

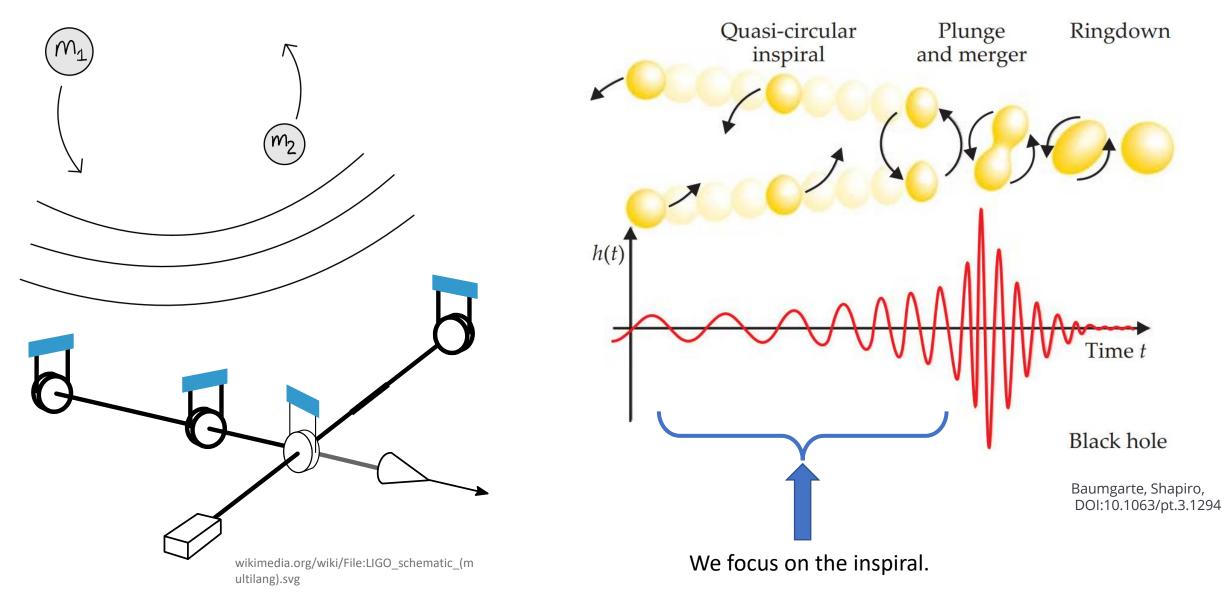
Gravitational bremsstrahlung from a heavy-mass effective field theory

To appear with-Andreas Brandhuber, Gang Chen, Stefano De Angelis, Joshua Gowdy and Gabriele Travaglini. Graham R. Brown 13.12.2022-QCD Meets Gravity

Talk Outline:

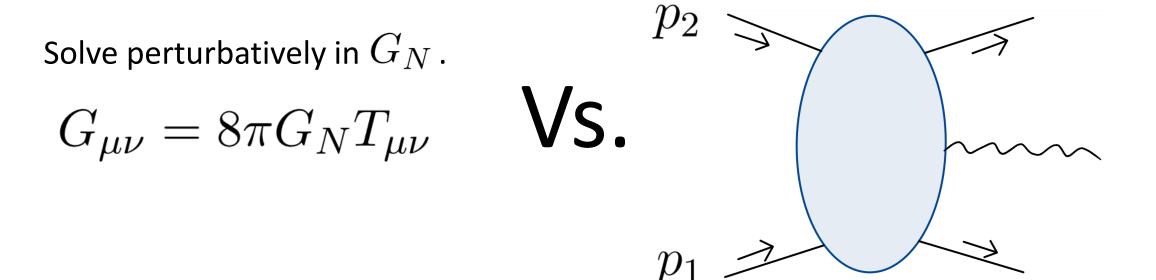
- Motivation- gravitational waves.
- Everything you always wanted to know about HEFT, but were afraid to ask.
- Using the HEFT to build at 4 and 5-point amplitudes.

Compulsory slide in any GW talk



How to approach perturbation theory?

Construct amplitudes perturbatively in G_N .



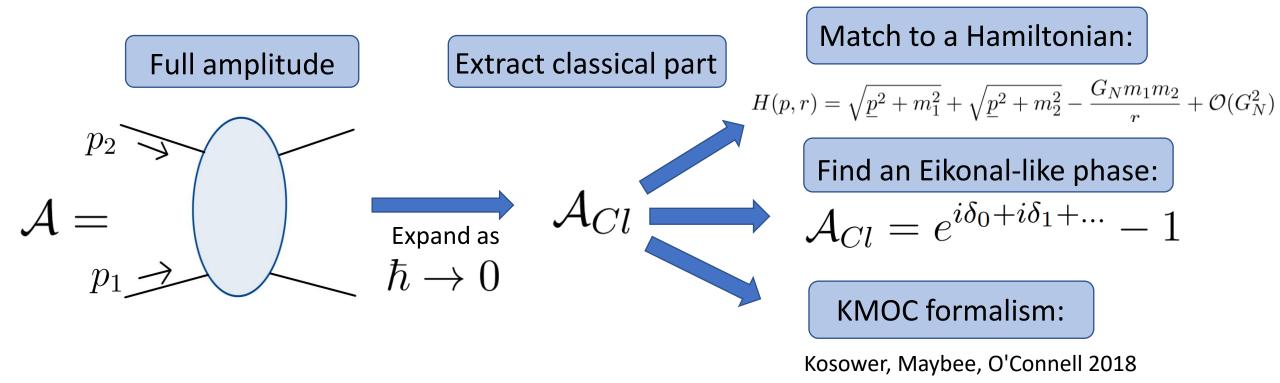
(See talks today and Friday)

Basic Idea: Non-spinning black holes only have one parameter, their mass m. So describe them by a scalar field:

$$\mathcal{L} = \int d^D x \sqrt{-g} \left(\frac{R}{16\pi G_N} + \sum_{i=1,2} \left(\frac{1}{2} g^{\mu\nu} \partial_\mu \phi_i \partial_\nu \phi_i - m_i^2 \phi_i^2 \right) \right)$$



From quantum amplitudes to Classical Observables



•

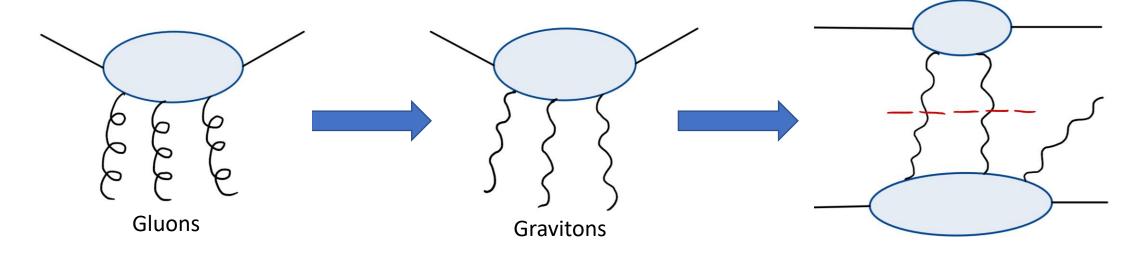
How to calculate Gravity amplitudes?

The Mantra: Recycle previous results

1. Find Tree level Amplitudes in Yang-Mills.

2. Double copy to tree level gravity amplitudes.

3. Glue tree level amplitudes together using unitarity cuts.

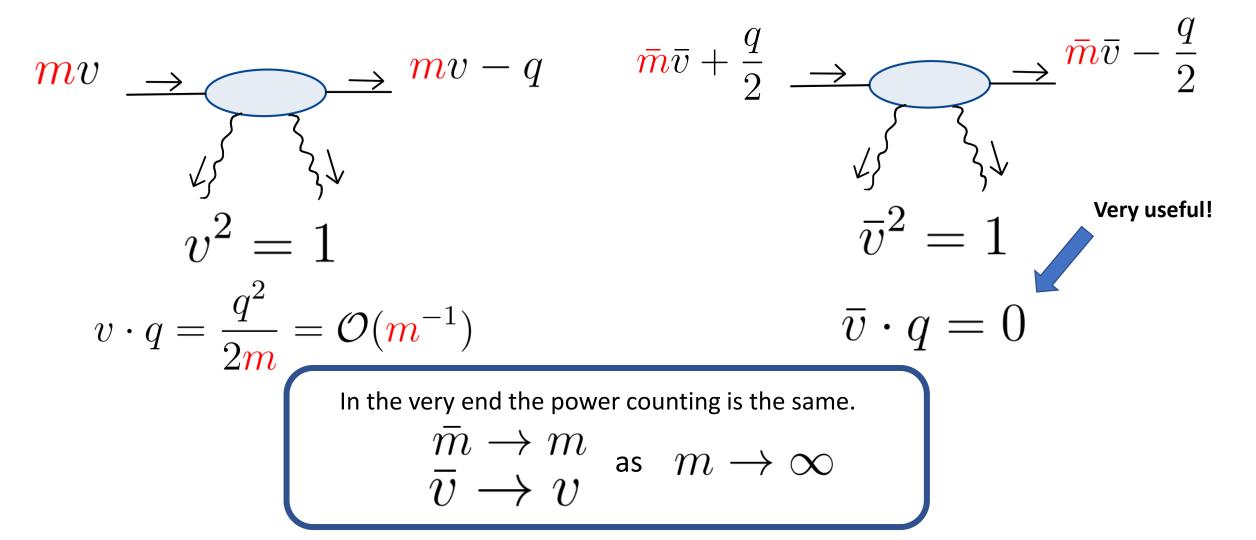


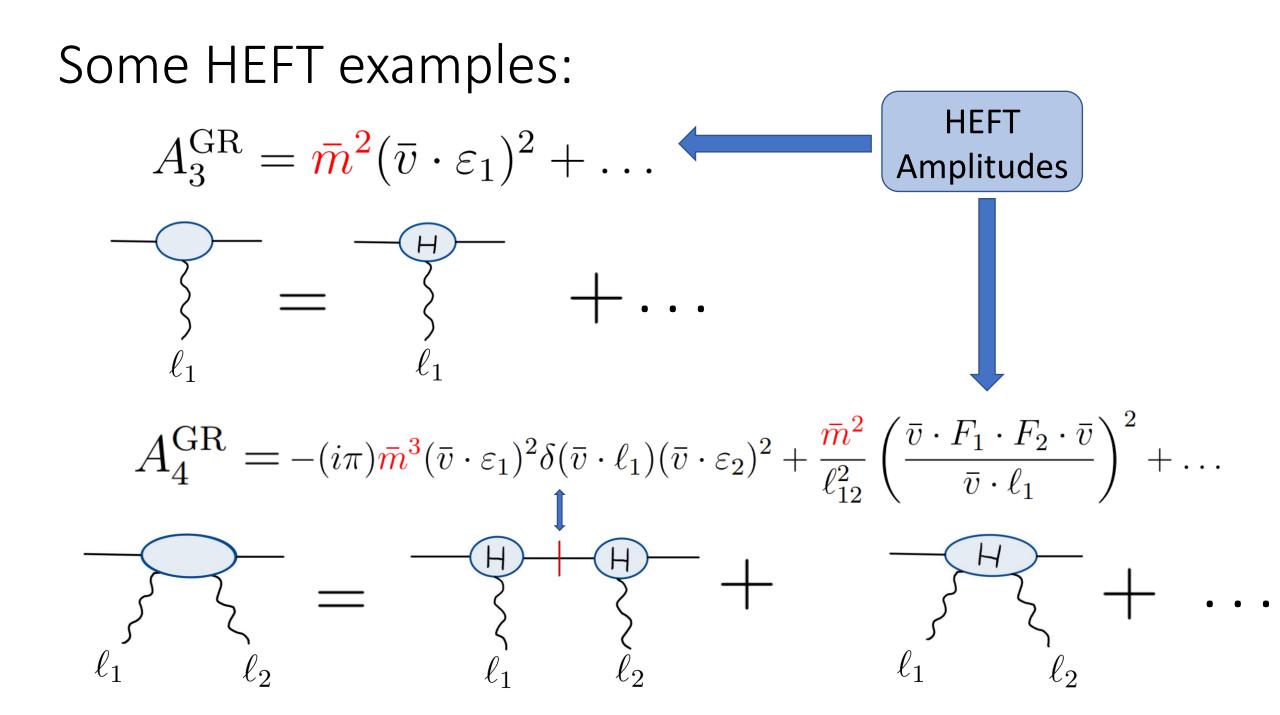
HEFT makes these steps easy!

Enter the "Heavy-mass Effective Field Theory" (HEFT) Brandhuber, Chen, Travaglini, Wen 2021 x2 +Johansson 2021 Gregori 1990, Damgaard, Haddad, Helset 2019 $\ge p-q$ ℓ_1 $\hbar \to 0$ $1/m \rightarrow 0$ $\Rightarrow p - \hbar \tilde{q}$ mv $\rightarrow m U$ $\hbar \ell_1$ **Equivalent** expansions venumber

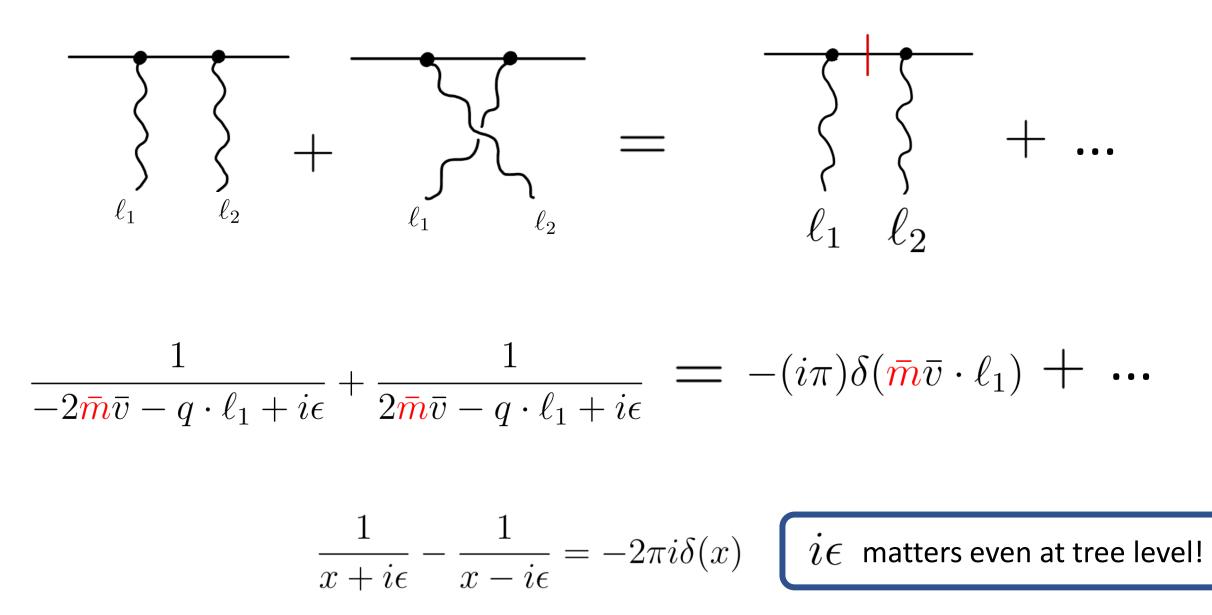
A technical point... I lied

The HEFT is actually an expansion as $1/\bar{m}_i o 0$, $\bar{m} = \sqrt{m^2 - q^2/4} = m + \mathcal{O}(m^{-1})$

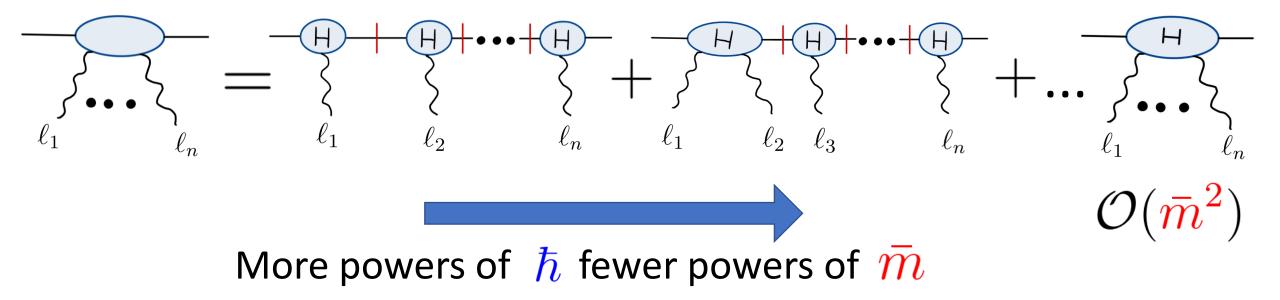




HEFT cuts



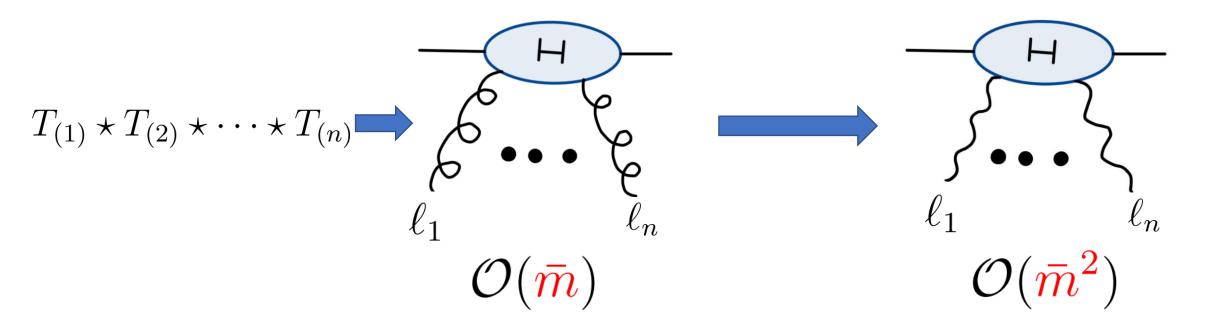
The general structure:



How do we build HEFT amplitudes?

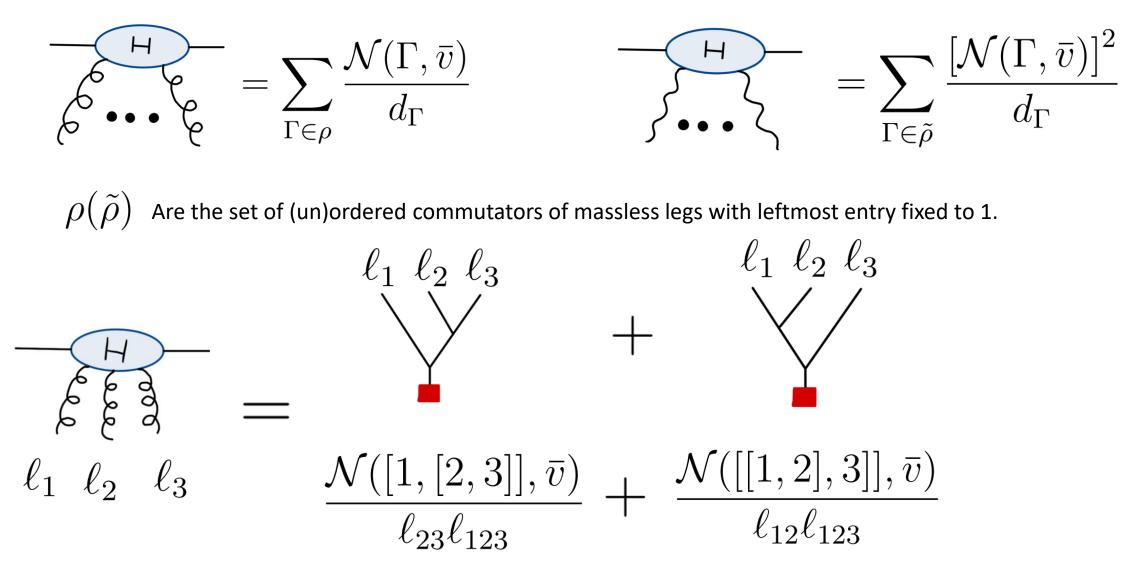
1. Build YM HEFT amplitudes using algebra.

2. Double copy YM HEFT amplitudes to GR.



The double copy form of HEFT amplitudes

Brandhuber, Chen, Travaglini, Wen 2021 + Johansson 2021



BCJ numerators from quasi-shuffles

Brandhuber, Chen, Johansson, Travaglini, Wen 2021

$$T_{(1)} \star T_{(2)} \star \cdots \star T_{(n)} \longrightarrow \mathcal{N}(\Gamma, \bar{v})$$

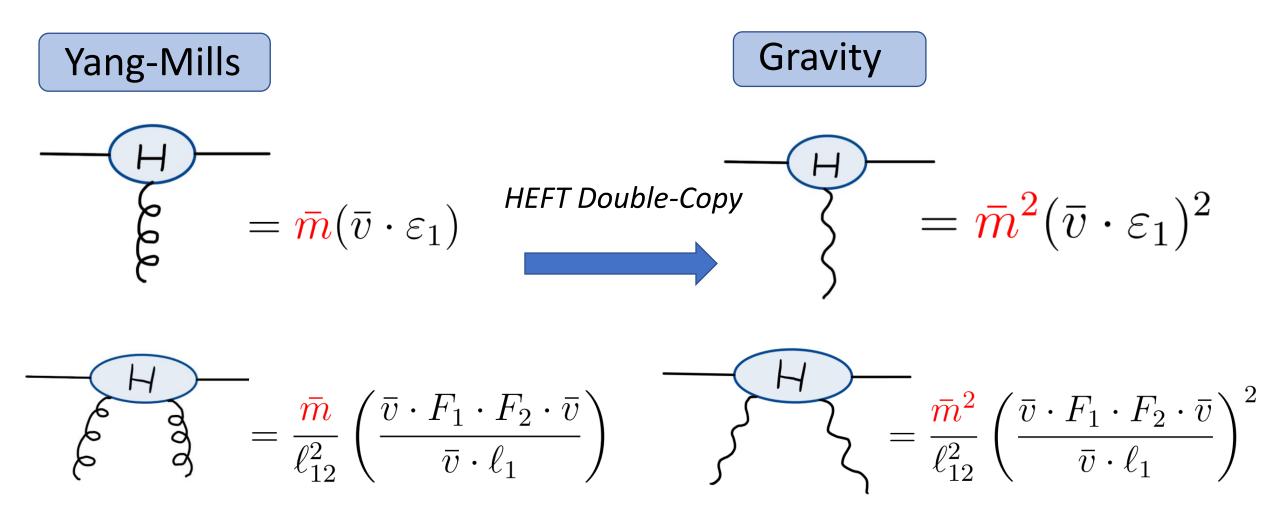
For 2-gluons: $T_{(1)} \star T_{(2)} = T_{(1),(2)} + T_{(2),(1)} - T_{(12)}$ $\bar{v} \cdot F_1 \cdot F_2 \cdot \bar{v}$

$$\mathcal{N}([1,2],\bar{v}) = 2\langle T_{(1)} \star T_{(2)} \rangle = \frac{v \cdot F_1 \cdot F_2 \cdot v}{\bar{v} \cdot \ell_1}$$

Key result:

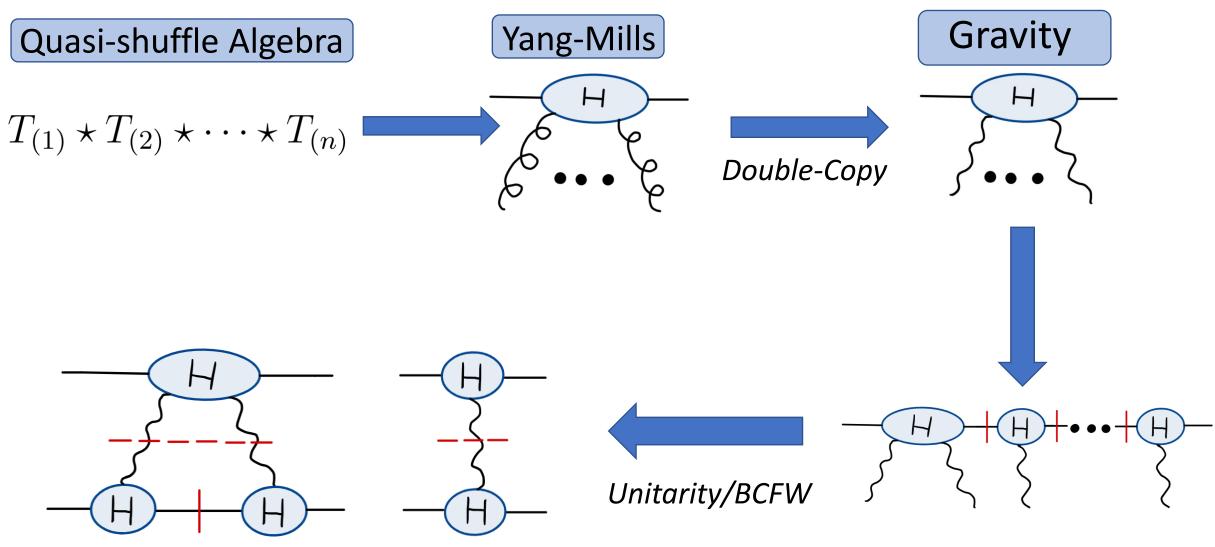
An *n-point formula exists* for all HEFT BCJ numerators and hence amplitudes.

Some examples:

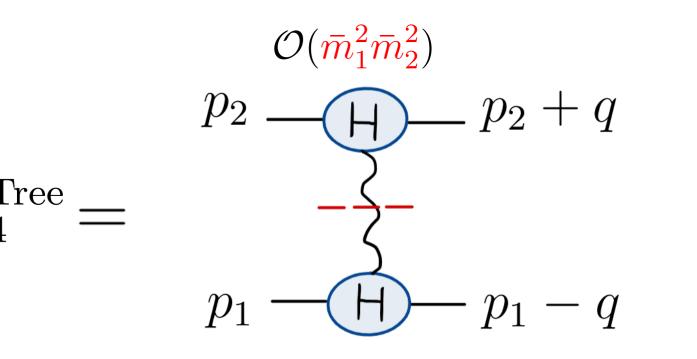


Manifestly gauge invariant: $F_i^{\mu\nu} = l_i^{\mu} \varepsilon_i^{\nu} - l_i^{\nu} \varepsilon_i^{\mu}$

The HEFT pipeline



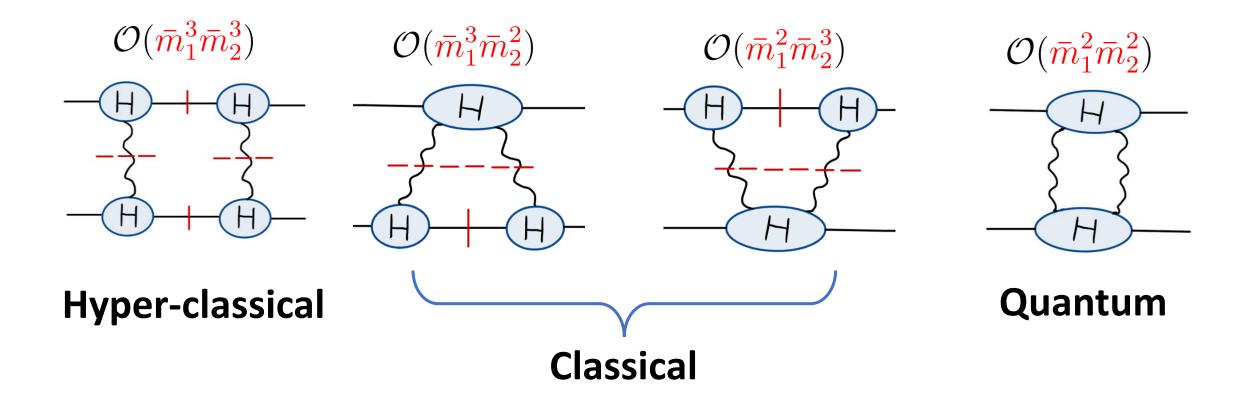
Building amplitudes: four-point tree-level



A strange massive BCFW shift for HEFT: $\hat{q}^{\mu} = q^{\mu} + zr^{\mu}$ $\bar{v}_i \cdot r = 0$ $r^2 = 0$

Building amplitudes: four-point one-loop

Brandhuber, Chen, Travaglini, Wen 2021

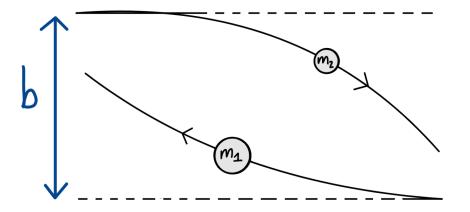


Quantum we can ignore but what about hyper-classical?

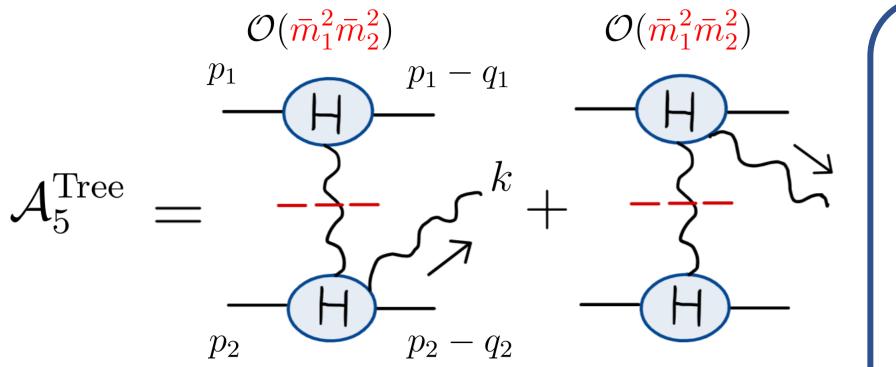
The four-point amplitude exponentiates in impact

parameter space (Glauber; Levi & Sucher;; Amati, Ciafaloni & Veneziano; Kabat & Ortiz)

$$\tilde{\mathcal{A}}(b) = \int \frac{d^D q}{(2\pi)^{D-2}} \delta(\bar{v}_1 \cdot q) \delta(\bar{v}_2 \cdot q) e^{i\vec{q}\cdot\vec{b}} \mathcal{A}(q)$$
$$\tilde{S} = 1 + i\tilde{\mathcal{A}} = e^{i\delta_0^{\text{HEFT}} + i\delta_1^{\text{HEFT}} + \dots}$$



Building amplitudes: five-point tree-level



Agreement with: Luna, Nicholson, O'Connell, White 2017

$$q_1 + q_2 = k$$

D-dim BCFW shift:

$$\hat{q}_{1}^{\mu} = q_{1}^{\mu} + zr^{\mu}$$

$$\hat{q}_{2}^{\mu} = q_{2}^{\mu} - zr^{\mu}$$

$$r \cdot k = 0$$

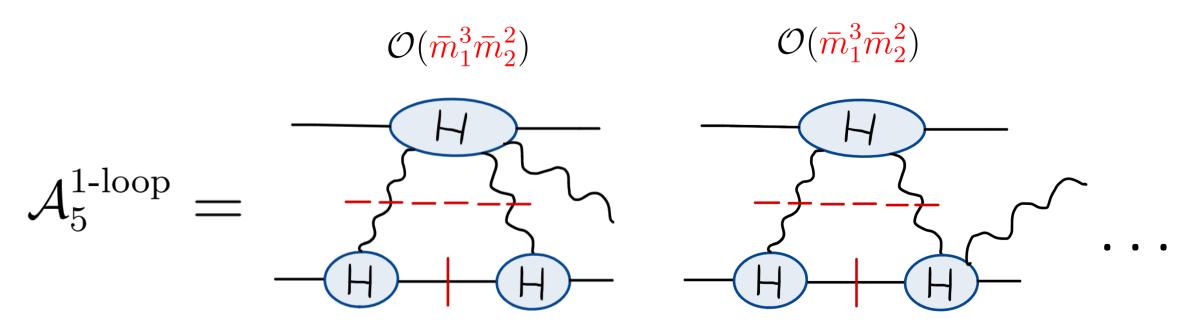
$$r \cdot \varepsilon_{k} = 0$$

$$r \cdot \overline{v}_{i} = 0$$

$$r^{2} = 0$$

c.f. Britto, Gonzo, Jehu 2021

Building amplitudes: five-point one-loop



- Agreement with: Herderschee, Roiban, Teng To appear
- We reproduce Weinberg's universal prediction for IR divergences (after a HEFT expansion):

IR Div
$$\left(\mathcal{A}_{5}^{1-\text{loop}}\right) \sim \frac{G_{N}}{\epsilon} (\bar{v}_{1} \cdot k + \bar{v}_{2} \cdot k) \mathcal{A}_{5}^{\text{Tree}}$$

In dimensional regularisation:

$$D = 4 - 2\epsilon$$

Summary:

- The HEFT provides an efficient way of computing classical pieces of Gravitational scattering amplitudes.
- HEFT amplitudes are manifestly gauge invariant, D-dimensional, and have principle value massive poles.
- The amplitudes themselves are generated via a quasi-shuffle algebra and a closed form exists for any number of gravitons .

For the future:

- Find the origin of the quasi-shuffle algebra.
- Check BCFW recursion at 6-point, and prove the large z behaviour.
- Inclusion of spin, see Gang's talk yesterday.
- Building waveforms from the 5-point amplitudes.
 - •