Higher Spin Amplitudes from the Teukolsky Equation

Yilber Fabian Bautista With: A. Guevara, C. Kavanagh, J. Vines

IPhT-Saclay

2212.07965 and 2107.10179

December 16th, 2022

Background image source: SXS (Simulating eXtreme Spacetimes) project. Simulation of GW150914

Motivation and overview

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation

Exploit the power of unitarity: Start from building blocks A_n

Exploit the power of unitarity: Start from building blocks A_n

Better make sure we have the correct building blocks !!

Do minimal coupling spinning amplitudes have actually anything to do with Kerr ?

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation

Do minimal coupling spinning amplitudes have actually anything to do with Kerr ? One can only be sure by matching amplitudes to actual GR computations!

Matching to static solutions

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation

1. The minimal coupling 3 pt. amplitude encodes essentially the same information as the linearized Kerr metric [Guevara et al 2018;Huang et al 2028;Arkani-Hamed et al 2019] (See also Johansson tak)

Kerr Black hole as elementary particles

1. The minimal coupling 3 pt. amplitude encodes essentially the same information a the linearized Kerr metric [Guevara et al 2018;Huang et al 2028;Arkani-Hamed et al 2019] (See also Johansson tak)

- Hilbert space matching and classical limit combines the spin exponential operators (trivial at 3pt, but not at 4pts)
- ▶ No-radiation in (3, 1) signature, but in $(2, 2) \Rightarrow$ Radiation modes

Kerr Black hole as elementary particles

1. The minimal coupling 3 pt. amplitude encodes essentially the same information as the linearized Kerr metric [Guevara et al 2018;Huang et al 2028;Arkani-Hamed et al 2019] (See also Johansson tak)

$$\begin{array}{c} (\mathbf{m}, \mathbf{B}) \\ & \longrightarrow \\ \mathbf{h}^{\mathbf{k}} \\ \mathbf{h}^{\mu\nu}(k\pm) = p^{\mu}p^{\nu}\delta(p\cdot k) \underbrace{\langle \varepsilon_{B} | e^{\pm k \cdot a}}_{\text{spin states}} e^{\frac{\operatorname{pauli-Lubansky}}{\pm 2k \cdot a}}_{\text{spin states}} \rightarrow p^{\mu}p^{\nu}\delta(p\cdot k)\langle \varepsilon_{A}' | e^{\pm k \cdot a} | \varepsilon_{A} \rangle \end{array}$$

- Hilbert space matching and classical limit combines the spin exponential operators (trivial at 3pt, but not at 4pts)
- No-radiation in (3, 1) signature, but in $(2, 2) \Rightarrow$ Radiation modes

On the gravitational side: $\mathcal{O}(G)$ -Kerr metric [Vines 2017]

$$h_{\mu\nu}^{\text{Kerr}} = \mathsf{P}_{\mu\nu\alpha\beta} p^{\alpha} \left[p^{\beta} \cosh(a \cdot \partial) + \epsilon^{\beta\gamma\rho\sigma} p_{\gamma} a_{\rho} \partial_{\sigma} \frac{\sinh(a \cdot \partial)}{a \cdot \partial} \right] \xrightarrow{\text{Gm}}_{r} \underbrace{(2,2)}_{\mu\nu\rho\sigma} p^{\rho} p^{\sigma} e^{\pm a \cdot \partial} \frac{\text{Gm}}{r}$$

Kerr Black hole as elementary particles

1. The minimal coupling 3 pt. amplitude encodes essentially the same information as the linearized Kerr metric [Guevara et al 2018;Huang et al 2028;Arkani-Hamed et al 2019] (See also Johansson tak)

$$(\mathbf{m}, \mathbf{B}) = p^{\mu}p^{\nu}\delta(p \cdot k) \underbrace{\langle \varepsilon_{\mathbf{A}} | e^{\pm k \cdot a}}_{\text{spin states}} e^{\frac{1}{2k \cdot a}} | \varepsilon_{\mathbf{A}} \\ \rightarrow p^{\mu}p^{\nu}\delta(p \cdot k) \langle \varepsilon_{\mathbf{A}} | e^{\pm k \cdot a} | \varepsilon_{\mathbf{A}} \rangle$$

- Hilbert space matching and classical limit combines the spin exponential operators (trivial at 3pt, but not at 4pts)
- ▶ No-radiation in (3, 1) signature, but in $(2, 2) \Rightarrow$ Radiation modes

On the gravitational side: $\mathcal{O}(G)$ -Kerr metric [Vines 2017]

$$h_{\mu\nu}^{\text{Kerr}} = \mathsf{P}_{\mu\nu\alpha\beta} p^{\alpha} \left[p^{\beta} \cosh(a \cdot \partial) + \epsilon^{\beta\gamma\rho\sigma} p_{\gamma} a_{\rho} \partial_{\sigma} \frac{\sinh(a \cdot \partial)}{a \cdot \partial} \right] \xrightarrow{\text{Gm}}_{r} \underbrace{(2,2)}_{\mu\nu\rho\sigma} p^{\rho} p^{\sigma} e^{\pm a \cdot \partial} \frac{\text{Gm}}{r}$$

Same exponential structure as for the infinite spin amplitude!

► Linearization erases the BH horizon, $\frac{a}{GM} < 1 \Rightarrow \frac{a}{GM} \gg 1$ Not Kerr but rather a naked ring singularity

Dynamics matching

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation

2. Linear perturbations of Kerr sourced by a small orbiting body (aligned-spins, equatorial scattering) [Siemonsen-Vines 2019]. Checks through a^3 at G^2 . red-shift and procession frequency \Rightarrow geodesic motion deviation due to Gravitational self-force of the perturbation

2. Linear perturbations of Kerr sourced by a small orbiting body (aligned-spins, equatorial scattering) [Siemonsen-Vines 2019]. Checks through a^3 at G^2 . red-shift and procession frequency \Rightarrow geodesic motion deviation due to Gravitational self-force of the perturbation

3. In this talk: BH stability under small wave perturbation (generic spin-orientation). Checks through a^6 for GWs

The higher spin Gravitational Compton amplitude

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation

$$A_{h=2}^{++} \sim \frac{M^4 [23]^4}{(s-M^2)^2 t} e^{-(k_2-k_3)\cdot a}$$

Only physical poles for any a.

6

The same helicity configuration

$$A_{h=2}^{++} \sim \frac{M^4 [23]^4}{(s-M^2)^2 t} e^{-(k_2-k_3)\cdot a}$$

Only physical poles for any a. In principle, a good higher spin amplitude 20

6

The same helicity configuration

$$A_{h=2}^{++} \sim \frac{M^4 [23]^4}{(s-M^2)^2 t} e^{-(k_2-k_3)\cdot a}$$

• Only physical poles for any *a*. In principle, a good higher spin amplitude The opposite helicity configuration $\epsilon_2 = \frac{\sqrt{2}|3|\langle 2|}{[32]} \propto \tilde{\epsilon}_3$

$$A_{h=2}^{+-} \sim \frac{(\langle 2|p_1|3])^4}{(s-M^2)^2 t} e^{(2w-k_3-k_2)\cdot a}, \text{ with } w^{\mu} = \frac{s-M^2}{2p_1\cdot\epsilon_2}\epsilon_2^{\mu}$$

▶ Unphysical pole starting at *a*⁵.

$$A_{h=2}^{++} \sim \frac{M^4 [23]^4}{(s-M^2)^2 t} e^{-(k_2-k_3)\cdot a}$$

Only physical poles for any a. In principle, a good higher spin amplitude control The opposite helicity configuration $\epsilon_2 = \frac{\sqrt{2}|3|\langle 2|}{|32|} \propto \tilde{\epsilon}_3$ (/ | | 1)/ . .2

$$A_{h=2}^{+-} \sim \frac{(\langle 2|p_1|3])^*}{(s-M^2)^2 t} e^{(2w-k_3-k_2)\cdot a}, \text{ with } w^{\mu} = \frac{s-M^2}{2p_1\cdot\epsilon_2} \epsilon_2^{\mu}$$

Unphysical pole starting at a^5 . Not a good higher spin amplitude 😞

$$A_{h=2}^{++} \sim \frac{M^4 [23]^4}{(s-M^2)^2 t} e^{-(k_2-k_3)\cdot a}$$

• Only physical poles for any *a*. In principle, a good higher spin amplitude $\overline{\mathbf{w}}$ The opposite helicity configuration $\epsilon_2 = \frac{\sqrt{2}|3|\langle 2|}{[32]} \propto \tilde{\epsilon}_3$

$$A_{h=2}^{+-} \sim \frac{(\langle 2|p_1|3])^4}{(s-M^2)^2 t} e^{(2w-k_3-k_2)\cdot a}, \text{ with } w^{\mu} = \frac{s-M^2}{2p_1\cdot \epsilon_2} \epsilon_2^{\mu}$$

 Unphysical pole starting at a⁵. Not a good higher spin amplitude Still useful exponential, Just need to cure uphysical behavior.

$$A_{h=2}^{++} \sim rac{M^4 [23]^4}{(s-M^2)^2 t} e^{-(k_2-k_3)\cdot a}$$

Only physical poles for any a. In principle, a good higher spin amplitude

The opposite helicity configuration $\epsilon_2 = \frac{\sqrt{2}|3|\langle 2|}{[32]} \propto \tilde{\epsilon}_3$

$$A_{h=2}^{+-} \sim \frac{(\langle 2|p_1|3])^4}{(s-M^2)^2 t} e^{(2w-k_3-k_2)\cdot a}, \text{ with } w^{\mu} = \frac{s-M^2}{2p_1\cdot\epsilon_2}\epsilon_2^{\mu}$$

• Unphysical pole starting at a^5 . Not a good higher spin amplitude Still useful exponential, Just need to cure uphysical behavior. At a given order in spin, we seek an ansatz of the form

$$\langle \mathsf{A}^{\mathsf{S}}_{h=2} \rangle = \underbrace{\langle \mathsf{A}^{\mathsf{O}}_{h=2} \rangle}_{\text{Helicity-weights}} \times \underbrace{\left(e^{(2w-k_3-k_2)\cdot a} + f_{\xi}(k_2 \cdot a, k_3 \cdot a, w \cdot a) \right)_{\mathtt{2}\mathtt{5}}}_{\mathtt{spin-Information}} \,.$$

(()

Build the function f_{ξ} spin basis $\{k_2 \cdot a, k_3 \cdot a, w \cdot a\}$ under certain physical assumptions:

-00

Build the function f_{ξ} spin basis $\{k_2 \cdot a, k_3 \cdot a, w \cdot a\}$ under certain physical assumptions:

► Locality and Unitarity; correct 3-pt factorization. $\Rightarrow \langle A_4^o \rangle \times f_{\xi}$ can only contain contact terms

Build the function f_{ξ} spin basis { $k_2 \cdot a, k_3 \cdot a, w \cdot a$ } under certain physical assumptions:

- ► Locality and Unitarity; correct 3-pt factorization. $\Rightarrow \langle A_4^0 \rangle \times f_{\xi}$ can only contain contact terms
- Crossing symmetry: Same classical amplitude in chiral and anti-chiral basis $A_n^{h=2,S} = \langle \varepsilon_n | A_n^{\text{chir.}} | \varepsilon_1 \rangle = [\varepsilon_n | A_n^{\text{antichir.}} | \varepsilon_1], \Rightarrow f_{\xi}(k_2, k_3, w) = f_{\xi}(k_3, k_2, w)$

Build the function f_{ξ} spin basis { $k_2 \cdot a, k_3 \cdot a, w \cdot a$ } under certain physical assumptions:

- ► Locality and Unitarity; correct 3-pt factorization. $\Rightarrow \langle A_4^0 \rangle \times f_{\xi}$ can only contain contact terms
- Crossing symmetry: Same classical amplitude in chiral and anti-chiral basis $A_n^{h=2,S} = \langle \varepsilon_n | A_n^{\text{chir.}} | \varepsilon_1 \rangle = [\varepsilon_n | A_n^{\text{antichir.}} | \varepsilon_1], \Rightarrow f_{\xi}(k_2, k_3, w) = f_{\xi}(k_3, k_2, w)$
- $\langle A_4^o \rangle \times f_{\xi}$ must cancel unphysical pole $\langle 2|p_1|3] \propto 1 + \xi$ Here

$$\xi^{-1} = \frac{M^2 t}{(s - M^2)^2} = -\sin^2(\theta/2) \to -1$$

starting at a^5 .

Build the function f_{ξ} spin basis { $k_2 \cdot a, k_3 \cdot a, w \cdot a$ } under certain physical assumptions:

- ► Locality and Unitarity; correct 3-pt factorization. $\Rightarrow \langle A_4^0 \rangle \times f_{\xi}$ can only contain contact terms
- Crossing symmetry: Same classical amplitude in chiral and anti-chiral basis $A_n^{h=2,S} = \langle \varepsilon_n | A_n^{\text{chir.}} | \varepsilon_1 \rangle = [\varepsilon_n | A_n^{\text{antichir.}} | \varepsilon_1], \Rightarrow f_{\xi}(k_2, k_3, w) = f_{\xi}(k_3, k_2, w)$
- $\langle A_4^o \rangle \times f_{\xi}$ must cancel unphysical pole $\langle 2|p_1|3] \propto 1 + \xi$ Here

$$\xi^{-1} = \frac{M^2 t}{(s - M^2)^2} = -\sin^2(\theta/2) \to -1$$

starting at a^5 . Strategy: Laurent-expand in ξ :

$$f_{\xi}(k_2 \cdot a, -k_3 \cdot a, w \cdot a) = \sum_{m} \xi^{m} f^{(m)}(k_2 \cdot a, -k_3 \cdot a, w \cdot a),$$

Build the function f_{ξ} spin basis { $k_2 \cdot a, k_3 \cdot a, w \cdot a$ } under certain physical assumptions:

- ► Locality and Unitarity; correct 3-pt factorization. $\Rightarrow \langle A_4^0 \rangle \times f_{\xi}$ can only contain contact terms
- Crossing symmetry: Same classical amplitude in chiral and anti-chiral basis $A_n^{h=2,S} = \langle \varepsilon_n | A_n^{\text{chir.}} | \varepsilon_1 \rangle = [\varepsilon_n | A_n^{\text{antichir.}} | \varepsilon_1], \Rightarrow f_{\xi}(k_2, k_3, w) = f_{\xi}(k_3, k_2, w)$
- $\langle A_4^o \rangle \times f_{\xi}$ must cancel unphysical pole $\langle 2|p_1|3] \propto 1 + \xi$ Here

$$\xi^{-1} = \frac{M^2 t}{(s - M^2)^2} = -\sin^2(\theta/2) \to -1$$

starting at a^5 . Strategy: Laurent-expand in ξ :

$$f_{\xi}(k_2 \cdot a, -k_3 \cdot a, w \cdot a) = \sum_{m} \xi^{m} f^{(m)}(k_2 \cdot a, -k_3 \cdot a, w \cdot a),$$

Laurent expansion introduces poles in ξ ($s - M^2$), each cancelled by operator $(w \cdot a)^2$. Furthermore, $\langle A_4^0 \rangle$ contains a simple pole in ξ . This gives

$$f^{(m)} \propto (w \cdot a)^{2-2m}$$
 for $m \leq 1$.

Each power of ξ introduces poles in $\mathbf{t} = [23]\langle 32 \rangle$. To cancel such poles we invoke:

$$egin{array}{ccc} w^\mu o k_2^\mu & {
m as} & \langle 23
angle o 0 \ w^\mu o k_3^\mu & {
m as} & [23] o 0 \ \end{array}$$

Each power of ξ introduces poles in t = [23](32). To cancel such poles we invoke:

$$\begin{split} w^\mu &
ightarrow k_2^\mu \quad {\rm as} \quad \langle 23
angle
ightarrow 0 \ w^\mu &
ightarrow k_3^\mu \quad {\rm as} \quad [23]
ightarrow 0 \,. \end{split}$$

Then, a pole in t is cancelled by $(w \cdot a - k_2 \cdot a)(w \cdot a - k_3 \cdot a)$: This implies

$$f^{(m)} \propto (w \cdot a - k_2 \cdot a)^{m+1} (w \cdot a - k_3 \cdot a)^{m+1}$$
 for $m \ge -1$

• Each power of ξ introduces poles in $\mathbf{t} = [23]\langle 32 \rangle$. To cancel such poles we invoke:

$$w^{\mu}
ightarrow k_{2}^{\mu}$$
 as $\langle 23
angle
ightarrow 0$
 $w^{\mu}
ightarrow k_{3}^{\mu}$ as $[23]
ightarrow 0$.

Then, a pole in t is cancelled by $(w \cdot a - k_2 \cdot a)(w \cdot a - k_3 \cdot a)$: This implies

$$f^{(m)} \propto \left(w \cdot a - k_2 \cdot a
ight)^{m+1} \left(w \cdot a - k_3 \cdot a
ight)^{m+1} \quad ext{for} \quad m \geq -1 \, ,$$

 Caveat: The identity The classical identity [Gram determinant relation in Aoude's talk]

$$-\frac{(\mathsf{s}-\mathsf{M}^2)(\mathsf{u}-\mathsf{M}^2)}{4\mathsf{M}^2}a^2\approx\omega^2a^2\approx\xi(\mathsf{w}\cdot a-\mathsf{k}_2\cdot a)(\mathsf{w}\cdot a-\mathsf{k}_3\cdot a)+(\mathsf{w}\cdot a)^2$$

⇒ the quadratic Casimir is not independent of our { $k_2 \cdot a, k_3 \cdot a, w \cdot a$ } basis. But |a| is! So we can implement operators proportional to $|a|\omega$, with $\omega = \frac{s-M^2}{2M}$

• Each power of ξ introduces poles in $\mathbf{t} = [23]\langle 32 \rangle$. To cancel such poles we invoke:

$$w^{\mu}
ightarrow k_{2}^{\mu}$$
 as $\langle 23
angle
ightarrow 0$
 $w^{\mu}
ightarrow k_{3}^{\mu}$ as $[23]
ightarrow 0$.

Then, a pole in t is cancelled by $(w \cdot a - k_2 \cdot a)(w \cdot a - k_3 \cdot a)$: This implies

$$f^{(m)} \propto \left(w \cdot a - k_2 \cdot a
ight)^{m+1} \left(w \cdot a - k_3 \cdot a
ight)^{m+1} \quad ext{for} \quad m \geq -1 \, ,$$

 Caveat: The identity The classical identity [Gram determinant relation in Aoude's talk]

$$-\frac{(s-M^2)(u-M^2)}{4M^2}a^2\approx\omega^2a^2\approx\xi(w\cdot a-k_2\cdot a)(w\cdot a-k_3\cdot a)+(w\cdot a)^2$$

 \Rightarrow the quadratic Casimir is not independent of our $\{k_2 \cdot a, k_3 \cdot a, w \cdot a\}$ basis. But |a| is! So we can implement operators proportional to $|a|\omega$, with $\omega = \frac{s-M^2}{2M}$

Special role: Track BH horizon dynamics!!

After putting all the ingredients together we can parametrize the Compton ansatz via

$$f_{\xi} = \sum_{m=0}^{2} \xi^{m-1} (w \cdot a)^{4-2m} (w \cdot a - k_{2} \cdot a)^{m} (w \cdot a - k_{3} \cdot a)^{m} r_{|a|}^{(m)} (k_{2} \cdot a, k_{3} \cdot a, w \cdot a)$$

$$+ \sum_{m=0}^{\infty} \left[\frac{(w \cdot a)^{2m+6}}{\xi^{m+2}} p_{|a|}^{(m)} (k_{2} \cdot a, k_{3} \cdot a, w \cdot a) \right.$$

$$+ \xi^{m+2} (w \cdot a - k_{2} \cdot a)^{m+3} (w \cdot a - k_{3} \cdot a)^{m+3} q_{|a|}^{(m)} (k_{2} \cdot a, k_{3} \cdot a, w \cdot a) \right]$$

$$(1)$$

After putting all the ingredients together we can parametrize the Compton ansatz via

$$f_{\xi} = \sum_{m=0}^{2} \xi^{m-1} (\mathbf{w} \cdot a)^{4-2m} (\mathbf{w} \cdot a - k_{2} \cdot a)^{m} (\mathbf{w} \cdot a - k_{3} \cdot a)^{m} r_{|a|}^{(m)} (k_{2} \cdot a, k_{3} \cdot a, \mathbf{w} \cdot a) + \sum_{m=0}^{\infty} \left[\frac{(\mathbf{w} \cdot a)^{2m+6}}{\xi^{m+2}} p_{|a|}^{(m)} (k_{2} \cdot a, k_{3} \cdot a, \mathbf{w} \cdot a) + \xi^{m+2} (\mathbf{w} \cdot a - k_{2} \cdot a)^{m+3} (\mathbf{w} \cdot a - k_{3} \cdot a)^{m+3} q_{|a|}^{(m)} (k_{2} \cdot a, k_{3} \cdot a, \mathbf{w} \cdot a) \right]$$
(1)

p^(m)_{|a|}, q^(m)_{|a|}, r^(m)_{|a|} are polynomials, symmetric in their first two arguments
 Polynomial include linear correction in ω|a|

12

After putting all the ingredients together we can parametrize the Compton ansatz via

$$f_{\xi} = \sum_{m=0}^{2} \xi^{m-1} (w \cdot a)^{4-2m} (w \cdot a - k_{2} \cdot a)^{m} (w \cdot a - k_{3} \cdot a)^{m} r_{|a|}^{(m)} (k_{2} \cdot a, k_{3} \cdot a, w \cdot a)$$

$$+ \sum_{m=0}^{\infty} \left[\frac{(w \cdot a)^{2m+6}}{\xi^{m+2}} p_{|a|}^{(m)} (k_{2} \cdot a, k_{3} \cdot a, w \cdot a) \right.$$

$$+ \xi^{m+2} (w \cdot a - k_{2} \cdot a)^{m+3} (w \cdot a - k_{3} \cdot a)^{m+3} q_{|a|}^{(m)} (k_{2} \cdot a, k_{3} \cdot a, w \cdot a) \right]$$

$$(1)$$

- ▶ $p_{|a|}^{(m)}, q_{|a|}^{(m)}, r_{|a|}^{(m)}$ are polynomials, symmetric in their first two arguments
- Polynomial include linear correction in $\omega |a|$
- Contact terms starting at a⁴ [Huang + 2018; Bern+ 2022; Aoude + 2022]

The *r*-polynomial

$$\begin{aligned} r_{|a|}^{(m)} &= c_{1}^{(m)} + c_{2}^{(m)}(k_{2} \cdot a + k_{3} \cdot a) + c_{3}^{(m)} w \cdot a + c_{4}^{(m)} |a| \omega \\ &+ c_{5}^{(m)}(w \cdot a - k_{2} \cdot a)(w \cdot a - k_{3} \cdot a) \\ &+ c_{6}^{(m)}(2w \cdot a - k_{2} \cdot a - k_{3} \cdot a) w \cdot a \\ &+ c_{7}^{(m)}(2w \cdot a - k_{2} \cdot a - k_{3} \cdot a)^{2} + c_{8}^{(m)}(w \cdot a)^{2} \\ &+ c_{9}^{(m)}(k_{2} \cdot a + k_{3} \cdot a) |a| \omega + c_{10}^{(m)} w \cdot a |a| \omega + \mathcal{O}(a^{3}) \end{aligned}$$
(2)

The p- and q- polynomilas

$$p_{|a|}^{(m)} = d_1^{(m)} + \mathcal{O}(a), \qquad q_{|a|}^{(m)} = f_1^{(m)} + \mathcal{O}(a),$$
 (3)

The *r*-polynomial

$$\begin{aligned} r_{|a|}^{(m)} &= c_{1}^{(m)} + c_{2}^{(m)}(k_{2} \cdot a + k_{3} \cdot a) + c_{3}^{(m)} w \cdot a + c_{4}^{(m)} |a| \omega \\ &+ c_{5}^{(m)}(w \cdot a - k_{2} \cdot a)(w \cdot a - k_{3} \cdot a) \\ &+ c_{6}^{(m)}(2w \cdot a - k_{2} \cdot a - k_{3} \cdot a) w \cdot a \\ &+ c_{7}^{(m)}(2w \cdot a - k_{2} \cdot a - k_{3} \cdot a)^{2} + c_{8}^{(m)}(w \cdot a)^{2} \\ &+ c_{9}^{(m)}(k_{2} \cdot a + k_{3} \cdot a)|a| \omega + c_{10}^{(m)} w \cdot a|a| \omega + \mathcal{O}(a^{3}) \end{aligned}$$

$$(2)$$

The p- and q- polynomilas

$$p_{|a|}^{(m)} = d_1^{(m)} + \mathcal{O}(a), \qquad q_{|a|}^{(m)} = f_1^{(m)} + \mathcal{O}(a),$$
 (3)

- 3-free conservative operators at a⁴
- 5 conservative + 3 dissipative free operators at a⁵
- ▶ 12 conservative (19 LD operators in [Aoude+2022]) +5 dissipative free operators at a^6

The gravitational setup

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation

BHPT

Parameters:
$$\begin{cases} \epsilon = 2GM\omega \text{ PM} \\ a^* = \frac{a}{GM} \text{ spin} \end{cases} a^*\epsilon = 2a\omega$$

BHPT

• [Teukolsky 1972]. NP formalism: Linear perturbations $\Psi_4 = \Psi_4^B + \delta \Psi_4$. \Rightarrow Separation of variables in Kerr [See C. Kavanagh self-force review talk]. Radiative content in the scalar

$$_{h}\psi\sim\sum_{\ell m}e^{-i\omega t}{}_{h}Z_{\ell m\omega h}\mathsf{R}_{\ell m\omega}(r)_{h}\mathsf{S}_{\ell m}(\vartheta,\varphi,a\omega)\sim\mathsf{A}_{h}$$

BHPT

• [Teukolsky 1972]. NP formalism: Linear perturbations $\Psi_4 = \Psi_4^B + \delta \Psi_4$. \Rightarrow Separation of variables in Kerr [See C. Kavanagh self-force review talk]. Radiative content in the scalar

$$_{h}\psi\sim\sum_{\ell m}e^{-i\omega t}{}_{h}Z_{\ell m\omega h}\mathsf{R}_{\ell m\omega}(r)_{h}\mathsf{S}_{\ell m}(\vartheta,\varphi,a\omega)\sim\mathsf{A}_{h}$$

Asymptotic behavior:

$${}_{h}R_{lm\omega} \sim \begin{cases} \frac{B_{lm\omega}^{(inc)}(a^{*},\epsilon)}{r}e^{-i\omega r^{*}} + \frac{B_{lm\omega}^{(ref)}(a^{*},\epsilon)}{r^{2h+1}}e^{i\omega r^{*}} & r^{*} \to \infty, \ (r \to \infty) \\ \\ B_{lm\omega}^{trans}(a^{*},\epsilon) \frac{e^{-i\Omega_{+}r^{*}}}{\Delta h} & r^{*} \to -\infty, \ (r \to r_{+}) \\ \hline & \\ purelly ingoing @ r_{+} \end{cases} \end{cases}$$

 $\blacktriangleright\,$ Remove the PW from the asymptotic Teukolsky solution $_{-2}\psi=\psi^{\rm PW}+\psi^{\rm SW}$

- ▶ Remove the PW from the asymptotic Teukolsky solution $_{-2}\psi = \psi^{PW} + \psi^{SW}$
- Expand the scattering amplitude $f = r\psi^{SW}$ in the harmonic basis

$$f(\theta,\phi') = \sum_{l=2}^{\infty} \sum_{m=-\infty}^{\infty} {}_{-2}Y_{lm}(\theta,\phi')f'_{lm}(\gamma,\epsilon,a^{\star}).$$

• Mode functions completely determined by $\frac{B_{s\ell m}^{(refl)}}{B_{s\ell m}^{(nc)}}$. Complicated functions of ϵ, a^{\star}

- ▶ Remove the PW from the asymptotic Teukolsky solution $_{-2}\psi = \psi^{PW} + \psi^{SW}$
- Expand the scattering amplitude $f = r\psi^{SW}$ in the harmonic basis

$$f(\theta,\phi') = \sum_{l=2}^{\infty} \sum_{m=-\infty}^{\infty} {}_{-2}Y_{lm}(\theta,\phi')f'_{lm}(\gamma,\epsilon,a^{\star}).$$

- ► Mode functions completely determined by $\frac{B_{s\ell m}^{(1)}}{B_{s\ell m}^{(1)}}$. Complicated functions of ϵ , a^* ► Low energy solutions $\epsilon \ll 1$. Keep $a^* < 1 \Rightarrow$ use BHPT tools $f_{lm}^{\prime BHPT}(\gamma) = e^{i\Phi} \frac{\Gamma(l+1-i\epsilon)}{\Gamma(l+1+i\epsilon)} \left(1 + \beta_{lm}^{(1)}(\gamma, a^*)\epsilon + \beta_{lm}^{(2)}(\gamma, a^*)\epsilon^2 + \beta_{lm}^{(3)}(\gamma, a^*)\epsilon^3 + \cdots\right)$
 - ▶ Point particle description $\Rightarrow a^* \gg 1$. Delete BH horizon, naked singularity. keep $a^* \epsilon = 2a\omega$ fixed.

- ▶ Remove the PW from the asymptotic Teukolsky solution $_{-2}\psi = \psi^{PW} + \psi^{SW}$
- Expand the scattering amplitude $f = r\psi^{SW}$ in the harmonic basis

$$f(\theta,\phi') = \sum_{l=2}^{\infty} \sum_{m=-\infty}^{\infty} {}_{-2}Y_{lm}(\theta,\phi')f'_{lm}(\gamma,\epsilon,a^{\star}).$$

- ► Mode functions completely determined by $\frac{B_{lm}^{(en)}}{B_{s\ell m}^{(m)}}$. Complicated functions of ϵ , a^* ► Low energy solutions $\epsilon \ll 1$. Keep $a^* < 1 \Rightarrow$ use BHPT tools $f_{lm}^{\prime BHPT}(\gamma) = e^{i\Phi} \frac{\Gamma(l+1-i\epsilon)}{\Gamma(l+1+i\epsilon)} \left(1 + \beta_{lm}^{(1)}(\gamma, a^*)\epsilon + \beta_{lm}^{(2)}(\gamma, a^*)\epsilon^2 + \beta_{lm}^{(3)}(\gamma, a^*)\epsilon^3 + \cdots\right)$
 - ▶ Point particle description $\Rightarrow a^* \gg 1$. Delete BH horizon, naked singularity. keep $a^* \epsilon = 2a\omega$ fixed.
 - Up to i ≤ 4, the β⁽ⁱ⁾_{lm}(γ, a^{*}) are REAL, and polynomial in a^{*}. Unique analytic extension Complete agreement with the exponential

$$\beta_{2,-1}^{(5)}(\gamma) = \frac{\sqrt{\pi/5} \sin^3 \gamma}{42247941120} \Big[-43659(12017 + 17775 \cos(2\gamma))a^{*5} - 1408264704 \cos(\gamma) ia^{*4}k^{*4}k^{*5} - 704132352\Big((1 - 2\cos\gamma)\psi^{(0)}(-ia^{*}/\hat{\kappa}) + (1 + 2\cos\gamma)\psi^{(0)}(ia^{*}/\hat{\kappa})\Big)a^{*3} - 5633058816\Big(\sin^2(\gamma/2)\psi^{(0)}(-2ia^{*}/\hat{\kappa}) + \cos^2(\gamma/2)\psi^{(0)}(2ia^{*}/\hat{\kappa})\Big)a^{*3}\Big],$$

here $\hat{\kappa} = \sqrt{1-a}$

$$\begin{split} \beta_{2,-1}^{(5)}(\gamma) &= \frac{\sqrt{\pi/5}\sin^3\gamma}{42247941120} \left[-43659(12017 + 17775\cos(2\gamma))a^{*5} - 1408264704\cos(\gamma)ia^{*4}\hat{R} \right. \\ &\quad -704132352 \Big((1 - 2\cos\gamma)\psi^{(0)}(-ia^*/\hat{\kappa}) + (1 + 2\cos\gamma)\psi^{(0)}(ia^*/\hat{\kappa}) \Big)a^{*3} \\ &\quad -5633058816 \Big(\sin^2(\gamma/2)\psi^{(0)}(-2ia^*/\hat{\kappa}) + \cos^2(\gamma/2)\psi^{(0)}(2ia^*/\hat{\kappa}) \Big)a^{*3} \Big] \,, \end{split}$$

here $\hat{\kappa} = \sqrt{1 - a^{\star 2}}$

Absorption (imaginary contributions) [Dolan 2008]

$$\begin{split} \beta_{2,-1}^{(5)}(\gamma) &= \frac{\sqrt{\pi/5}\sin^3\gamma}{42247941120} \Big[-43659(12017 + 17775\cos(2\gamma))a^{*5} - 1408264704\cos(\gamma)ia^{*4}\hat{\kappa} \\ &- 704132352 \Big((1 - 2\cos\gamma)\psi^{(0)}(-ia^*/\hat{\kappa}) + (1 + 2\cos\gamma)\psi^{(0)}(ia^*/\hat{\kappa}) \Big)a^{*3} \\ &- 5633058816 \Big(\sin^2(\gamma/2)\psi^{(0)}(-2ia^*/\hat{\kappa}) + \cos^2(\gamma/2)\psi^{(0)}(2ia^*/\hat{\kappa}) \Big)a^{*3} \Big], \end{split}$$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^* = 1$. Choice of a branch for analytic extension

$$\begin{split} \beta_{2,-1}^{(5)}(\gamma) &= \frac{\sqrt{\pi/5}\sin^3\gamma}{42247941120} \Big[-43659(12017 + 17775\cos(2\gamma))a^{*5} - 1408264704\cos(\gamma)ia^{*4}\hat{\kappa} \\ &- 704132352 \Big((1 - 2\cos\gamma)\psi^{(0)}(-ia^*/\hat{\kappa}) + (1 + 2\cos\gamma)\psi^{(0)}(ia^*/\hat{\kappa}) \Big)a^{*3} \\ &- 5633058816 \Big(\sin^2(\gamma/2)\psi^{(0)}(-2ia^*/\hat{\kappa}) + \cos^2(\gamma/2)\psi^{(0)}(2ia^*/\hat{\kappa}) \Big)a^{*3} \Big], \end{split}$$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^* = 1$. Choice of a branch for analytic extension
- Conservative amplitude: Absorption removal by dropping the imaginary parts

$$\begin{split} \beta_{2,-1}^{(5)}(\gamma) &= \frac{\sqrt{\pi/5}\sin^3\gamma}{42247941120} \Big[-43659(12017 + 17775\cos(2\gamma))a^{*5} - 1408264704\cos(\gamma)ia^{*4}\hat{\kappa} \\ &- 704132352 \Big((1 - 2\cos\gamma)\psi^{(0)}(-ia^*/\hat{\kappa}) + (1 + 2\cos\gamma)\psi^{(0)}(ia^*/\hat{\kappa}) \Big)a^{*3} \\ &- 5633058816 \Big(\sin^2(\gamma/2)\psi^{(0)}(-2ia^*/\hat{\kappa}) + \cos^2(\gamma/2)\psi^{(0)}(2ia^*/\hat{\kappa}) \Big)a^{*3} \Big] \,, \end{split}$$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- **b** Discontinuity at $a^* = 1$. Choice of a branch for analytic extension
- Conservative amplitude: Absorption removal by dropping the imaginary parts
- Or keep them but keep track of them

$$\begin{split} \beta_{2,-1}^{(5)}(\gamma) &= \frac{\sqrt{\pi/5}\sin^3\gamma}{42247941120} \Big[-43659(12017 + 17775\cos(2\gamma))a^{*5} - 1408264704\cos(\gamma)ia^{*4}\hat{\kappa} \\ &- 704132352 \Big((1 - 2\cos\gamma)\psi^{(0)}(-ia^*/\hat{\kappa}) + (1 + 2\cos\gamma)\psi^{(0)}(ia^*/\hat{\kappa}) \Big)a^{*3} \\ &- 5633058816 \Big(\sin^2(\gamma/2)\psi^{(0)}(-2ia^*/\hat{\kappa}) + \cos^2(\gamma/2)\psi^{(0)}(2ia^*/\hat{\kappa}) \Big)a^{*3} \Big] \,, \end{split}$$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^* = 1$. Choice of a branch for analytic extension
- Conservative amplitude: Absorption removal by dropping the imaginary parts
- Or keep them but keep track of them
- Digamma functions contributing or not to a given branch choice. Conjugate choice

$$\beta_{2,-1}^{(5)\eta}(\gamma) = -\frac{\sqrt{\pi/5}}{967680}a^5\sin^3\gamma\Big[\Big(12017 + 17775\cos(2\gamma)\Big) + 96768\alpha - \eta_32256(1+4\alpha)\cos\gamma\Big]\,.$$

$$\begin{split} \beta_{2,-1}^{(5)}(\gamma) &= \frac{\sqrt{\pi/5}\sin^3\gamma}{42247941120} \Big[-43659(12017 + 17775\cos(2\gamma))a^{*5} - 1408264704\cos(\gamma)ia^{*4}\hat{\kappa} \\ &- 704132352 \Big((1 - 2\cos\gamma)\psi^{(0)}(-ia^*/\hat{\kappa}) + (1 + 2\cos\gamma)\psi^{(0)}(ia^*/\hat{\kappa}) \Big)a^{*3} \\ &- 5633058816 \Big(\sin^2(\gamma/2)\psi^{(0)}(-2ia^*/\hat{\kappa}) + \cos^2(\gamma/2)\psi^{(0)}(2ia^*/\hat{\kappa}) \Big)a^{*3} \Big] \,, \end{split}$$

here $\hat{\kappa} = \sqrt{1 - a^{\star 2}}$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^* = 1$. Choice of a branch for analytic extension
- Conservative amplitude: Absorption removal by dropping the imaginary parts
- Or keep them but keep track of them
- Digamma functions contributing or not to a given branch choice. Conjugate choice

$$\beta_{2,-1}^{(5)\eta}(\gamma) = -\frac{\sqrt{\pi/5}}{967680}a^5\sin^3\gamma \left[\left(12017 + 17775\cos(2\gamma) \right) + 96768\alpha - \eta 32256(1+4\alpha)\cos\gamma \right].$$

Conservative $\eta = 0$. Absorption $\eta = \pm 1$.

$$\begin{split} \beta_{2,-1}^{(5)}(\gamma) &= \frac{\sqrt{\pi/5}\sin^3\gamma}{42247941120} \Big[-43659(12017 + 17775\cos(2\gamma))a^{*5} - 1408264704\cos(\gamma)ia^{*4}\hat{\kappa} \\ &-704132352\Big((1 - 2\cos\gamma)\psi^{(0)}(-ia^*/\hat{\kappa}) + (1 + 2\cos\gamma)\psi^{(0)}(ia^*/\hat{\kappa})\Big)a^{*3} \\ &-5633058816\Big(\sin^2(\gamma/2)\psi^{(0)}(-2ia^*/\hat{\kappa}) + \cos^2(\gamma/2)\psi^{(0)}(2ia^*/\hat{\kappa})\Big)a^{*3}\Big], \end{split}$$

here $\hat{\kappa} = \sqrt{1 - a^{\star 2}}$

- Absorption (imaginary contributions) [Dolan 2008]
- Non-rational functions
- Discontinuity at $a^* = 1$. Choice of a branch for analytic extension
- Conservative amplitude: Absorption removal by dropping the imaginary parts
- Or keep them but keep track of them
- Digamma functions contributing or not to a given branch choice. Conjugate choice

$$\beta_{2,-1}^{(5)\eta}(\gamma) = -\frac{\sqrt{\pi/5}}{967680}a^{5}\sin^{3}\gamma\Big[\Big(12017 + 17775\cos(2\gamma)\Big) + 96768\alpha - \eta 32256(1+4\alpha)\cos\gamma\Big] \,.$$

Conservative $\eta = 0$. Absorption $\eta = \pm 1$. Outgoing boundary conditions at r_+ results $\eta \rightarrow -\eta$ terms. $\cdot \eta = 0 \Rightarrow$ Reflective boundary conditions

Compton modes are given as integrals on the 2-sphere

$$f_{lm}^{'\text{QFT}}(\gamma) = \int d\Omega'_{-2} Y_{lm}^*(\theta, \phi') \langle \mathsf{A}_4(\gamma, \theta, \phi') \rangle, \tag{4}$$

Compton modes are given as integrals on the 2-sphere

$$f_{lm}^{'\text{QFT}}(\gamma) = \int d\Omega'_{-2} Y_{lm}^*(\theta, \phi') \langle \mathsf{A}_4(\gamma, \theta, \phi') \rangle, \tag{4}$$

For our mode example

$$\beta_{2,-1}^{(5)\text{QFT}}(\gamma) = -\frac{\sqrt{\pi/5}}{967680}a^5\sin^3\gamma \Big[12017 + 17775\cos(2\gamma) + 20160(4 + 3\cos(2\gamma))c_2^{(o)} + 60480c_3^{(o)} \\ - 10080(7 + 6\cos(2\gamma))c_2^{(1)} - 30240c_3^{(1)} + 120960\cos\gamma \left(c_2^{(2)}\cos\gamma - c_4^{(0+1+2)}\right)\Big],$$
(5)

Compton modes are given as integrals on the 2-sphere

$$f_{lm}^{'\text{QFT}}(\gamma) = \int d\Omega'_{-2} Y_{lm}^*(\theta, \phi') \langle \mathsf{A}_4(\gamma, \theta, \phi') \rangle, \tag{4}$$

For our mode example

$$\beta_{2,-1}^{(5)\text{QFT}}(\gamma) = -\frac{\sqrt{\pi/5}}{967680}a^{5}\sin^{3}\gamma \Big[12017 + 17775\cos(2\gamma) + 20160(4 + 3\cos(2\gamma))c_{2}^{(o)} + 60480c_{3}^{(o)} \\ - 10080(7 + 6\cos(2\gamma))c_{2}^{(1)} - 30240c_{3}^{(1)} + 120960\cos\gamma \left(c_{2}^{(2)}\cos\gamma - c_{4}^{(0+1+2)}\right)\Big],$$
(5)

Agreement of the QFT and BHPT results means the equality

$$f_{lm}^{\prime \text{QFT}}(\gamma) = f_{lm}^{\prime \text{BHPT}}(\gamma) , \qquad (6)$$

is satisfied for all values of *I*, *m*.

Linear system of equations for the Compton coefficients

Spin	Spurious-pole	Free Coeffs.	Teukolsky Solutions
a^4		$c_1^{(i)}, i = 0, 1, 2$	$c_1^{(i)} = 0, \ i = 0, 1, 2$
_	(2)	$c_2^{(i)}, \ i = 0, 1, 2$	$c_2^{(i)} = 0, \ (i) = 0, 1, 2$ $c_3^{(0)} = \alpha \frac{64}{15}, \ c_3^{(1)} = \alpha \frac{16}{3},$ $c_3^{(2)} = 4 \ (1 + 4)$
a^{5}	$c_3^{(2)} = 4/15 - c_3^{(0)} + c_3^{(1)}$	$c_{3}^{(i)}, \ i = 0, 1$ $c_{4}^{(i)}, \ i = 0, 1, 2$	$c_{3}^{(0)} = \frac{1}{15}(1+4\alpha),$ $c_{4}^{(0)} = \eta \alpha \frac{64}{15},$ $c_{4}^{(1)} = \eta \alpha \frac{16}{5}, c_{4}^{(2)} = \eta \frac{4}{15}$
a ⁶	$c_{10}^{(2)} = c_{10}^{(1)} - c_{10}^{(0)}$ $d_{1}^{(0)} = -\frac{8}{45}$ $+ \sum_{j=5}^{7} \sum_{i=0}^{2} (-1)^{i} c_{j}^{(i)}$ $f_{1}^{(0)} = \frac{4}{45} + c_{6}^{(0)} - c_{6}^{(1)}$ $+ \sum_{i=0}^{2} (-1)^{i} c_{8}^{(i)}$	$\begin{array}{c} c_5^{(i)}, \ i=0,1,2\\ c_6^{(i)}, \ i=0,1,3\\ c_7^{(i)}, \ i=0,1,2\\ c_8^{(i)}, \ i=0,1,2\\ c_8^{(i)}, \ i=0,1,3\\ c_9^{(i)}, \ i=0,1,2\\ c_{10}^{(i)}, \ i=0,1\end{array}$	$\begin{array}{l} c_{j}^{(1)}=0,\ i=0,1,2,\ j=5,7\\ c_{6}^{(0)}=\alpha\frac{128}{45},\ c_{6}^{(1)}=\alpha\frac{32}{9},\\ c_{6}^{(2)}=\frac{8}{45}(1+4\alpha),\ c_{8}^{(0)}=-\alpha\frac{512}{45},\\ c_{8}^{(1)}=-\alpha\frac{160}{9},\ c_{8}^{(2)}=-\frac{16}{45}(1+19\alpha),\\ c_{9}^{(0)}=-\eta\alpha\frac{128}{45},\ c_{9}^{(1)}=-\eta\alpha\frac{31}{35},\\ c_{9}^{(2)}=-\frac{9}{8}\frac{8}{45},\\ c_{10}^{(2)}=-\eta\alpha\frac{352}{45},\ c_{10}^{(2)}=-\eta\alpha\frac{31}{25}\\ d_{1}^{(0)}=0,\ f_{1}^{(0)}=-\frac{4}{4c}(1+4\alpha) \end{array}$

- ▶ Not shift symmetry, even for $\eta = 0$
- up to a^5 , for $\eta = \alpha = 0$, Shift-symmetric amplitude, Not true at a^6 :(
- Same helicity: $e^{(k_2-k_3)\cdot a}$ does not changes up to a^6 .

Exact Kerr matching

No ambiguity in the interpretation of the Compton operators for exact Kerr matching

$$\begin{array}{|c|c|c|c|c|} \hline \text{Spin} & & \text{Kerr Solution} \\ \hline & c_2^{(i)} = 0, \ i = 0, 1, 2 \\ & c_3^{(0)} = \frac{64}{45a^{*4}} (1 + 3a^{*2}) \Re \left(\psi_0(2i\frac{a^*}{\hat{\kappa}}) \right) \\ & c_3^{(1)} = \frac{8}{45a^{*4}} \left((4 - 3a^{*2}) \Re \left(\psi_0(i\frac{a^*}{\hat{\kappa}}) \right) + 12(1 + 3a^{*2}) \Re \left(\psi_0(2i\frac{a^*}{\hat{\kappa}}) \right) \right) \\ & c_4^{(0)} = \frac{32(1 + 3a^{*2})}{45a^{*5}} \left(i\hat{\kappa} - 2\Im \left(\psi_0(2i\frac{a^*}{\hat{\kappa}}) \right) \right) \\ & c_4^{(1)} = \frac{8}{45a^{*5}} \left((8 + 9a^{*2})i\hat{\kappa} - a^*(4 - 3a^{*2})\Im \left(\psi_0(i\frac{a^*}{\hat{\kappa}}) \right) - 8a^*(1 + 3a^{*2})\Im \left(\psi_0(2i\frac{a^*}{\hat{\kappa}}) \right) \right) \\ & c_4^{(2)} = \frac{4}{45a^{*5}} \left((2 + 6a^{*2} - 3a^{*4})i\hat{\kappa} - a^*(4 - 3a^{*2})\Im \left(\psi_0(i\frac{a^*}{\hat{\kappa}}) \right) - a^*(2 + 3a^{*2})\Im \left(\psi_0(2i\frac{a^*}{\hat{\kappa}}) \right) \right) \\ \end{array}$$

Table 3: Exact matching to spin operators, where coefficients are relaxed to functions of the spin norm "a". Here a^5 refers to quintic monomials in $\{k_2 \cdot a, k_3 \cdot a, w \cdot a\}$ but to all orders in the norm. In the large a limit, they reduce to the coefficients of table 2.

Conclusions

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation

- We have extracted a unique conservative ($\eta = 0$) amplitude up to the sixth order in spin from solutions of the Teukolsky equation. Unfortunately the solutions do not preserve spin-shift-symmetry
- BH horizon dissipative effects can be accounted for in a gravitational Compton ansatz, with operators proportional to |a|. Imaginary contributions: branch choice subtlety that needs further investigation.
- ▶ How does the Spin supplementary condition change by allowing *a* operators?

- We have extracted a unique conservative ($\eta = 0$) amplitude up to the sixth order in spin from solutions of the Teukolsky equation. Unfortunately the solutions do not preserve spin-shift-symmetry
- BH horizon dissipative effects can be accounted for in a gravitational Compton ansatz, with operators proportional to |a|. Imaginary contributions: branch choice subtlety that needs further investigation.
- ▶ How does the Spin supplementary condition change by allowing *a* operators?
- But how about real Kerr? ($a^* < 1$). Extract all orders in G solutions from Teukolsky.
- Future: Higher spins, higher loops.
- ▶ Double copy and the relation to $\sqrt{\text{Kerr}}$?: Linear electromagnetic perturbations of Kerr-Newman in the GM \rightarrow 0 limit

Thank you for your attention!

Extra slides

Yilber Fabian Bautista | Higher Spin Amplitudes from the Teukolsky Equation

GW templates should have into account as much information about the binary as possible. In particular:

GW templates should have into account as much information about the binary as possible. In particular:

- spin effects: Expected to be measured with great precision in LISA for nearly extremal BH [Burke et al 2020]
- ► Astrophysical implications: Spin effects ⇒ information about the Binary's formation mechanism

Low spin observations [Bern + 2022, Aoude+ 2022]: Opposite helicity amplitude e^{(2w-k₂-k₃)·a} invariant under (See R. Roiban review talk)

$$a^{\mu}
ightarrow a^{\mu} + \varsigma_b q^{\mu}/q^2$$
,

Spin-shift symmetry

Low spin observations [Bern + 2022, Aoude+ 2022]: Opposite helicity amplitude e^{(2w-k₂-k₃)·a} invariant under (See R. Roiban review talk)

$$a^{\mu}
ightarrow a^{\mu} + \varsigma_b q^{\mu}/q^2$$
,

but not same helicity amplutude $e^{(k_2-k_3)\cdot a}$

Spin	Shift-Sym.	Free Coeffs.	Relation to [Aoude+]
a^4	$c_1^{(i)} = 0, i = 1, 2$	$c_1^{(0)}$	$c_1^{(0)} = -\frac{d_0^{(4)}}{4!}$
a^5	$c_j^{(i)} = 0, \ i = 1, 2, \ j = 2, 3$ $c_3^{(0)} = \frac{4}{15}, \ c_4^{(i)} = 0, \ i = 0, 1, 2$	$c_2^{(0)}$	$c_2^{(0)} = \frac{32 + 5d_0^{(4)} - d_0^{(5)}}{5!}$
a ⁶	$\begin{split} c_j^{(i)} &= 0, \ i = 0, 1, 2, \ j = 5, 9, 10 \\ c_j^{(i)} &= 0, \ i = 1, 2, \ j = 6, 7, 8 \\ c_8^{(0)} &= -\frac{4}{45} - c_6^{(0)} \\ f_1^{(0)} &= 0 \\ d_1^{(0)} &= -\frac{8}{45} + c_6^{(0)} + 4c_7^{(0)} \end{split}$	$c_6^{(0)}, c_7^{(0)}$	$\begin{split} c_6^{(0)} = & \frac{176 + d_0^{(4+5+6)} + d_1^{(6)}}{180} \\ c_7^{(0)} = & - \frac{128 + d_0^{(4+5+6)}}{6!} \end{split}$

Spin-shift symmetry

Low spin observations [Bern + 2022, Aoude+ 2022]: Opposite helicity amplitude e^{(2w-k₂-k₃)·a} invariant under (See R. Roiban review talk)

$$a^{\mu} \rightarrow a^{\mu} + \varsigma_b q^{\mu}/q^2$$
,

but not same helicity amplutude $e^{(k_2-k_3)\cdot a}$

Spin	Shift-Sym.	Free Coeffs.	Relation to [Aoude+]
a^4	$c_1^{(i)} = 0, i = 1, 2$	$c_1^{(0)}$	$c_1^{(0)} = -\frac{d_0^{(4)}}{4!}$
a^5	$c_j^{(i)} = 0, \ i = 1, 2, \ j = 2, 3$ $c_3^{(0)} = \frac{4}{15}, \ c_4^{(i)} = 0, \ i = 0, 1, 2$	$c_2^{(0)}$	$c_2^{(0)} = \frac{32 + 5d_0^{(4)} - d_0^{(5)}}{5!}$
a^6	$\begin{split} c_{j}^{(i)} &= 0, \ i = 0, 1, 2, \ j = 5, 9, 10 \\ c_{j}^{(i)} &= 0, \ i = 1, 2, \ j = 6, 7, 8 \\ c_{8}^{(0)} &= -\frac{4}{45} - c_{6}^{(0)} \\ f_{1}^{(0)} &= 0 \\ d_{1}^{(0)} &= -\frac{8}{45} + c_{6}^{(0)} + 4c_{7}^{(0)} \end{split}$	$c_6^{(0)}, c_7^{(0)}$	$\begin{split} c_6^{(0)} = & \frac{176 + d_0^{(4+5+6)} + d_1^{(6)}}{180} \\ c_7^{(0)} = & - \frac{128 + d_0^{(4+5+6)}}{6!} \end{split}$

In this talk: Does this symmetry emerge from Teukolsky solutions?

Near/Far zone separation

Love proposal [Ivanov +, 2022]

Spin	"Far zone" solutions
a^4	$c_1^{(0)} = -\frac{189056}{103041}, \ c_1^{(1)} = -\frac{86044}{34347}, \ , c_1^{(2)} = -\frac{10402}{34347},$
a^5	$ \begin{array}{l} c_{2}^{(0)}=\frac{114208}{148837},\ c_{2}^{(1)}=\frac{1130912}{744185},\ c_{2}^{(2)}=\frac{435488}{2232555}\\ c_{3}^{(0)}=\frac{286064608}{1157665635},\ c_{3}^{(1)}=-\frac{2531080196}{15049653255},\ c_{3}^{(2)}=-\frac{745559744}{5016551085}\\ c_{4}^{(i)}=0,\ i=0,1,2,\ e_{1}^{(0)}=\frac{64}{195},\ e_{1}^{(1)}=\frac{32}{117},\ e_{1}^{(2)}=\frac{8}{195} \end{array} $

- Match the exponential up to a³
- Contact deformations at a⁴
- Extra, non-contact contribution to the Compton at a⁵

$$\begin{split} \Delta f_{\xi} = & e_1^{(o)} \frac{(\mathbf{w} \cdot a)^5}{\xi^2} + e_1^{(1)} \frac{(\mathbf{w} \cdot a)^5 (k_2 \cdot a) (-k_3 \cdot a)}{\xi} \\ &+ (\mathbf{w} \cdot a - k_2 \cdot a) (\mathbf{w} \cdot a + k_3 \cdot a) \mathbf{w} \cdot a \left(e_1^{(2)} (k_2 \cdot a) (-k_3 \cdot a) - e_1^{(o)} (\mathbf{w} \cdot a)^2 \right) \end{split}$$

On the good side, only polynomials in a*

2PM aligned-spins scattering angle

$$\theta_{\triangleleft}^{(4)} = \theta_{\triangleleft,\text{GOV}}^{(4)} - \frac{45\pi G^2 m_2 E b}{32 v^2 \gamma^2 (b^2 - a_2^2)^{7/2}} c_1^{(0+1+2)}$$

$$\begin{split} \theta_{\mathsf{q}}^{(5)} &= \frac{\pi G^2 m_2 E}{v^2 (b^2 - a_2^2)^{9/2}} \Big[\frac{315 a_2 b}{32 \gamma^2} c_2^{(0+1+2)} - \frac{3}{16 (b^2 - a_2^2)^3 v^2} \Big(30 b^8 v (3+v^2) \\ &+ a_2^8 v (104+135 v^2) + 5 a_2^2 b^6 v (509+375 v^2) + 15 a_2^4 b^4 v (435+446 v^2) \\ &+ 6 a_2^6 b^2 v (458+547 v^2) - 35 a_2 b^7 (6+25 v^2+v^4) - 28 a_2^7 b (6+49 v^2+10 v^4) \\ &- 42 a_2^5 b^3 (30+203 v^2+37 v^4) - 21 a_2^3 b^5 (65+345 v^2+54 v^4) \Big) \Big] \,. \end{split}$$

$$\begin{split} \theta_{\varsigma}^{(6)} &= -\frac{\pi G^2 m_2 E}{32 v^2 (b^2 - a_2^2)^{9/2}} \Big[\frac{945 b}{\gamma^2} \Big(\frac{5}{12} c_6^{(0+1+2)} + \frac{2b^2 + a_2^2}{b^2 - a_2^2} c_7^{(0+1+2)} \Big) \\ &+ \frac{7}{(b^2 - a_2^2)^{11/2} v^2} \Big(80 a_2 b^8 v (11 + 5v^2) + 4a_2^9 v (28 + 37v^2) \\ &+ 100 a_2^7 b^2 v (38 + 47v^2) + 10a_2^3 b^6 v (827 + 677v^2) \\ &+ 6a_2^5 b^4 v (2113 + 2287v^2) + 5b^9 (5v^4 - 23v^2 - 6) \\ &- 5a_2^2 b^7 (201 + 880v^2 + 83v^4) - 15a_2^4 b^5 (216 + 1219v^2 + 202v^4) \\ &- a_2^8 b (192 + 1690v^2 + 353v^4) - 2a_2^6 b^3 (984 + 7060v^2 + 1331v^4) \Big) \Big] \,. \end{split}$$

Digamma contributions drop out from the scattering angle

• Kerr:
$$c_1^{(0+1+2)} = 0$$
, $c_2^{(0+1+2)} = 0$, $c_6^{(0+1+2)} = \frac{8}{45}$, and $c_7^{(0+1+2)} = 0$

· Spins carry important signatures of compact binary formation channel

Dynamical formation: Isotropically distributed spins

• Using χ_{eff} and χ_{p} for population studies results in loss of information

Credits: [Sylvia Biscoveanu 2021 talk @ PI]