>4$.

$$
\begin{aligned}
\beta_{2,-1}^{(5)}(\gamma)= & \frac{\sqrt{\pi / 5} \sin ^{3} \gamma}{42247941120}\left[-43659(12017+17775 \cos (2 \gamma)) a^{\star 5}-1408264704 \cos (\gamma) i a^{\star 4} \hat{\kappa}\right. \\
& -704132352\left((1-2 \cos \gamma) \psi^{(0)}\left(-i a^{\star} / \hat{\kappa}\right)+(1+2 \cos \gamma) \psi^{(o)}\left(i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3} \\
& \left.-5633058816\left(\sin ^{2}(\gamma / 2) \psi^{(0)}\left(-2 i a^{\star} / \hat{\kappa}\right)+\cos ^{2}(\gamma / 2) \psi^{(o)}\left(2 i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3}\right],
\end{aligned}
$$

here $\hat{\kappa}=\sqrt{1-a^{\star 2}}$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^{\star}=1$. Choice of a branch for analytic extension
- Conservative amplitude: Absorption removal by dropping the imaginary parts
- Or keep them but keep track of them
- Digamma functions contributing or not to a given branch choice. Conjugate choice

$$
\beta_{2,-1}^{(5) \eta}(\gamma)=-\frac{\sqrt{\pi / 5}}{967680} a^{5} \sin ^{3} \gamma[(12017+17775 \cos (2 \gamma))+96768 \alpha-\eta 32256(1+4 \alpha) \cos \gamma]
$$

Conservative $\eta=0$. Absorption $\eta= \pm 1$.

Spin 5 and 6, anomalous terms

- Non-polynomilas for $i>4$.

$$
\begin{aligned}
\beta_{2,-1}^{(5)}(\gamma)= & \frac{\sqrt{\pi / 5} \sin ^{3} \gamma}{42247941120}\left[-43659(12017+17775 \cos (2 \gamma)) a^{\star 5}-1408264704 \cos (\gamma) i a^{\star 4} \hat{\kappa}\right. \\
& -704132352\left((1-2 \cos \gamma) \psi^{(0)}\left(-i a^{\star} / \hat{\kappa}\right)+(1+2 \cos \gamma) \psi^{(0)}\left(i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3} \\
& \left.-5633058816\left(\sin ^{2}(\gamma / 2) \psi^{(0)}\left(-2 i a^{\star} / \hat{\kappa}\right)+\cos ^{2}(\gamma / 2) \psi^{(0)}\left(2 i a^{\star} / \hat{\kappa}\right)\right) a^{\star 3}\right],
\end{aligned}
$$

here $\hat{\kappa}=\sqrt{1-a^{\star 2}}$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^{\star}=1$. Choice of a branch for analytic extension
- Conservative amplitude: Absorption removal by dropping the imaginary parts
- Or keep them but keep track of them
- Digamma functions contributing or not to a given branch choice. Conjugate choice

$$
\beta_{2,-1}^{(5) \eta}(\gamma)=-\frac{\sqrt{\pi / 5}}{967680} a^{5} \sin ^{3} \gamma[(12017+17775 \cos (2 \gamma))+96768 \alpha-\eta 32256(1+4 \alpha) \cos \gamma]
$$

Conservative $\eta=0$. Absorption $\eta= \pm 1$. Outgoing boundary conditions at r_{+}results $\eta \rightarrow-\eta$ terms. . $\eta=0 \Rightarrow$ Reflective boundary conditions

Compton Matching

Compton modes are given as integrals on the 2 -sphere

$$
\begin{equation*}
f_{l m}^{\prime \text { OFT }}(\gamma)=\int d \Omega_{-2}^{\prime} Y_{l m}^{*}\left(\theta, \phi^{\prime}\right)\left\langle\mathrm{A}_{4}\left(\gamma, \theta, \phi^{\prime}\right)\right\rangle, \tag{4}
\end{equation*}
$$

Compton Matching

Compton modes are given as integrals on the 2 -sphere

$$
\begin{equation*}
f_{l m}^{\prime \text { QFT }}(\gamma)=\int d \Omega_{-2}^{\prime} Y_{l m}^{*}\left(\theta, \phi^{\prime}\right)\left\langle A_{4}\left(\gamma, \theta, \phi^{\prime}\right)\right\rangle \tag{4}
\end{equation*}
$$

For our mode example

$$
\begin{align*}
\beta_{2,-1}^{(5) \text { aFI }}(\gamma)= & -\frac{\sqrt{\pi / 5}}{967680} a^{5} \sin ^{3} \gamma\left[12017+17775 \cos (2 \gamma)+20160(4+3 \cos (2 \gamma)) c_{2}^{(0)}+60480 c_{3}^{(0)}\right. \tag{5}\\
& \left.-10080(7+6 \cos (2 \gamma)) c_{2}^{(1)}-30240 c_{3}^{(1)}+120960 \cos \gamma\left(c_{2}^{(2)} \cos \gamma-c_{4}^{(0+1+2)}\right)\right],
\end{align*}
$$

Compton Matching

Compton modes are given as integrals on the 2 -sphere

$$
\begin{equation*}
f_{l m}^{\prime \text { QFT }}(\gamma)=\int d \Omega_{-2}^{\prime} Y_{l m}^{*}\left(\theta, \phi^{\prime}\right)\left\langle A_{4}\left(\gamma, \theta, \phi^{\prime}\right)\right\rangle \tag{4}
\end{equation*}
$$

For our mode example

$$
\begin{align*}
\beta_{2,-1}^{(5) \text { QFT }}(\gamma)= & -\frac{\sqrt{\pi / 5}}{967680} a^{5} \sin ^{3} \gamma\left[12017+17775 \cos (2 \gamma)+20160(4+3 \cos (2 \gamma)) c_{2}^{(0)}+60480 c_{3}^{(0)}\right. \tag{5}\\
& \left.-10080(7+6 \cos (2 \gamma)) c_{2}^{(1)}-30240 c_{3}^{(1)}+120960 \cos \gamma\left(c_{2}^{(2)} \cos \gamma-c_{4}^{(0+1+2)}\right)\right]
\end{align*}
$$

Agreement of the QFT and BHPT results means the equality

$$
\begin{equation*}
f_{l m}^{\prime \text { QFT }}(\gamma)=f_{l m}^{\prime \text { BHPT }}(\gamma) \tag{6}
\end{equation*}
$$

is satisfied for all values of I, m.

- Linear system of equations for the Compton coefficients

Spin 6 results

Spin	Spurious-pole	Free Coeffs.	Teukolsky Solutions
a^{4}		$c_{1}^{(i)}, i=0,1,2$	$c_{1}^{(i)}=0, i=0,1,2$
a^{5}	$c_{3}^{(2)}=4 / 15-c_{3}^{(0)}+c_{3}^{(1)}$	$\begin{aligned} c_{2}^{(i)}, i & =0,1,2 \\ c_{3}^{(i)}, i & =0,1 \\ c_{4}^{(i)}, i & =0,1,2 \end{aligned}$	$\begin{aligned} & c_{2}^{(i)}=0,(i)=0,1,2 \\ & c_{3}^{(0)}=\alpha \frac{64}{15}, c_{3}^{(1)}=\alpha \frac{16}{3}, \\ & c_{3}^{(2)}=\frac{4}{15}(1+4 \alpha), \\ & c_{4}^{(0)}=\eta \alpha \frac{64}{15}, \\ & c_{4}^{(1)}=\eta \alpha \frac{16}{5}, c_{4}^{(2)}=\eta \frac{4}{15} \end{aligned}$
a^{6}	$\begin{aligned} c_{10}^{(2)}= & c_{10}^{(1)}-c_{10}^{(0)} \\ d_{1}^{(0)}= & -\frac{8}{45} \\ & +\sum_{j=5}^{7} \sum_{i=0}^{2}(-1)^{i} c_{j}^{(i)} \\ f_{1}^{(0)}= & \frac{4}{45}+c_{6}^{(0)}-c_{6}^{(1)} \\ & +\sum_{i=0}^{2}(-1)^{i} c_{8}^{(i)} \end{aligned}$	$\begin{aligned} c_{5}^{(i)}, i & =0,1,2 \\ c_{6}^{(i)}, i & =0,1,3 \\ c_{7}^{(i)}, i & =0,1,2 \\ c_{8}^{(i)}, i & =0,1,3 \\ c_{9}^{(i)}, i & =0,1,2 \\ c_{10}^{i}, & i=0,1 \end{aligned}$	$\begin{aligned} & c_{j}^{(i)}=0, i=0,1,2, j=5,7 \\ & c_{6}^{(0)}=\alpha \frac{128}{45}, c_{6}^{(1)}=\alpha \frac{32}{9}, \\ & c_{6}^{(2)}=\frac{8}{45}(1+4 \alpha), c_{8}^{(0)}=-\alpha \frac{512}{45}, \\ & c_{8}^{(1)}=-\alpha \frac{160}{9}, c_{8}^{(2)}=-\frac{16}{45}(1+19 \alpha), \\ & c_{9}^{(0)}=-\eta \alpha \frac{128}{45}, c_{9}^{(1)}=-\eta \alpha \frac{32}{15}, \\ & c_{9}^{(2)}=-\eta \frac{8}{45}, \\ & c_{10}^{(0)}=-\eta \alpha \frac{256}{45}, \\ & c_{10}^{(1)}=-\eta \alpha \frac{352}{45}, c_{10}^{(2)}=-\eta \alpha \frac{32}{15} \\ & d_{1}^{(0)}=0, f_{1}^{(0)}=-\frac{4}{45}(1+4 \alpha) \end{aligned}$

Not shift symmetry, even for $\eta=0$

- up to a^{5}, for $\eta=\alpha=0$, Shift-symmetric amplitude, Not true at $a^{6}:($
- Same helicity: $e^{\left(k_{2}-k_{3}\right) \cdot a}$ does not changes up to a^{6}.

Exact Kerr matching

- No ambiguity in the interpretation of the Compton operators for exact Kerr matching

Spin	Kerr Solution
	$c_{2}^{(i)}=0, i=0,1,2$
$c_{3}^{(0)}=\frac{64}{45 a^{\star 4}}\left(1+3 a^{\star 2}\right) \Re\left(\psi_{0}\left(2 i \frac{a^{\star}}{\hat{\kappa}}\right)\right)$	
a^{5}	$c_{3}^{(1)}=\frac{8}{45 a^{\star 4}}\left(\left(4-3 a^{\star 2}\right) \Re\left(\psi_{0}\left(i \frac{a^{\star}}{\hat{\kappa}}\right)\right)+12\left(1+3 a^{\star 2}\right) \Re\left(\psi_{0}\left(2 i \frac{a^{\star}}{\hat{\kappa}}\right)\right)\right)$
	$c_{4}^{(0)}=\frac{32\left(1+3 a^{\star 2}\right)}{45 a^{\star 5}}\left(i \hat{\kappa}-2 \Im\left(\psi_{0}\left(2 i \frac{a^{\star}}{\hat{\kappa}}\right)\right)\right)$
	$c_{4}^{(1)}=\frac{8}{45 a^{\star 5}}\left(\left(8+9 a^{\star 2}\right) i \hat{\kappa}-a^{\star}\left(4-3 a^{\star 2}\right) \Im\left(\psi_{0}\left(i \frac{a^{\star}}{\hat{\kappa}}\right)\right)-8 a^{\star}\left(1+3 a^{\star 2}\right) \Im\left(\psi_{0}\left(2 i \frac{a^{\star}}{\hat{\kappa}}\right)\right)\right)$
	$c_{4}^{(2)}=\frac{4}{45 a^{\star 5}}\left(\left(2+6 a^{\star 2}-3 a^{\star 4}\right) i \hat{\kappa}-a^{\star}\left(4-3 a^{\star 2}\right) \Im\left(\psi_{0}\left(i \frac{a^{\star}}{\hat{\kappa}}\right)\right)-a^{\star}\left(2+3 a^{\star 2}\right) \Im\left(\psi_{0}\left(2 i \frac{a^{\star}}{\hat{\kappa}}\right)\right)\right)$

Table 3: Exact matching to spin operators, where coefficients are relaxed to functions of the spin norm " a ". Here a^{5} refers to quintic monomials in $\left\{k_{2} \cdot a, k_{3} \cdot a, w \cdot a\right\}$ but to all orders in the norm. In the large a limit, they reduce to the coefficients of table 2.

Conclusions

Conclusions

- We have extracted a unique conservative ($\eta=0$) amplitude up to the sixth order in spin from solutions of the Teukolsky equation. Unfortunately the solutions do not preserve spin-shift-symmetry
- BH horizon dissipative effects can be accounted for in a gravitational Compton ansatz, with operators proportional to $|a|$. Imaginary contributions: branch choice subtlety that needs further investigation.
- How does the Spin supplementary condition change by allowing |a| operators?

Conclusions

- We have extracted a unique conservative ($\eta=0$) amplitude up to the sixth order in spin from solutions of the Teukolsky equation. Unfortunately the solutions do not preserve spin-shift-symmetry
- BH horizon dissipative effects can be accounted for in a gravitational Compton ansatz, with operators proportional to $|a|$. Imaginary contributions: branch choice subtlety that needs further investigation.
- How does the Spin supplementary condition change by allowing $|a|$ operators?
- But how about real Kerr? ($a^{\star}<1$). Extract all orders in G solutions from Teukolsky.
- Future: Higher spins, higher loops.
- Double copy and the relation to $\sqrt{\text { Kerr }}$?: Linear electromagnetic perturbations of Kerr-Newman in the GM \rightarrow o limit

Thank you for your attention!

Extra slides

Gravitational waves era and templates demand

GW templates should have into account as much information about the binary as possible. In particular:

Gravitational waves era and templates demand

GW templates should have into account as much information about the binary as possible. In particular:

- spin effects: Expected to be measured with great precision in LISA for nearly extremal BH [Burke et al 2020]
- Astrophysical implications: Spin effects \Rightarrow information about the Binary's formation mechanism

Spin-shift symmetry

- Low spin observations [Bern + 2022, Aoude+ 2022]: Opposite helicity amplitude $e^{\left(2 w-k_{2}-k_{3}\right) \cdot a}$ invariant under (See R. Roiban review talk)

$$
a^{\mu} \rightarrow a^{\mu}+\varsigma_{b} q^{\mu} / q^{2},
$$

Spin-shift symmetry

Low spin observations [Bern + 2022, Aoude+ 2022]: Opposite helicity amplitude $e^{\left(2 w-k_{2}-k_{3}\right) \cdot a}$ invariant under (See R. Roiban review talk)

$$
a^{\mu} \rightarrow a^{\mu}+\varsigma_{b} q^{\mu} / q^{2},
$$

but not same helicity amplutude $e^{\left(k_{2}-k_{3}\right) \cdot a}$

Spin	Shift-Sym.	Free Coeffs.	Relation to [Aoude+]
a^{4}	$c_{1}^{(i)}=0, i=1,2$	$c_{1}^{(0)}$	$c_{1}^{(0)}=-\frac{d_{0}^{(4)}}{4!}$
a^{5}	$\begin{aligned} & c_{j}^{(i)}=0, i=1,2, j=2,3 \\ & c_{3}^{(0)}=\frac{4}{15}, c_{4}^{(i)}=0, i=0,1,2 \end{aligned}$	$c_{2}^{(0)}$	$c_{2}^{(0)}=\frac{32+5 d^{(4)}-d_{0}^{(5)}}{5!}$
a^{6}	$\begin{aligned} & c_{j}^{(i)}=0, i=0,1,2, j=5,9,10 \\ & c_{j}^{(i)}=0, i=1,2, j=6,7,8 \\ & c_{8}^{(0)}=-\frac{4}{45}-c_{6}^{(0)} \\ & f_{1}^{(0)}=0 \\ & d_{1}^{(0)}=-\frac{8}{45}+c_{6}^{(0)}+4 c_{7}^{(0)} \end{aligned}$	$c_{6}^{(0)}, c_{7}^{(0)}$	$\begin{aligned} & c_{6}^{(0)}=\frac{176+d_{0}^{(4+5+6)}+d_{1}^{(6)}}{180} \\ & c_{7}^{(0)}=-\frac{128+d_{0}^{(4+5+6)}}{6!} \end{aligned}$

Spin-shift symmetry

Low spin observations [Bern + 2022, Aoude+ 2022]: Opposite helicity amplitude $e^{\left(2 w-k_{2}-k_{3}\right) \cdot a}$ invariant under (See R. Roiban review talk)

$$
a^{\mu} \rightarrow a^{\mu}+\varsigma_{b} q^{\mu} / q^{2},
$$

but not same helicity amplutude $e^{\left(k_{2}-k_{3}\right) \cdot a}$

Spin	Shift-Sym.	Free Coeffs.	Relation to [Aoude+]
a^{4}	$c_{1}^{(i)}=0, i=1,2$	$c_{1}^{(0)}$	$c_{1}^{(0)}=-\frac{d_{0}^{(4)}}{4!}$
a^{5}	$c_{j}^{(i)}=0, i=1,2, j=2,3$	$c_{2}^{(0)}$	$c_{2}^{(0)}=\frac{32+5 d_{0}^{(4)}-d_{0}^{(5)}}{5!}$
	$c_{3}^{(0)}=\frac{4}{15}, c_{4}^{(i)}=0, i=0,1,2$		
	$c_{j}^{(i)}=0, i=0,1,2, j=5,9,10$		$c_{6}^{(0)}=\frac{176+d_{0}^{(4+5+6)}+d_{1}^{(6)}}{180}$
a^{6}	$c_{j}^{(i)}=0, i=1,2, j=6,7,8$	$c_{8}^{(0)}=-\frac{4}{45}-c_{6}^{(0)}$	
	$f_{1}^{(0)}=0$	$c_{6}^{(0)}, c_{7}^{(0)}$	$c_{7}^{(0)}=-\frac{128+d_{0}^{(4+5+6)}}{6!}$
$d_{1}^{(0)}=-\frac{8}{45}+c_{6}^{(0)}+4 c_{7}^{(0)}$			

- In this talk: Does this symmetry emerge from Teukolsky solutions?

Near/Far zone separation

Love proposal [Ivanov +, 2022]

Spin	"Far zone" solutions
a^{4}	$c_{1}^{(0)}=-\frac{189056}{103041}, c_{1}^{(1)}=-\frac{86044}{3447},, c_{1}^{(2)}=-\frac{10402}{34347}$,
	$c_{2}^{(0)}=\frac{114208}{148837}, c_{2}^{(1)}=\frac{1130912}{744185}, c_{2}^{(2)}=\frac{435488}{2232555}$
a^{5}	$c_{3}^{(0)}=\frac{286064608}{1157665635}, \quad c_{3}^{(1)}=-\frac{2531080196}{15049653255}, c_{3}^{(2)}=-\frac{745559744}{5016551085}$
	$c_{4}^{(i)}=0, i=0,1,2, e_{1}^{(0)}=\frac{64}{195}, e_{1}^{(1)}=\frac{32}{117}, e_{1}^{(2)}=\frac{8}{195}$

- Match the exponential up to a^{3}
- Contact deformations at a^{4}
- Extra, non-contact contribution to the Compton at a^{5}

$$
\begin{aligned}
\Delta f_{\xi}= & e_{1}^{(o)} \frac{(w \cdot a)^{5}}{\xi^{2}}+e_{1}^{(1)} \frac{(w \cdot a)^{5}\left(k_{2} \cdot a\right)\left(-k_{3} \cdot a\right)}{\xi} \\
& +\left(w \cdot a-k_{2} \cdot a\right)\left(w \cdot a+k_{3} \cdot a\right) w \cdot a\left(e_{1}^{(2)}\left(k_{2} \cdot a\right)\left(-k_{3} \cdot a\right)-e_{1}^{(\circ)}(w \cdot a)^{2}\right)
\end{aligned}
$$

- On the good side, only polynomials in a^{\star}

2PM aligned-spins scattering angle

$$
\begin{aligned}
& \theta_{\triangleleft}^{(4)}=\theta_{\triangleleft, G O v}^{(4)}-\frac{45 \pi G^{2} m_{2} \mathrm{~Eb}}{32 v^{2} \gamma^{2}\left(b^{2}-a_{2}^{2}\right)^{7 / 2}} c_{1}^{(0+1+2)} \\
& \theta_{\triangleleft}^{(5)}= \frac{\pi G^{2} m_{2} E}{v^{2}\left(b^{2}-a_{2}^{2}\right)^{9 / 2}}\left[\frac{315 a_{2} b}{32 \gamma^{2}} c_{2}^{(0+1+2)}-\frac{3}{16\left(b^{2}-a_{2}^{2}\right)^{3} v^{2}}\left(30 b^{8} v\left(3+v^{2}\right)\right.\right. \\
&+ a_{2}^{8} v\left(104+135 v^{2}\right)+5 a_{2}^{2} b^{6} v\left(509+375 v^{2}\right)+15 a_{2}^{4} b^{4} v\left(435+446 v^{2}\right) \\
&+ 6 a_{2}^{6} b^{2} v\left(458+547 v^{2}\right)-35 a_{2} b^{7}\left(6+25 v^{2}+v^{4}\right)-28 a_{2}^{7} b\left(6+49 v^{2}+10 v^{4}\right) \\
&-\left.\left.42 a_{2}^{5} b^{3}\left(30+203 v^{2}+37 v^{4}\right)-21 a_{2}^{3} b^{5}\left(65+345 v^{2}+54 v^{4}\right)\right)\right] . \\
& \theta_{\triangleleft}^{(6)}=-\frac{\pi G^{2} m_{2} E}{32 v^{2}\left(b^{2}-a_{2}^{2}\right)^{9 / 2}}\left[\frac{945 b}{\gamma^{2}}\left(\frac{5}{12} c_{6}^{(0+1+2)}+\frac{2 b^{2}+a_{2}^{2}}{b^{2}-a_{2}^{2}} c_{7}^{(0+1+2)}\right)\right. \\
&+\frac{7}{\left(b^{2}-a_{2}^{2}\right)^{11 / 2} v^{2}}\left(80 a_{2} b^{8} v\left(11+5 v^{2}\right)+4 a_{2}^{9} v\left(28+37 v^{2}\right)\right. \\
&+100 a_{2}^{7} b^{2} v\left(38+47 v^{2}\right)+10 a_{2}^{3} b^{6} v\left(827+677 v^{2}\right) \\
&+6 a_{2}^{5} b^{4} v\left(2113+2287 v^{2}\right)+5 b^{9}\left(5 v^{4}-23 v^{2}-6\right) \\
&-5 a_{2}^{2} b^{7}\left(201+880 v^{2}+83 v^{4}\right)-15 a_{2}^{4} b^{5}\left(216+1219 v^{2}+202 v^{4}\right) \\
&\left.\left.-a_{2}^{8} b\left(192+1690 v^{2}+353 v^{4}\right)-2 a_{2}^{6} b^{3}\left(984+7060 v^{2}+1331 v^{4}\right)\right)\right] .
\end{aligned}
$$

- Digamma contributions drop out from the scattering angle
- Kerr: $c_{1}^{(0+1+2)}=0, c_{2}^{(0+1+2)}=0, c_{6}^{(0+1+2)}=\frac{8}{45}$, and $c_{7}^{(0+1+2)}=0$

Astrophysical Implications

- Spins carry important signatures of compact binary formation channel

Field formation:
Preferentially aligned spins

Dynamical formation: Isotropically distributed spins

- Using $\chi_{\text {eff }}$ and χ_{p} for population studies results in loss of $\mathrm{i}_{\text {formation }}$

Credits: [Sylvia Biscoveanu 2021 talk @ PI]

