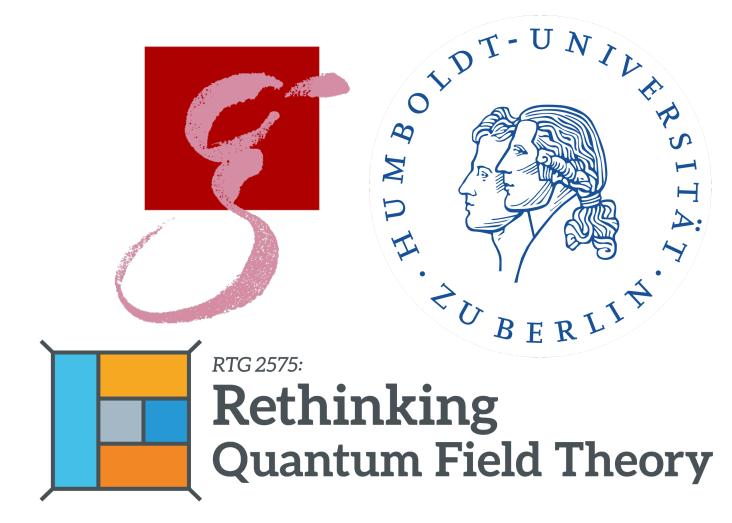
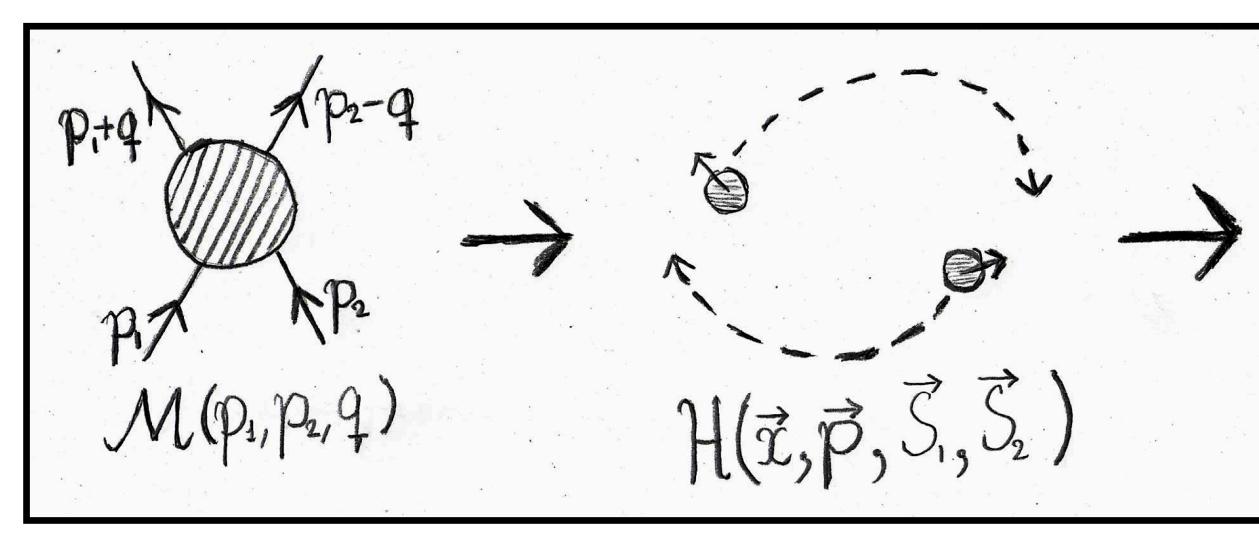
Scattering of spinning bodies with worldline quantum field theory

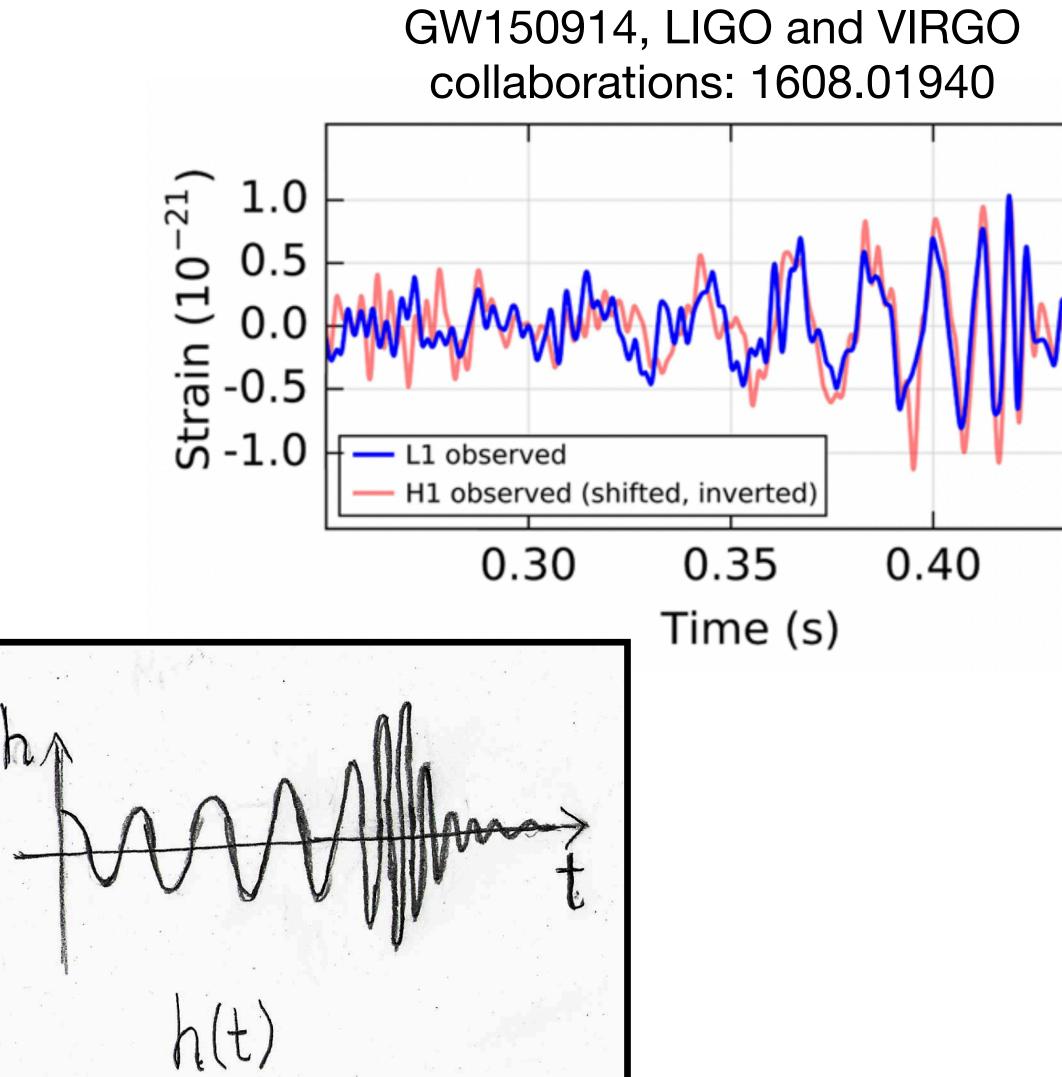
Gustav Jakobsen, Humboldt-Universität zu Berlin and Max Planck Institute for Gravitational Wave Physics

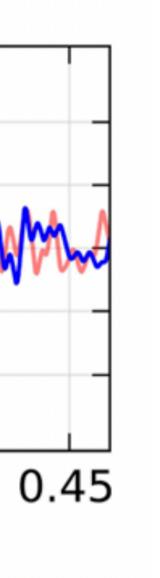
QCD meets Gravity, 13 December 2022



Gravitational Waves from Compact Binaries From Scattering and QFT GW150914, LIGO and VIRGO







Worldline Quantum Field Theory

- Classical limit is manifest and simply given by tree-level
- With in-in formalism all (radiative and conservative) contributions are included
- Spin and finite size effects are simply included
- Integrand-construction is not a bottle-neck with WQFT Feynman diagrams
- Optimized loop integrals for classical limit

Worldline Quantum Field Theory

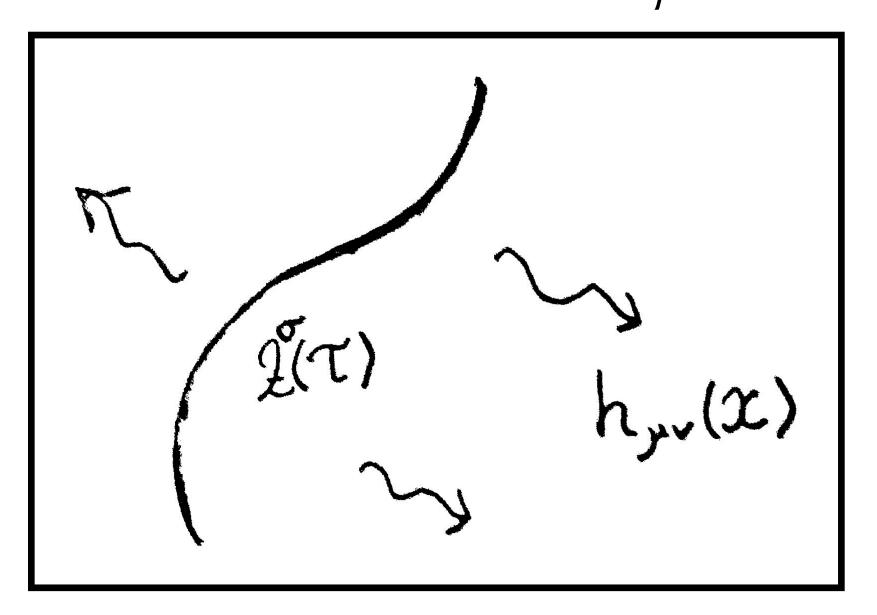
- Gravitational bremsstrahlung from scattering of spinning objects [with G.Mogull, J.Plefka, J.Steinhoff: 2106.10256, 2101.12688]
- SUSY WQFT formalism of spinning compact bodies [with G.M, J.P, J.S: 2109.04465]
- Full radiative observables: in-in formulation of WQFT [with G.M, J.P, B.Sauer: 2207.00569]
- Full spinning observables and conservative Hamiltonian at 3PM [with G.M: 2201.07778, 2210.06451]

Worldline Quantum Field Theory

- Gravitational bremsstrahlung from scattering of spinning objects [with G.Mogull, J.Plefka, J.Steinhoff: 2106.10256, 2101.12688]
- SUSY WQFT formalism of spinning compact bodies [with G.M, J.P, J.S: 2109.04465]
- Full radiative observables: in-in formulation of WQFT [with G.M, J.P, B.Sauer: 2207.00569]
- Full spinning observables and conservative Hamiltonian at 3PM [with G.M: 2201.07778, 2210.06451]

WQFT, brief review

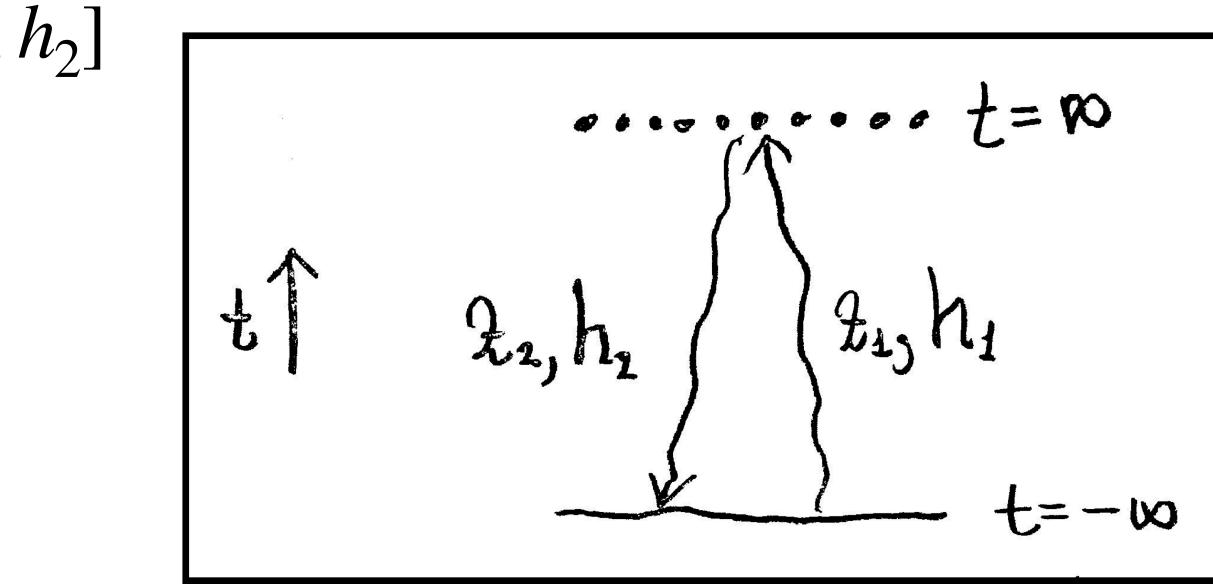
- Worldline effective field theory formalism with quantized worldline fields.
- One-dimensional worldline fields $z_a^{\sigma}(\tau)$ and D-dimensional bulk field $h_{\mu\nu}(x)$.
- Classical limit is tree-level but lack of (spacial) translational symmetry introduces loop-like integrals.



WQFT in-in formalism

- In-in expectation values instead of in-out "transition" amplitudes. [Schwinger; Keldysh; Galley, Tiglio; ...]
- Time integral on t follows closed contour from $-\infty$ to $+\infty$.
- In-in action: $S_{in-in} = S[z_1, h_1] S[z_2, h_2]$
- Schwinger-Keldysh basis:

$$h_{-} = h_{1} - h_{2}$$
$$h_{+} = \frac{1}{2}(h_{1} + h_{2})$$



WQFT in-in formalism

• Spinless WQFT with fields $z_a^{\sigma}(\tau)$ and $g_{\mu\nu}(x)$:

$$S[z_a, g] = S_{\rm EH} + S_{\rm gf} - \sum_{a} \frac{m}{2} \int_{\tau} \dot{z}_a^{\mu} (\tau)$$

after doubling of fields, Schwinger-Keldysh basis and classical limit:

$$S_{\text{in-in}} = \sum_{a} \int_{\tau} z_{a,-}^{\mu}(\tau) \frac{\delta S[z_{a,+}, g_+]}{\delta z_a^{\mu}(\tau)} +$$

 $\tau)\dot{z}_{a}^{\nu}(\tau)g_{\mu\nu}(z_{a}(\tau))$

 $-\int_{x} g_{-\mu\nu}(x) \frac{\partial S[z_+, g_+]}{\delta g_{\mu\nu}(x)}$

WQFT in-in Path-integral

Post-Minkowskian expansion:

$$z_a^{\sigma}(\tau) = b_a^{\sigma} + \tau v_a^{\sigma} + \Delta z_a^{\sigma}(\tau)$$
$$g_{\mu\nu}(x) = \eta_{\mu\nu} + \sqrt{G} h_{\mu\nu}(x)$$

• In-in path integral:

 $\langle \mathcal{O} \rangle_{\text{WQFT}} = \int D[h_+, h_-, z_{a,+}, z_a]$

with:

$$S_{\text{in-in}} = \int_{\tau} \Delta z_{-}^{\sigma}(\tau) \frac{\delta S_{\text{in-out}}(z_{+}, g_{+})}{\delta \Delta z^{\sigma}(\tau)} + \int_{x} h_{-}^{\mu\nu}(x) \frac{\delta S_{\text{in-out}}(z_{+}, g_{+})}{\delta h^{\mu\nu}(x)}$$

$$[a,-]e^{iS_{\text{in-in}}}\mathcal{O}$$

Observables and correlation functions

to gravitational field and worldline trajectory and solve equations of motion:

$$\frac{\delta S[z_c, h_c]}{\delta z^{\sigma}} = 0$$
$$\frac{\delta S[z_c, h_c]}{\delta g_{\mu\nu}} = 0$$

• One-point functions $h_c^{\mu\nu} = \langle h_+^{\mu\nu}(k) \rangle_{\text{WOFT}}$ and $z_c^{\mu} = \langle z_+^{\mu}(\omega) \rangle_{\text{WOFT}}$ correspond

Observables and correlation functions

• Impulse:

$$\Delta p^{\mu} = \omega^2 \langle \Delta z^{\mu}_{+}(\omega) \rangle_{\text{WQFT}} \Big|_{\omega \to 0}$$

with $\Delta p^{\mu} = p^{\mu}_{\text{final}} - p^{\mu}_{\text{initial}}$

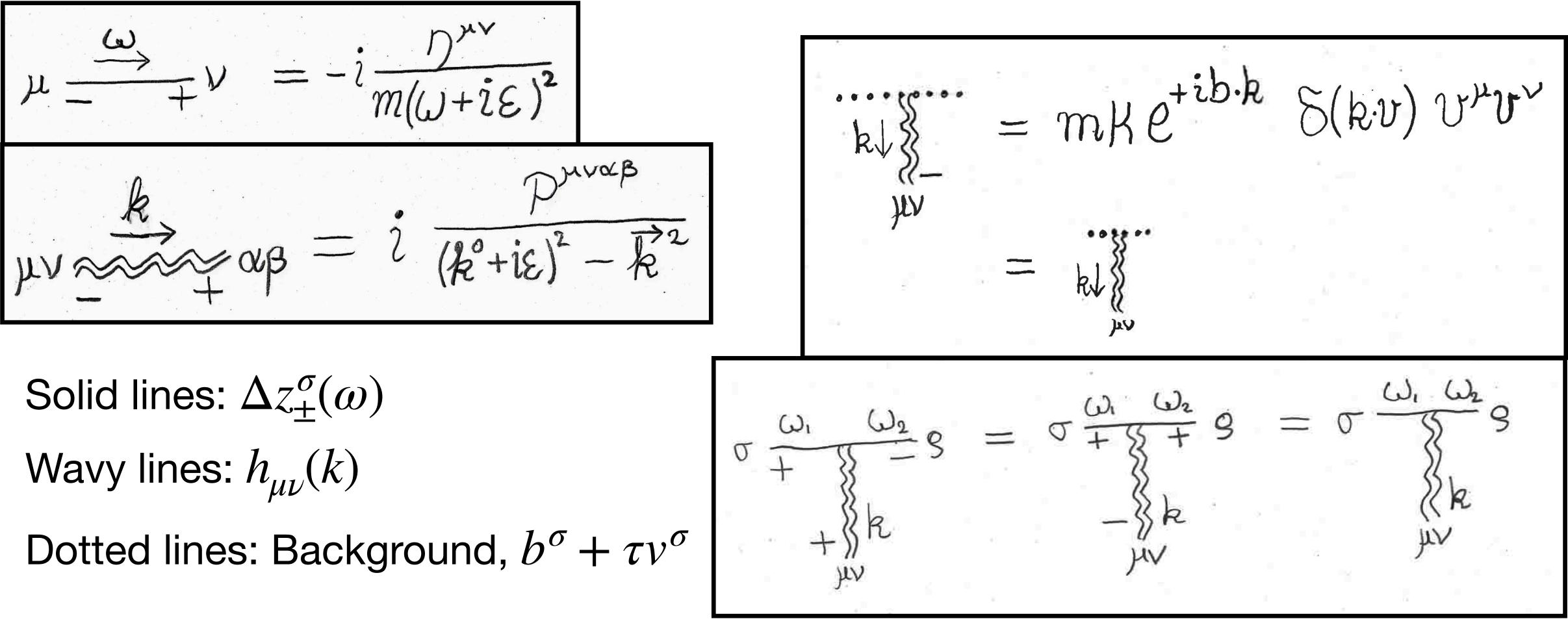
• Waveform in frequency domain:

$$\begin{split} f(\omega,\vec{n}) &= \epsilon_{\mu\nu} k^2 \langle h_+^{\mu\nu}(k) \rangle_{\rm WQFT} \Big|_{k^{\mu} \to 0} \end{split}$$
 with $rh_{\mu\nu} \sim f \epsilon_{\mu\nu} + \mathcal{O}(r^{-1})$

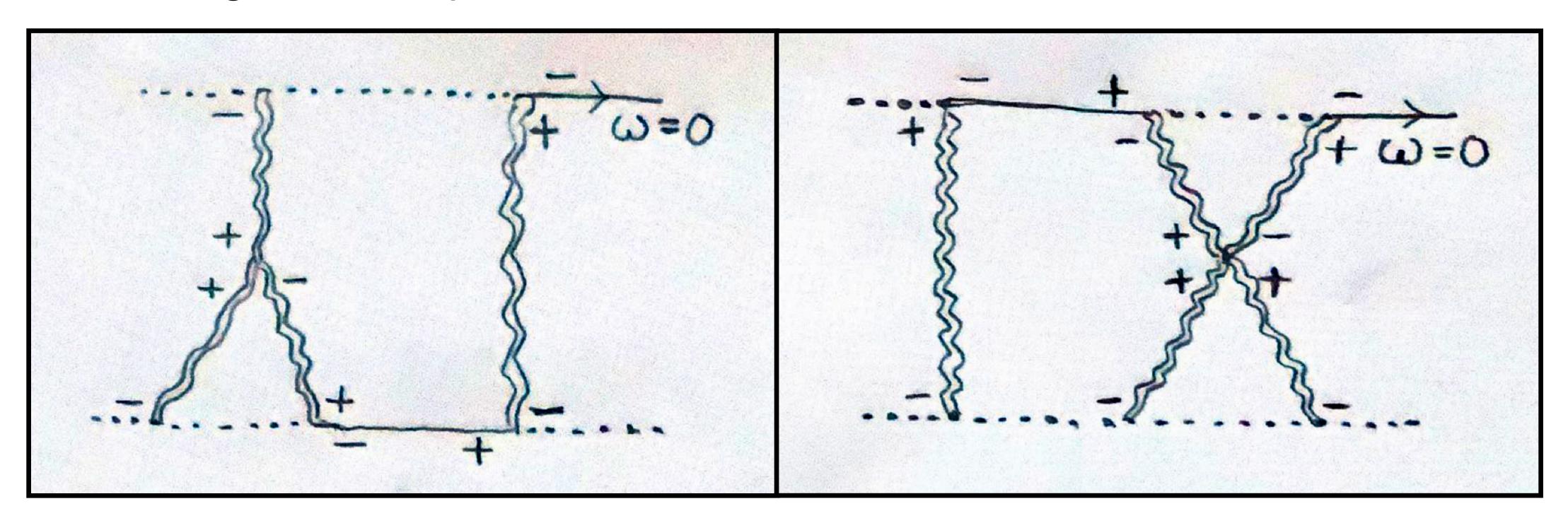
 $\omega(1,\vec{n})$

WQFT in-in Feynman rules

In-in Feynman rules almost identical to in-out



WQFT Feynman diagrams • WQFT diagram examples:



Solid lines: $\Delta z_{+}^{\sigma}(\omega)$ Wavy lines: $h_{\mu\nu}(k)$ Dotted lines: Background, $b^{\sigma} + \tau v^{\sigma}$

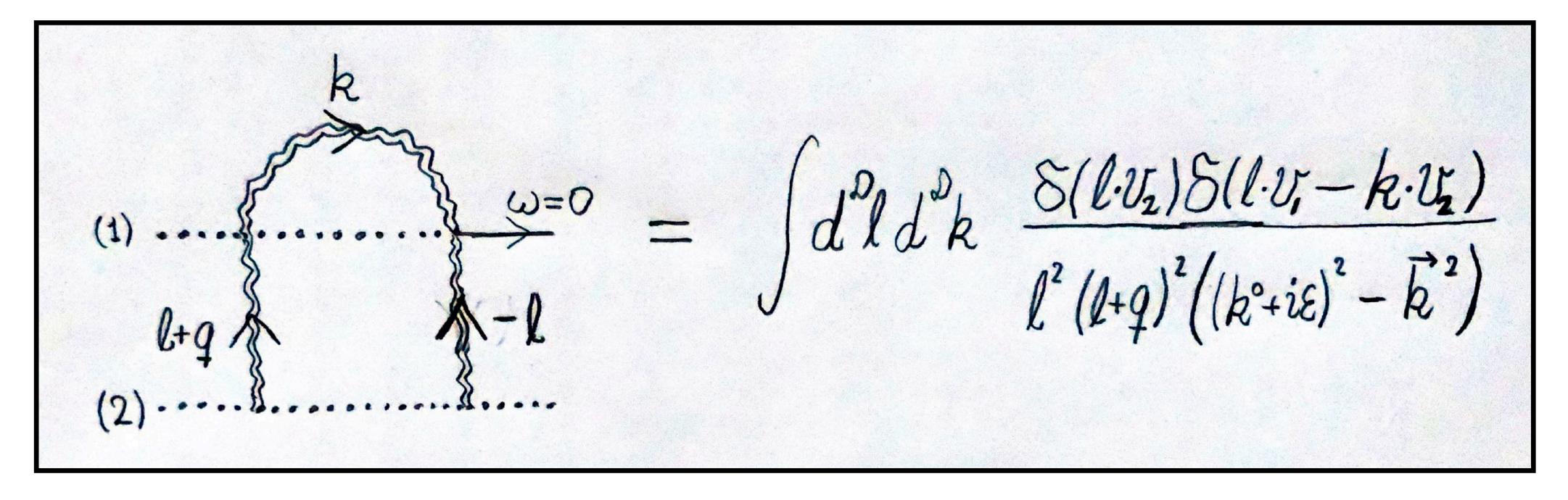
PM-integration Many approaches, same problem

- Feynman $(k^2 + i\epsilon)^{-1}$
- This approach was also used to get the recent 4PM radiative results. [C. Dlapa, G. Kälin, Z. Liu, J. Neef, R.A. Porto: 2210.05541]
- Only difference to Feynman $i\epsilon$: symmetry relations and boundary value integrals.

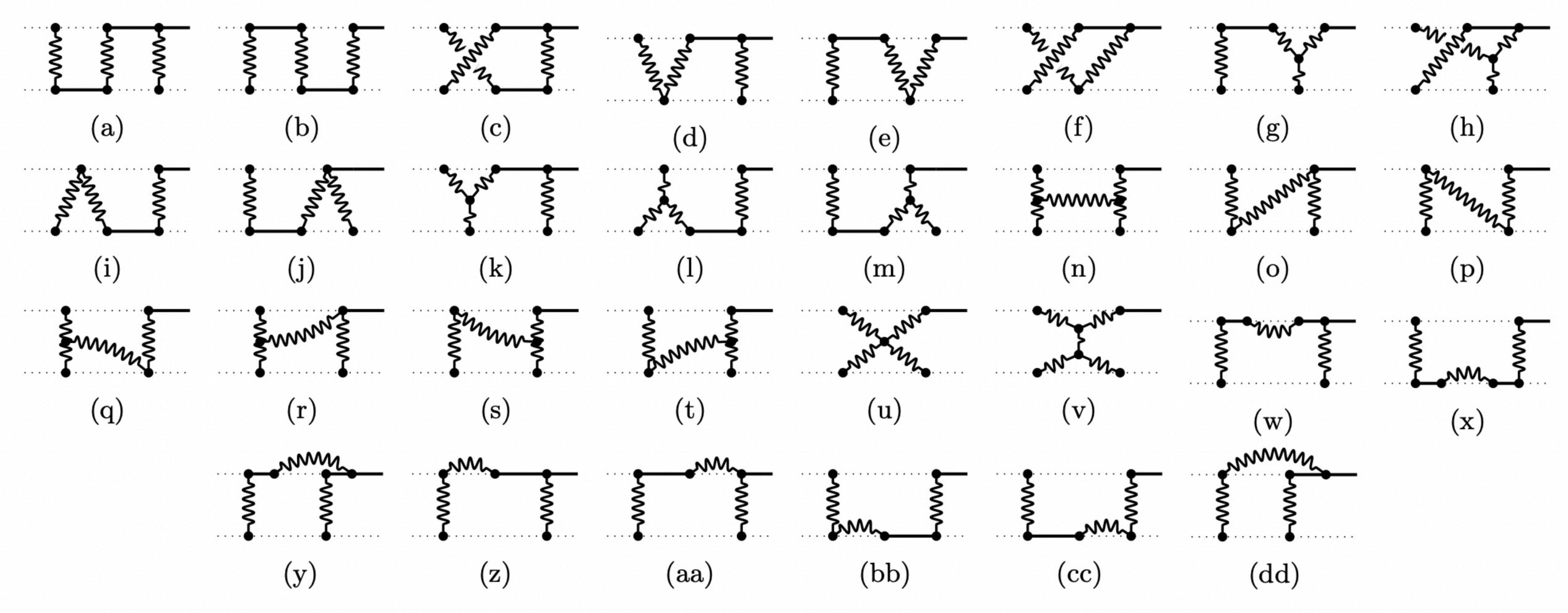
• Loop integration with retarded propagators $(\vec{k}^2 - (k^0 + i\epsilon)^2)^{-1}$ instead of

PM-integration Many approaches, same problem

• WQFT loop integral example:



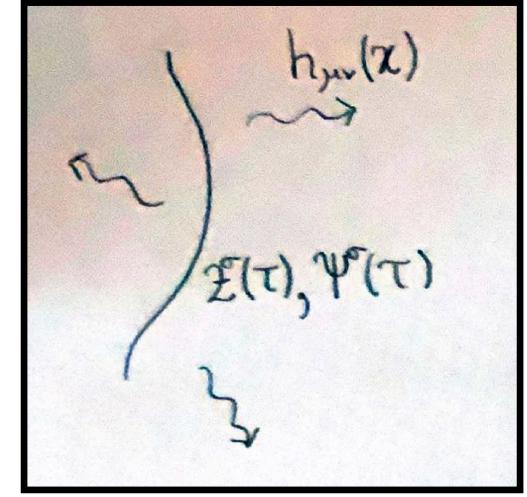
Spinning observables at 3PM order With G. Mogull: 2201.07778 and 2210.06451



SUSY WQFT, brief review

- Spin effects at linear order in curvature are well known. [M. Levi, J. Steinhoff; R.A.Porto]
- We use Grassmann variables to describe spin degrees of freedom: $S^{\mu\nu} = -i\psi_{\Lambda}^{[\mu}\psi_{\Lambda}^{\nu]}$
- (Approximate) SUSY symmetry corresponds to "SSC" symmetry
- Action at $\mathcal{O}(S^2)$: $S_{\text{w.l.}} = -\left[\left[\frac{m}{2} (\dot{z}^2 + i\bar{\psi}\dot{\psi}) + R_{\alpha\beta\gamma\delta}\bar{\psi}^{\alpha}\psi^{\beta}\bar{\psi}^{\gamma}\psi^{\delta} + C_E R_{\alpha\beta\gamma\delta}\dot{z}^{\beta}\dot{z}^{\delta}\bar{\psi}^{\alpha}\psi^{\gamma}\bar{\psi}\cdot\psi \right] \right]$ J_{τ} \Box

[Mogull, Plefka, Steinhoff, G.U.J: 2109.04465]



Scattering observables at 3PM

- conservative and radiative contributions.
- Generic spins response relations: $\Delta p_{1,\text{rad}}^{\mu} = \frac{\partial \Delta p_{1,\text{pot}}^{\mu}}{\partial J^{\alpha}} \Delta J^{\alpha}$ $=\frac{\partial\Delta S_{1,\text{pot}}^{\mu\nu}}{\partial J^{\alpha}}/$
- Steinhoff, G.U.J: 2106.10256]

• Full results for impulse Δp^{μ} and spin kick $\Delta S^{\mu\nu}$ to $\mathcal{O}(S^2, G^3)$ including all

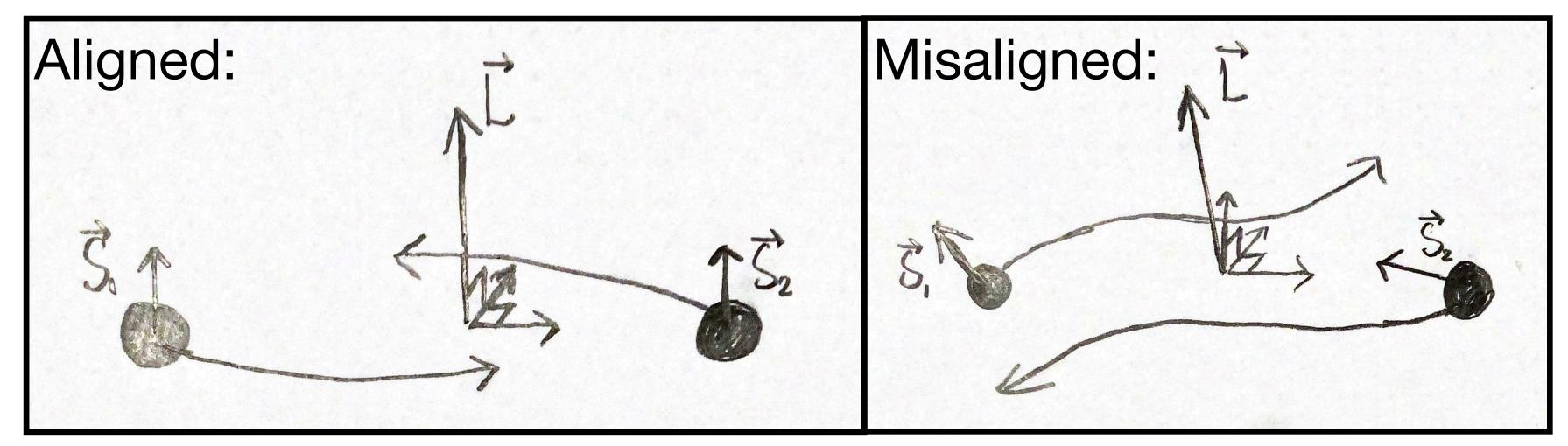
Change in angular momentum with spin was computed in [G. Mogull, J. Plefka, J.

Generic Spins Scattering angle Spinning Hamiltonian from matching • We determine a Hamiltonian at $\mathcal{O}(G^3, S^2)$ from a matching calculation to a

generic spins scattering angle θ :

$$\sin\frac{\theta}{2} = \frac{|\Delta p_{\rm pot}^{\mu}|}{2p_{\infty}}$$

• The impulse and θ are SUSY invariant (SSC invariant)

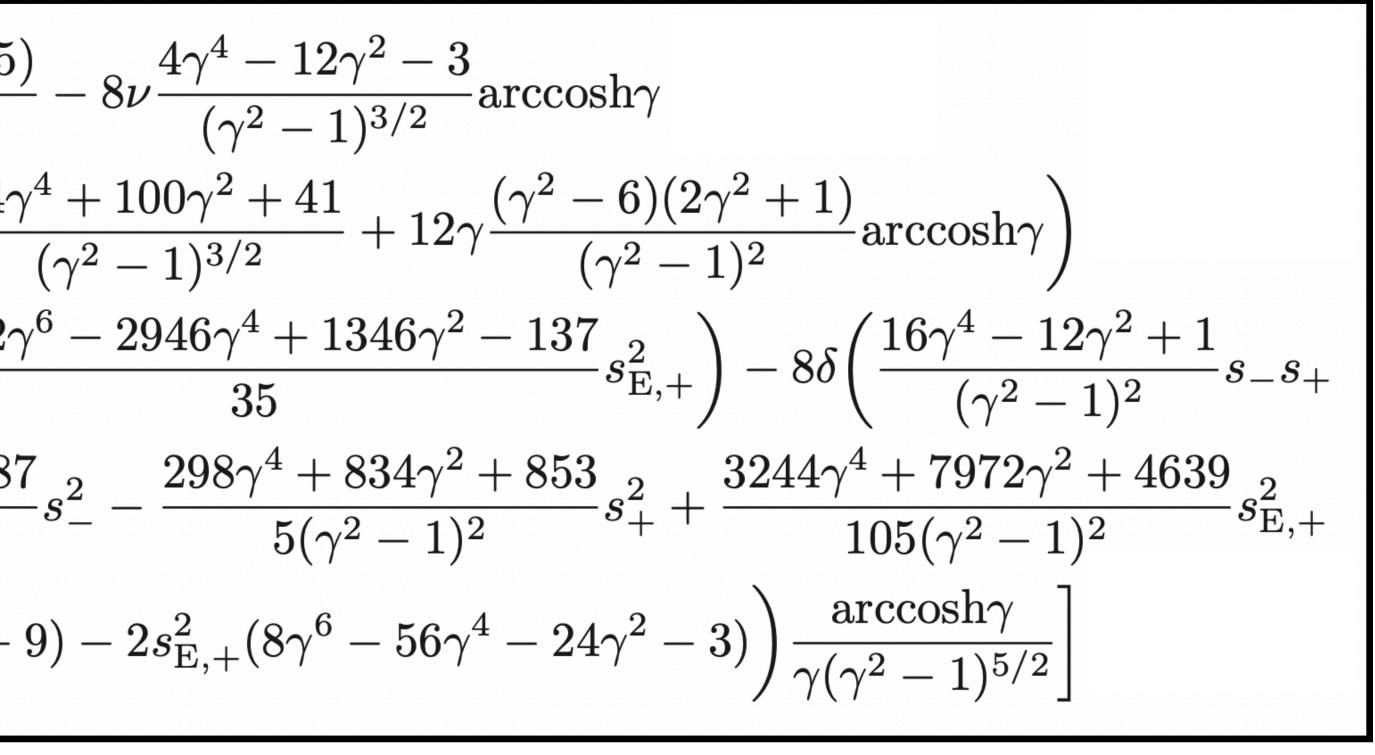


Generic Spins Scattering angle

• A simple example: θ_{cons} for aligned spins with $\theta_{cons}^{(n,m)}$ at order $G^n S^m$:

$$\begin{split} \theta_{\rm cons}^{(3,0)} &= 2 \frac{64\gamma^6 - 120\gamma^4 + 60\gamma^2 - 5}{3(\gamma^2 - 1)^3} \Gamma^2 - \frac{8\nu\gamma(14\gamma^2 + 25\gamma_1^2 + 25\gamma_1^2)}{3(\gamma^2 - 1)^3} \\ \theta_{\rm cons}^{(3,1)} &= 2\gamma \frac{16\gamma^4 - 20\gamma^2 + 5}{(\gamma^2 - 1)^{5/2}} (5\Gamma^2 s_+ - \delta s_-) - 4\nu s_+ \left(\frac{44\gamma_1^2}{(\gamma^2 - 1)^{5/2}} \right) \\ \theta_{\rm cons}^{(3,2)} &= \frac{4\Gamma^2}{(\gamma^2 - 1)^3} \left((96\gamma^6 - 160\gamma^4 + 70\gamma^2 - 5)s_+^2 - \frac{1772\gamma_1^2}{(\gamma^2 - 1)^2} \right) \\ &- \frac{214\gamma^4 - 223\gamma^2 + 44}{35(\gamma^2 - 1)^2} s_{\rm E,-}^2 \right) + 8\nu\gamma \left[\frac{2\gamma^4 + 86\gamma^2 + 8\gamma_1^2}{5(\gamma^2 - 1)^2} \right] \\ &- \left(3s_-^2 (4\gamma^4 + 7\gamma^2 + 1) + 3s_+^2 (8\gamma^6 - 68\gamma^4 - 63\gamma^2 - 12\gamma_1^2) \right) \right] \end{split}$$

ratio ν , and dimensionless energy $\Gamma = E/M$



With Lorentz factor $\gamma = v_1 \cdot v_2$, scalar spins $s_+ = s_1 \pm s_2$, symmetric mass

Conservative spinning Hami
$$H(\mathbf{x}, \mathbf{p}, \mathbf{S}_i) = \sqrt{\mathbf{p}^2 + m_1^2} + \sqrt{\mathbf{p}^2 + m_2^2} + V(\mathbf{x}, \mathbf{p}, \mathbf{S}_i)$$

$$V(\mathbf{x}, \mathbf{p}, \mathbf{S}_{i}) = \sum_{A} \mathcal{O}^{A} V^{A}(\mathbf{x}, \mathbf{p}) + \mathcal{O}(S^{3})$$

$$= V^{(0)} + \sum_{i} V^{(1,i)} \mathcal{O}^{(1,i)} + \sum_{i,j,a} V^{(2,a,i,j)} \mathcal{O}^{(2,a,i,j)} + \mathcal{O}(S^{3})$$

$$\mathcal{O}^{(1,i)} = \frac{(\mathbf{x} \times \mathbf{p}) \cdot \mathbf{a}}{|\mathbf{x}|^{2}}$$

$$\mathcal{O}^{(2,1,i,j)} = \frac{\mathbf{a}_{i} \cdot \mathbf{a}_{j}}{|\mathbf{x}|^{2}},$$

$$\mathcal{O}^{(2,2,i,j)} = \frac{\mathbf{x} \cdot \mathbf{a}_{i} \mathbf{x} \cdot \mathbf{a}_{j}}{|\mathbf{x}|^{4}}$$

$$\mathcal{O}^{(2,3,i,j)} = \frac{\mathbf{p} \cdot \mathbf{a}_{i} \mathbf{p} \cdot \mathbf{a}_{j}}{|\mathbf{x}|^{4}}$$

$$V(\mathbf{x}, \mathbf{p}, \mathbf{S}_{i}) = \sum_{A} \mathcal{O}^{A} V^{A}(\mathbf{x}, \mathbf{p}) + \mathcal{O}(S^{3})$$

$$= V^{(0)} + \sum_{i} V^{(1,i)} \mathcal{O}^{(1,i)} + \sum_{i,j,a} V^{(2,a,i,j)} \mathcal{O}^{(2,a,i,j)} + \mathcal{O}(S^{3})$$

$$\mathcal{O}^{(1,i)} = \frac{(\mathbf{x} \times \mathbf{p}) \cdot \mathbf{a}}{|\mathbf{x}|^{2}}$$

$$\mathcal{O}^{(2,1,i,j)} = \frac{\mathbf{a}_{i} \cdot \mathbf{a}_{j}}{|\mathbf{x}|^{2}},$$

$$\mathcal{O}^{(2,2,i,j)} = \frac{\mathbf{x} \cdot \mathbf{a}_{i} \mathbf{x} \cdot \mathbf{a}_{j}}{|\mathbf{x}|^{4}}$$

$$\mathcal{O}^{(2,3,i,j)} = \frac{\mathbf{p} \cdot \mathbf{a}_{i} \mathbf{p} \cdot \mathbf{a}_{j}}{|\mathbf{x}|^{4}}$$

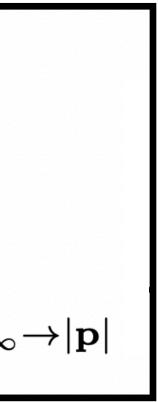
iltonian

Conservative spinning Hamiltonian • Hamiltonian coefficients $c^{(n,A)}$ are expressed in terms of scattering angle coefficients $\theta^{(n,A)}$. Example at G^3 for spinless and linear in spin:

$$c^{(3;0)}(\mathbf{p}^{2}) = -\frac{p_{\infty}^{2}}{4E\xi}\theta_{\mathrm{can}}^{(3;0)} + \frac{1}{2\pi p_{\infty}^{2}}\mathcal{D}\Big[\frac{p_{\infty}^{4}}{E\xi}\theta_{\mathrm{can}}^{(1;0)}\theta_{\mathrm{can}}^{(2;0)}\Big] - \frac{1}{48p_{\infty}^{2}}\mathcal{D}^{2}\Big[\frac{p_{\infty}^{4}}{E\xi}(\theta^{(1;0)})^{3}\Big]\Big|_{p_{\infty}\to|\mathbf{p}|}$$

$$c^{(3;1,i)}(\mathbf{p}^{2}) = -\frac{p_{\infty}}{4E\xi}\theta_{\mathrm{can}}^{(3;1,i)} + \frac{1}{2\pi p_{\infty}^{4}}\mathcal{D}\Big[\frac{p_{\infty}^{5}}{E\xi}(\theta_{\mathrm{can}}^{(1;0)}\theta_{\mathrm{can}}^{(2;1,i)} + \theta_{\mathrm{can}}^{(2;0)}\theta_{\mathrm{can}}^{(1;1,i)})\Big] - \frac{1}{16p_{\infty}^{4}}\mathcal{D}^{2}\Big[\frac{p_{\infty}^{5}}{E\xi}(\theta_{\mathrm{can}}^{(1;0)})^{2}\theta_{\mathrm{can}}^{(1;1,i)}\Big]\Big|_{p_{\infty}}$$

• Compact expressions for $\mathcal{O}(G^3, S^2)$ Hamiltonian. Special cases reproduce existing PM literature: [F.F.Cordero, M.Kraus, G.Lin, M.S.Ruf, M.Zeng: 2205.07357; Z.Bern, A.Luna, R.Roiban, C.-H.Shen, M.Zeng: 2005.03071 ; Z.Liu, R.A.Porto, Z.Yang: 2102.10059] Reproducing 4PN literature: [M.Levi, J.Steinhoff: 1607.04252]



Spinning conservative dynamics From single scalar

- We have expressed the Hamiltonian, H, in terms of θ
- We may now compute the impulse and spin kick from ${\cal H}$
- Conservative impulse and spin kick are now parameterised in terms of generic spins angle $\boldsymbol{\theta}$
- Similar to eikonal relations in [Z.Bern, A.Luna, R.Roiban, C.-H.Shen, M.Zeng: 2005.03071]

Conclusions and perspectives

- Efficient in-in WQFT framework for PM-scattering
- Radiative and conservative spin observables at $\mathcal{O}(G^3, S^2)$
- Scalar quantities encapsulating conservative motion
- Gauge invariant mappings from unbound to bound with generic spins (+ tails)
- Effective one body models or other re-summation schemes

Relation of WQFT to QFT and Amplitudes

- Dressed QFT scalar propagator becomes worldline Polyakov action [G.Mogull, J.Plefka and J.Steinhoff: 2010.02865]
- Velocity cuts map QFT integrals to worldline theory integrals. [N.E.J.Bjerrum-Bohr, P.H.Damgaard, L.Planté and P.Vanhove: 2105.05218, 2111.02976]
- linear "worldline" propagators. [A.Brandhuber et al: 2104.11206, K.Haddad et al: 1908.10308]

Heavy-Mass Effective Theory and Heavy Black Hole Effective Theory uses

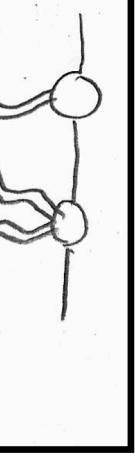
Classical Einstein Gravity from QFT

- Effective field theory of gravity and classical limit of QFT B.Maybee, D.O'Connell]
- 4PM [Z.Bern et al., R.A.Porto et al.].
- Amplitudes: gauge invariance, generalized unitarity, double copy
- Integration techniques: IBPs, differential equations, reverse unitarity

[J.F.Donoghue; N.E.J.Bjerrum-Bohr, J.F.Donoghue, B.Holstein; C.Cheung, I.Z.Rothstein, M.P.Solon; N.E.J.Bjerrum-Bohr, P.H.Damgaard, G.Festuccia, L.Planté, P.Vanhove: 1806.04920; D.A.Kosower,

Initial success with 3PM Hamiltonian [Z.Bern et al.]. Current PM state of the art is

$\sim \mu \rightarrow \lambda aas \rightarrow \rightarrow$	Phi
	p~~
Tree MGR	MGR



Worldline theory of compact objects

- Worldline effective field theory approach to gravitational wave sources originally designed for the PN expansion. [W.Goldberger, I.Rothstein: hep-th/0409156]
- Worldline Quantum Field Theory (WQFT): worldline formalism designed [G.Mogull, J.Plefka, J.Steinhoff, B.Sauer, G.U.J: 2010.02865, 2207.00569]
- Also PM-EFT worldline formalism equally suited for PM scattering. [R.A.Porto, G.Kälin et al.; M.M.Riva, F.Vernizzi et al.]

for PM scattering taking advantage of quantum field theoretic principles.