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Gravitational Waves from Compact Binaries
From Scattering and QFT GW150914, LIGO and VIRGO 

collaborations: 1608.01940
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Worldline Quantum Field Theory
• Classical limit is manifest and simply given by tree-level


• With in-in formalism all (radiative and conservative) contributions are included


• Spin and finite size effects are simply included


• Integrand-construction is not a bottle-neck with WQFT Feynman diagrams


• Optimized loop integrals for classical limit
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Worldline Quantum Field Theory
• Gravitational bremsstrahlung from scattering of spinning objects 

[with G.Mogull, J.Plefka, J.Steinhoff: 2106.10256, 2101.12688]


• SUSY WQFT formalism of spinning compact bodies 
[with G.M, J.P, J.S: 2109.04465]


• Full radiative observables: in-in formulation of WQFT 
[with G.M, J.P, B.Sauer: 2207.00569]


• Full spinning observables and conservative Hamiltonian at 3PM 
[with G.M: 2201.07778, 2210.06451]
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WQFT, brief review
• Worldline effective field theory formalism with quantized worldline fields.


• One-dimensional worldline fields  and D-dimensional bulk field .


• Classical limit is tree-level but lack of (spacial)  
translational symmetry introduces loop-like 
integrals.

zσ
a(τ) hμν(x)
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WQFT in-in formalism
• In-in expectation values instead of in-out “transition” amplitudes. 

[Schwinger ; Keldysh ; Galley, Tiglio ; …]


• Time integral on  follows closed contour from  to .


• In-in action: 


• Schwinger-Keldysh basis: 
 

t −∞ +∞

Sin−in = S[z1, h1] − S[z2, h2]

h− = h1 − h2

h+ =
1
2

(h1 + h2)
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WQFT in-in formalism
• Spinless WQFT with fields  and : 

  

after doubling of fields, Schwinger-Keldysh basis and classical limit: 

zσ
a(τ) gμν(x)

S[za, g] = SEH + Sgf − ∑
a

m
2 ∫τ

·zμ
a(τ) ·zν

a(τ)gμν(za(τ))

Sin−in = ∑
a

∫τ
zμ
a,−(τ)

δS[za,+, g+]
δzμ

a (τ)
+ ∫x

g−μν(x)
δS[z+, g+]

δgμν(x)
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WQFT in-in Path-integral
• Post-Minkowskian expansion: 

 




• In-in path integral: 

 

with: 

zσ
a(τ) = bσ

a + τvσ
a + Δzσ

a(τ)
gμν(x) = ημν + G hμν(x)

⟨𝒪⟩WQFT = ∫ D[h+, h−, za,+, za,−]eiSin−in 𝒪

Sin−in = ∫τ
Δzσ

−(τ)
δSin−out(z+, g+)

δΔzσ(τ)
+ ∫x

hμν
− (x)

δSin−out(z+, g+)
δhμν(x)
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Observables and correlation functions 
• One-point functions  and  correspond 

to gravitational field and worldline trajectory and solve equations of motion: 
 

 

hμν
c = ⟨hμν

+ (k)⟩WQFT zμ
c = ⟨zμ

+(ω)⟩WQFT

δS[zc, hc]
δzσ

= 0

δS[zc, hc]
δgμν

= 0
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Observables and correlation functions 
• Impulse: 

 

with 


• Waveform in frequency domain: 

 

with 

Δpμ = ω2 ⟨Δzμ
+(ω)⟩WQFT

ω→0

Δpμ = pμ
final − pμ

initial

f(ω, ⃗n) = ϵμνk2⟨hμν
+ (k)⟩WQFT

kμ→ω(1, ⃗n)

rhμν ∼ f ϵμν + 𝒪(r−1)
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WQFT in-in Feynman rules
• In-in Feynman rules almost identical to in-out
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Solid lines:  
Wavy lines:  

Dotted lines: Background, 

Δzσ
±(ω)

hμν(k)
bσ + τvσ



WQFT Feynman diagrams
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• WQFT diagram examples:

Solid lines:  
Wavy lines:  

Dotted lines: Background, 

Δzσ
±(ω)

hμν(k)
bσ + τvσ



PM-integration
Many approaches, same problem

• Loop integration with retarded propagators  instead of 
Feynman 


• This approach was also used to get the recent 4PM radiative results. 
[C. Dlapa, G. Kälin, Z. Liu, J. Neef, R.A. Porto: 2210.05541]


• Only difference to Feynman : symmetry relations and boundary value 
integrals.

( ⃗k2 − (k0 + iϵ)2)−1

(k2 + iϵ)−1

iϵ
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PM-integration
Many approaches, same problem

ϵ
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• WQFT loop integral example:



Spinning observables at 3PM order
With G. Mogull: 2201.07778 and 2210.06451
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SUSY WQFT, brief review
• Spin effects at linear order in curvature are well known. 

[M. Levi, J. Steinhoff ; R.A.Porto]


• We use Grassmann variables to describe spin degrees of freedom: 



• (Approximate) SUSY symmetry corresponds to “SSC” symmetry


• Action at : 

 

[Mogull, Plefka, Steinhoff, G.U.J: 2109.04465]

Sμν = − iψ[μ
A ψν]

A

𝒪(S2)

Sw.l. = − ∫τ
[m

2
( ·z2 + iψ̄ ·ψ) + Rαβγδψ̄αψβψ̄γψδ + CERαβγδ

·zβ ·zδψ̄αψγψ̄ ⋅ ψ]
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Scattering observables at 3PM
• Full results for impulse  and spin kick  to  including all 

conservative and radiative contributions.


• Generic spins response relations: 

 




• Change in angular momentum with spin was computed in [G. Mogull, J. Plefka, J. 
Steinhoff, G.U.J: 2106.10256]

Δpμ ΔSμν 𝒪(S2, G3)

Δpμ
1,rad

even in vμ
=

∂Δpμ
1,pot

∂Jα
ΔJα

ΔSμν
1,rad

even in vμ
=

∂ΔSμν
1,pot

∂Jα
ΔJα
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Generic Spins Scattering angle
Spinning Hamiltonian from matching
• We determine a Hamiltonian at  from a matching calculation to a 

generic spins scattering angle : 
 




• The impulse and  are SUSY invariant (SSC invariant)

𝒪(G3, S2)
θ

sin
θ
2

=
|Δpμ

pot |

2p∞

θ
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Aligned: Misaligned:



Generic Spins Scattering angle
• A simple example:  for aligned spins with  at order :θcons θ(n,m)

cons GnSm
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With Lorentz factor , scalar spins , symmetric mass 
ratio , and dimensionless energy 

γ = v1 ⋅ v2 s± = s1 ± s2
ν Γ = E/M



Conservative spinning Hamiltonian
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Conservative spinning Hamiltonian
• Hamiltonian coefficients  are expressed in terms of scattering angle 

coefficients . Example at  for spinless and linear in spin: 
 
 
 
 

• Compact expressions for  Hamiltonian. Special cases reproduce 
existing PM literature: [F.F.Cordero, M.Kraus, G.Lin, M.S.Ruf, M.Zeng: 2205.07357 ; Z.Bern, 
A.Luna, R.Roiban, C.-H.Shen, M.Zeng: 2005.03071 ; Z.Liu, R.A.Porto, Z.Yang: 2102.10059] 
Reproducing 4PN literature: [M.Levi, J.Steinhoff: 1607.04252] 

c(n,A)

θ(n,A) G3

𝒪(G3, S2)
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Spinning conservative dynamics
From single scalar

• We have expressed the Hamiltonian, , in terms of 


• We may now compute the impulse and spin kick from 


• Conservative impulse and spin kick are now parameterised in terms of 
generic spins angle 


• Similar to eikonal relations in [Z.Bern, A.Luna, R.Roiban, C.-H.Shen, M.Zeng: 2005.03071]

H θ

H

θ
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Conclusions and perspectives

• Efficient in-in WQFT framework for PM-scattering


• Radiative and conservative spin observables at 


• Scalar quantities encapsulating conservative motion


• Gauge invariant mappings from unbound to bound with generic spins (+ tails)


• Effective one body models or other re-summation schemes

𝒪(G3, S2)
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Relation of WQFT to QFT and Amplitudes
• Dressed QFT scalar propagator becomes worldline Polyakov action 

[G.Mogull, J.Plefka and J.Steinhoff: 2010.02865]


• Velocity cuts map QFT integrals to worldline theory integrals. 
[N.E.J.Bjerrum-Bohr, P.H.Damgaard, L.Planté and P.Vanhove: 2105.05218, 2111.02976]


• Heavy-Mass Effective Theory and Heavy Black Hole Effective Theory uses 
linear “worldline” propagators. 
[A.Brandhuber et al: 2104.11206, K.Haddad et al: 1908.10308]
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Classical Einstein Gravity from QFT
• Effective field theory of gravity and classical limit of QFT 

[J.F.Donoghue ; N.E.J.Bjerrum-Bohr, J.F.Donoghue, B.Holstein ; C.Cheung, I.Z.Rothstein, M.P.Solon ; 
N.E.J.Bjerrum-Bohr, P.H.Damgaard, G.Festuccia, L.Planté, P.Vanhove: 1806.04920 ; D.A.Kosower, 
B.Maybee, D.O’Connell]


• Initial success with 3PM Hamiltonian [Z.Bern et al.]. Current PM state of the art is 
4PM [Z.Bern et al., R.A.Porto et al.]. 


• Amplitudes: gauge invariance, generalized unitarity, double copy


• Integration techniques: IBPs,  
differential equations, 
 reverse unitarity
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Worldline theory of compact objects
• Worldline effective field theory approach to gravitational wave sources 

originally designed for the PN expansion. 
[W.Goldberger, I.Rothstein: hep-th/0409156]


• Worldline Quantum Field Theory (WQFT): worldline formalism designed  
for PM scattering taking advantage of quantum field theoretic principles. 
[G.Mogull, J.Plefka, J.Steinhoff, B.Sauer, G.U.J: 2010.02865, 2207.00569]


• Also PM-EFT worldline formalism equally suited for PM scattering. 
[R.A.Porto, G.Kälin et al. ;  M.M.Riva, F.Vernizzi et al.]
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