Topologically massive

 QCD meets gravityThe Cotton Double Copy

Nathan Moynihan

10)

THE UNIVERSITY of EDINBURGH

Based on 2202.10499 with Will Emond and 2212.04783 with Mariana Carrillo González, Will Emond, Justinas Rumbutis and Chris White.

December 12, 2022
${ }^{(1)}$

Massive Gauge Theories

Topologically massive theories are gauge invariant theories of massive particles, with Lagrangians [Deser, Jackiw \& Tempeleon, 1982]

$$
\begin{aligned}
& \mathcal{L}_{\text {Gauge }}=-\frac{1}{2 e^{2}} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)-\frac{m}{2 e^{2}} \varepsilon^{\mu \nu \alpha} \operatorname{Tr}\left(F_{\mu \nu} A_{\alpha}-\frac{2}{3} A_{\mu} A_{\nu} A_{\alpha}\right), \\
& \mathcal{L}_{\text {Gravity }}=\frac{2 R}{\kappa^{2}}-\frac{1}{4 \kappa^{2} m} \varepsilon^{\lambda \mu \nu} \Gamma_{\lambda \sigma}^{\rho}\left(\partial_{\mu} \Gamma_{\nu \rho}^{\sigma}+\frac{2}{3} \Gamma_{\mu \tau}^{\sigma} \Gamma_{\nu \rho}^{\tau}\right) .
\end{aligned}
$$

One d.o.f each, helicity determined by $\pm m$.

Massive Gauge Theories

Topologically massive theories are gauge invariant theories of massive particles, with Lagrangians [Deser, Jackiw \& Templeton, 1982]

$$
\begin{aligned}
& \mathcal{L}_{\text {Gauge }}=-\frac{1}{2 e^{2}} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)-\frac{m}{2 e^{2}} \varepsilon^{\mu \nu \alpha} \operatorname{Tr}\left(F_{\mu \nu} A_{\alpha}-\frac{2}{3} A_{\mu} A_{\nu} A_{\alpha}\right), \\
& \mathcal{L}_{\text {Gravity }}=\frac{2 R}{\kappa^{2}}-\frac{1}{4 \kappa^{2} m} \varepsilon^{\lambda \mu \nu} \Gamma_{\lambda \sigma}^{\rho}\left(\partial_{\mu} \Gamma_{\nu \rho}^{\sigma}+\frac{2}{3} \Gamma_{\mu \tau}^{\sigma} \Gamma_{\nu \rho}^{\tau}\right) .
\end{aligned}
$$

One d.o.f each, helicity determined by $\pm m$.
Equations of motion:

$$
D^{\mu} F_{\mu \nu}^{a}+\frac{m}{2} \epsilon_{\nu \rho \sigma} F^{a \rho \sigma}=J_{\nu}^{a}, \quad G_{\mu \nu}+\frac{1}{m} C_{\mu \nu}=-\kappa^{2} T_{\mu \nu}
$$

Where $C_{\mu \nu}=\epsilon_{\mu}^{\alpha \rho} \nabla_{\alpha}\left(R_{\nu \rho}-\frac{1}{4} g_{\nu \rho} R\right)$ is the Cotton tensor.

Let's take the equation of motion...

$$
D^{\mu} F_{\mu \nu}^{a}+\frac{m}{2} \epsilon_{\nu \rho \sigma} F^{a \rho \sigma}=J_{\nu}^{a}
$$

and naively replace colour with kinematics.
-®

Let's take the equation of motion...

$$
D^{\mu} F_{\mu \nu}^{a}+\frac{m}{2} \epsilon_{\nu \rho \sigma} F^{a \rho \sigma}=J_{\nu}^{a}
$$

and naively replace colour with kinematics.
Taking $a \rightarrow \alpha \beta$ and $D^{\mu} \rightarrow \nabla^{\mu}{ }_{\text {[See talk by Mangan] }}$, we find

$$
\nabla^{\mu} R_{\mu \nu \alpha \beta}+\frac{m}{2} \epsilon_{\nu \rho \sigma} R_{\alpha \beta}^{\rho \sigma}=J_{\alpha \beta \nu}
$$

Let's take the equation of motion...

$$
D^{\mu} F_{\mu \nu}^{a}+\frac{m}{2} \epsilon_{\nu \rho \sigma} F^{a \rho \sigma}=J_{\nu}^{a}
$$

and naively replace colour with kinematics.
Taking $a \rightarrow \alpha \beta$ and $D^{\mu} \rightarrow \nabla^{\mu}{ }_{\text {[see takk by Mangan] }}$, we find

$$
\nabla^{\mu} R_{\mu \nu \alpha \beta}+\frac{m}{2} \epsilon_{\nu \rho \sigma} R_{\alpha \beta}^{\rho \sigma}=J_{\alpha \beta \nu}
$$

This is topologically massive gravity $[\mathrm{NM}, 2021]$

$$
G_{\mu \nu}+\frac{1}{m} C_{\mu \nu}=-\frac{1}{2 m} \delta_{(\mu}^{\gamma} \delta_{\nu)}^{\lambda} \varepsilon_{\lambda}^{\alpha \beta}\left[\nabla^{\tau} R_{\tau \gamma \alpha \beta}+\frac{m}{2} \epsilon_{\gamma \rho \sigma} R^{\rho \sigma}{ }_{\alpha \beta}\right]
$$

Motivation for a double copy.... Let's review it in spinor form.

Tensors with s Lorentz indices can be replaced with spinors with $2 s$ indices using Infeld-Van der Waerden symbols σ.
In $D=4$, we use $\sigma_{A A^{\prime}}^{\bar{\mu}}=\left(1, \sigma^{i}\right)_{A A^{\prime}}$ such that e.g.

$$
T_{\bar{\mu} \bar{\nu} \bar{\rho}} \sigma_{A A^{\prime}}^{\bar{\mu}} \sigma_{B B^{\prime}}^{\bar{\nu}} \sigma_{C C^{\prime}}^{\bar{\prime}}=T_{A A^{\prime} B B^{\prime} C C^{\prime}}
$$

No chirality in $D=3$ - no primed indices!

Spinors

Tensors with s Lorentz indices can be replaced with spinors with $2 s$ indices using Infeld-Van der Waerden symbols σ.
In $D=4$, we use $\sigma_{A A^{\prime}}^{\bar{\mu}}=\left(1, \sigma^{i}\right)_{A A^{\prime}}$ such that e.g.

$$
T_{\bar{\mu} \bar{\nu} \bar{\rho}} \sigma_{A A^{\prime}}^{\bar{\mu}} \sigma_{B B^{\prime}}^{\bar{\nu}} \sigma_{C C^{\prime}}^{\bar{\prime}}=T_{A A^{\prime} B B^{\prime} C C^{\prime}} .
$$

No chirality in $D=3$ - no primed indices!
We can choose a real basis: $\sigma_{A B}^{\mu}=\left\{1, \sigma^{1}, \sigma^{3}\right\}$

$$
T_{\mu \nu} \sigma_{A B}^{\mu} \sigma_{C D}^{\nu}=T_{A B C D}=\frac{1}{4} T_{(A B)(C D)}
$$

We can use this to explore the Weyl double copy....

The Weyl double copy is given by [Luna, Monterio, Nicholson \& O Coonnell, 2018]

$$
\Psi_{A B C D}=\frac{1}{S} \varphi_{(A B} \widetilde{\varphi}_{C D}
$$

which relates Curvature spinors

$$
\varphi_{A B}=\frac{1}{2} F_{\bar{\mu} \bar{\nu}} \sigma_{A A^{\prime}}^{\bar{\mu}} \bar{\sigma}_{B}^{\bar{\nu} A_{B}^{\prime}}, \quad \Psi_{A B C D}=\frac{1}{2} W_{\bar{\mu} \bar{\nu} \bar{\rho} \bar{\sigma} \sigma_{A A^{\prime}}^{\bar{\mu}} \bar{\sigma}_{B}^{\bar{\nu} A_{B}^{\prime}} \sigma_{C C^{\prime}}^{\bar{\rho}} \bar{\sigma}_{D}^{\bar{\tau} C^{\prime}} . \quad{ }^{\prime} .}
$$

Would like to define a 3D analogue - but $W^{\mu \nu \rho \sigma}=0$!
The Cotton tensor seems like a good substitute... But first, let's explore some amplitudes.

Amplitudes $\sim \mathcal{A}\left(p_{i}, \epsilon_{j}\right)$.
We can convert p_{μ}, ϵ_{μ} to spinor-helicity variables with σ^{μ}

$D=4$	$p_{i A A^{\prime}}=\|i\rangle_{A}\left[\left.i\right\|_{A^{\prime}}\right.$	$p^{2}=0$
$D=4$	$\epsilon_{i A A^{\prime}}^{-}=\frac{\|i\rangle\|\eta\rangle}{[i \eta]}$	$\epsilon^{-} \cdot \epsilon^{+}=1$
$D=3$	$p_{i A B}=\|i\rangle_{(A}\left\langle\left.\bar{i}\right\|_{B)}\right.$	$p^{2}=-m^{2} \propto\left\langle\overline{i \bar{i}\rangle^{2}}\right.$
$D=3$	$\epsilon_{i A B}=\frac{\|i\rangle\|i\rangle}{m}$	$\epsilon \cdot \epsilon^{*}=1$

Takehome: amplitudes are now functions of $|i\rangle$ and $[i \mid$ in $D=4$, and $|i\rangle$ and $|\bar{i}\rangle$ in $D=3$.

Can derive $\epsilon_{i A B}$ from the TMYM EOM $[\mathbb{N N}, 2020]$.
Note: Under $|i\rangle \rightarrow t|i\rangle, \epsilon \rightarrow t^{2} \epsilon$ and $p \rightarrow p$ - little group scaling.
© (1)

Bootstrapping Amplitudes

Matter coupled amplitudes [AAkani-Hamed, Huang \& Huang, 2017] [NM, 2020].

Factorisation gives us four-particle anyon amplitudes $[\mathbb{N M}, 2020]$, e.g.

3pts and 4pts shown to DC [nM, 2020] [Burger, Emond \& NM, 2021] including in the eikonal* [Carillo González, Momeni \& Rumbutis, 2021]

The amplitudes double copy - useful to express curvature spinors in terms of amplitudes using KMOC [Kosower, Maybee \& 0 'Connell, 2018]

Curvature Spinors from Amplitudes

We can mode expand and evolve

$$
\mathbb{F}^{\mu \nu}=-i \sum_{\eta= \pm} \int_{q}\left(a_{\eta}(q) q^{[\mu} \varepsilon_{\eta}^{\nu]} e^{-i q \cdot x}-a_{\eta}^{\dagger}(q) q^{[\mu} \varepsilon_{\eta}^{\nu]} e^{i q \cdot x}\right)
$$

and take an expectation value with a state $|\psi\rangle \sim \int_{k} \varphi(k)|k\rangle$

$$
F^{\mu \nu}=\langle\psi| S^{\dagger} \mathbb{F}^{\mu \nu} S|\psi\rangle=2 \operatorname{Re} i \int_{k, k^{\prime}}\langle k| \mathbb{F}^{\mu \nu} T\left|k^{\prime}\right\rangle+\mathcal{O}\left(g^{2}\right)
$$

Noting that $S=1+i T$ and

$$
\left\langle k_{1}^{\prime} \cdots k_{m}^{\prime}\right| T\left|k_{1} \cdots k_{n}\right\rangle=\mathcal{A}\left(k_{1} \cdots k_{n} \rightarrow k_{1}^{\prime} \cdots k_{m}^{\prime}\right) \hat{\delta}^{(D)}\left(\sum k\right),
$$

finding [MMonterio, OCComenell, Veiga \& Sergola, 2020]

$$
\varphi_{A B}(x)=2 \operatorname{Re} i \int_{q}|q\rangle_{A}|q\rangle_{B} \mathcal{A}_{3}(q) e^{-i q x}+\mathcal{O}\left(g^{2}\right)
$$

We can do exactly the same thing in gravity:

$$
\Psi(x)_{A B C D}=2 \operatorname{Re} i \int_{q}|q\rangle_{A}|q\rangle_{B}|q\rangle_{C}|q\rangle_{D} \mathcal{M}_{3}(q) e^{-i q x} .
$$

The Weyl double copy in momentum space is

$$
|q\rangle_{A}|q\rangle_{B}|q\rangle_{C}|q\rangle_{D} \mathcal{M}_{3}^{+}=\frac{1}{S}\left(|q\rangle_{A}|q\rangle_{B} \mathcal{A}_{3}^{+}\right)\left(|q\rangle_{C}|q\rangle_{D} \tilde{\mathcal{A}}_{3}^{+}\right),
$$

where

$$
S \sim \mathcal{A}_{3}^{\text {scalar }} \sim \lambda
$$

This can be defined in 3D!
${ }^{(1)}$

$\ln 3 \mathrm{D} \tilde{F}^{\mu a}(x)=\frac{1}{2} \epsilon^{\mu \nu \rho} F_{\nu \rho}^{a}(x)=\left\langle\tilde{\mathbb{F}}^{\mu a}\right\rangle$.
EOM is then

$$
\varepsilon^{\mu \nu \rho} D_{\nu} \tilde{F}_{\rho}^{a}+m \tilde{F}^{\mu a}=0
$$

We can do the usual mode expansion for a single helicity

$$
\tilde{\mathbb{F}}^{\mu}= \pm m \int_{q}\left[a(q) \epsilon_{-}^{\mu}(q) e^{-i q \cdot x}+a^{\dagger}(q) \epsilon_{+}^{\mu}(q) e^{i q \cdot x}\right]
$$

We define $\varphi_{A B}=\tilde{F}^{\mu} \sigma_{\mu A B}$ and the same steps as in 4D lead to

$$
\varphi_{A B}(x)=-\frac{1}{M} \operatorname{Re} \int \mathrm{~d} \Phi(q) \delta(u \cdot q)\left[\mathcal{A}_{+}^{(3)}(q)|q\rangle_{A}|q\rangle_{B} e^{-i q \cdot x}\right]
$$

In topologically massive gravity, the free equations of motion are

$$
G_{\mu \nu}+\frac{1}{m} C_{\mu \nu}=0
$$

The Cotton tensor is a sensible candidate for the double copy

$$
C^{\mu \nu}=-\frac{\kappa}{4} \partial_{\lambda} \partial^{2} \varepsilon^{\lambda \sigma(\mu} h_{\sigma}^{\nu)} .
$$

©()®

In topologically massive gravity, the free equations of motion are

$$
G_{\mu \nu}+\frac{1}{m} C_{\mu \nu}=0
$$

The Cotton tensor is a sensible candidate for the double copy

$$
C^{\mu \nu}=-\frac{\kappa}{4} \partial_{\lambda} \partial^{2} \varepsilon^{\lambda \sigma(\mu} h_{\sigma}^{\nu)}
$$

Mode expand the graviton, follow the same steps as in gauge theory

$$
\left\langle\mathbb{C}^{\mu \nu}\right\rangle=-\frac{\kappa m^{2}}{4 M} \operatorname{Re} \int \mathrm{~d} \Phi(q) \hat{\delta}(u \cdot q) \mathcal{M}_{-k}^{(3)}(q) q_{\lambda} \varepsilon^{\lambda \sigma(\mu} \epsilon_{k}^{\nu)}(q) \epsilon_{k \sigma}(q) e^{-i q \cdot x} .
$$

$\stackrel{+}{4}$

6
© ${ }^{(1)}$
\qquad

In topologically massive gravity, the free equations of motion are

$$
G_{\mu \nu}+\frac{1}{m} C_{\mu \nu}=0
$$

The Cotton tensor is a sensible candidate for the double copy

$$
C^{\mu \nu}=-\frac{\kappa}{4} \partial_{\lambda} \partial^{2} \varepsilon^{\lambda \sigma(\mu} h_{\sigma}^{\nu)}
$$

Mode expand the graviton, follow the same steps as in gauge theory

$$
\left\langle\mathbb{C}^{\mu \nu}\right\rangle=-\frac{\kappa m^{2}}{4 M} \operatorname{Re} \int \mathrm{~d} \Phi(q) \hat{\delta}(u \cdot q) \mathcal{M}_{-k}^{(3)}(q) q_{\lambda} \varepsilon^{\lambda \sigma(\mu} \epsilon_{k}^{\nu)}(q) \epsilon_{\kappa \sigma}(q) e^{-i q \cdot x} .
$$

Plugging in $m \epsilon_{-}^{\mu} \sigma_{\mu A B}=|q\rangle_{A}|q\rangle_{B}$, much Schoutening,

$$
\left\langle\Psi_{A B C D}\right\rangle=-\frac{\kappa}{2} \frac{m}{M} \operatorname{Re} \int \mathrm{~d} \Phi(q) \hat{\delta}(u \cdot q)\left[|q\rangle_{A}|q\rangle_{B}|q\rangle_{C}|q\rangle_{D} i \mathcal{M}_{+}^{(3)}(q)\right] e^{-i q \cdot x} .
$$

This matches the field theory calculation for e.g. Anyons [Emond \& NM, 2022]

Momentum Space Cotton Double Copy

In momentum-space, we find [Emond \& NM, 2022]

$$
\begin{aligned}
\Psi_{A B C D}(q) & =-i m|q\rangle_{A}|q\rangle_{B}|q\rangle_{C}|q\rangle_{D} \mathcal{M}_{+}^{(3)}(q) \\
\Phi_{A B}(q) & =|q\rangle_{A}|q\rangle_{B} \mathcal{A}_{+}^{(3)}(q) .
\end{aligned}
$$

Momentum Space Cotton Double Copy

In momentum-space, we find [Emond \& NM, 2022]

$$
\begin{aligned}
\Psi_{A B C D}(q) & =-i m|q\rangle_{A}|q\rangle_{B}|q\rangle_{C}|q\rangle_{D} \mathcal{M}_{+}^{(3)}(q) \\
\Phi_{A B}(q) & =|q\rangle_{A}|q\rangle_{B} \mathcal{A}_{+}^{(3)}(q) .
\end{aligned}
$$

The momentum space Cotton double copy is then

$$
\Psi_{A B C D}(q)=\frac{m}{2} \frac{\Phi_{(A B}(q) \Phi_{C D)}(q)}{S} .
$$

Shown to hold in position space for type- $\mathrm{N}_{\text {[Emond } \& \mathrm{NM}, 2022] \text { [Gorzález, Momeni \& }}$
Rumbutis, 2022$]$.
What about type-D? This question is best asked in twistor space, let's (very) quickly review it...

Formally, twistor space is the set of solutions of

$$
\nabla_{A}^{\left(A^{\prime}\right.} \Omega^{\left.B^{\prime}\right)}=0
$$

which has a solution on \mathbb{M}_{4} of the form $\Omega^{A^{\prime}}=\mu^{A^{\prime}}-x^{A^{\prime} A} \lambda_{A}$.
Twistors $Z^{A}=\left(\mu^{A^{\prime}}, \lambda_{A}\right) \in \mathbb{P T}$ are related to \mathbb{M}_{4} via the incidence relations

$$
\mu^{A^{\prime}}=x^{A^{\prime} A} \lambda_{A}
$$

These are projective, since this is invariant under

$$
\mu^{A^{\prime}} \rightarrow t \mu^{A^{\prime}}, \quad \lambda_{A} \rightarrow t \lambda_{A}, \quad \forall t \in \mathbb{C} .
$$

The matrix $x^{A^{\prime} A}=x^{\bar{\mu}} \sigma_{\bar{\mu}}^{A^{\prime} A}$ therefore defines a line on $\mathbb{P} \mathbb{T}$.

We have seen that curvature tensors have a KMOC representation

$$
\varphi_{A_{1} A_{2} \cdots A_{2 s}}(x)=\operatorname{Re} i \int \mathrm{~d} \Phi(q) \hat{\delta}(u \cdot q)\left[|q\rangle_{A_{1}}|q\rangle_{A_{2}} \cdots|q\rangle_{A_{2 s}} \mathcal{A}_{+}^{(3)}(q)\right] e^{-i q \cdot x}
$$

They also have a Twistor representation via the Penrose transform

$$
\varphi_{A_{1} A_{2} \cdots A_{2 s}}(x)=\frac{1}{2 \pi i} \oint\langle\lambda \mathrm{~d} \lambda\rangle \lambda_{A_{1}} \lambda_{A_{2}} \cdots \lambda_{A_{2 s}} \rho_{X}\left[f\left(Z^{A}\right)\right],
$$

where $f\left(t Z^{A}\right)=t^{-2 s-2} f\left(Z^{A}\right)$ and ρ_{X} reminds us to restrict to the line corresponding to point $x^{\bar{\mu}}$.
These are related by coordinate transformation, and in $D=4$, we find [Guevara 2021] [Luna, NM \& White, 2022]

$$
f\left(Z^{A}\right) \sim \int_{0}^{\infty} d \omega \omega^{s} e^{\left.\left.-\frac{1}{2} \omega\langle\lambda| u \right\rvert\, \mu\right]} \mathcal{A}_{3}^{(s)}(\lambda)
$$

What does the Weyl DC look like on twistor space?

Twistor-Weyl Double Copy

The Weyl DC on Twistor space is [white, 2020] [Chacobn, Nagy \& White, 2021]

$$
f_{\text {grav }}^{(-6)}=\frac{f_{E M}^{(-4)} \tilde{f}_{E M}^{(-4)}}{f_{\text {scal. }}^{(-2)}}, \quad f^{(2 \ell)}=\frac{\left(Q_{A B} Z^{A} Z^{B}\right)^{\ell}}{|\ell|!},
$$

where $Q_{A B}$ encodes the particular solution (e.g. Kerr).
Closely resembles the momentum space form involving amplitudes....

Twistor-Weyl Double Copy

The Weyl DC on Twistor space is [White, 2020] [Chacón, Nagy \& White, 2021]

$$
f_{\text {grav }}^{(-6)}=\frac{f_{E M}^{(-4)} \tilde{f}_{E M}^{(-4)}}{f_{\text {scal. }}^{(-2)}}, \quad f^{(2 \ell)}=\frac{\left(Q_{A B} Z^{A} Z^{B}\right)^{\ell}}{|\ell|!},
$$

where $Q_{A B}$ encodes the particular solution (e.g. Kerr).
Closely resembles the momentum space form involving amplitudes....
In fact... [Guevara 2021] [Luna, NM \& White, 2022]

$$
\int_{0}^{\infty} d \omega \omega^{s} e^{\left.\left.-\frac{1}{2} \omega\langle\lambda| u \right\rvert\, \mu\right]} \mathcal{A}_{3}^{(s)}(\lambda) \propto \frac{1}{\left(Q_{A B} Z^{A} Z^{B}\right)^{s+1}}
$$

Because 3pt amplitudes are simple on twistor space, we have only simple poles - gives rise to a local DC on position space.
${ }^{(1)}$

The relationship between \mathbb{M}_{3} and miniwistor space $\mathbb{M T}$ is defined by

$$
\langle\mu \lambda\rangle=u=x^{A B} \lambda_{A} \lambda_{B}, \quad Z^{A}=\left(u, \lambda_{A}\right) .
$$

This is clearly invariant under $\lambda \rightarrow t \lambda$ and $\mu \rightarrow t \mu$ - we identify

$$
\left(u, \lambda_{A}\right) \sim\left(t^{2} u, t \lambda_{A}\right)
$$

We can instead consider twistors of the form $Z^{A}=\left(\mu^{A}, \lambda_{A}\right)$, provided we make the identification [tsai, 1996]

$$
\left(\mu^{A}, \lambda_{A}\right) \sim\left(t \mu^{A}+t b \lambda^{A}, t \lambda_{A}\right) .
$$

The Penrose transform is given by

$$
\varphi_{A_{1} A_{2} \cdots A_{2 s}}(x)=\frac{1}{2 \pi i} \oint\langle\lambda \mathrm{~d} \lambda\rangle \lambda_{A_{1}} \lambda_{A_{2}} \cdots \lambda_{A_{2 s}} \rho_{X}\left[\check{f}\left(Z^{A}\right)\right]
$$

however we now require that

$$
\check{f}\left(Z^{A}\right)=e^{-m \frac{\langle\mu \mu\rangle}{\langle a \lambda\rangle}} g\left(u, \lambda_{A}\right), \quad g\left(t^{2} u, t \lambda_{A}\right)=t^{-2 s-2} g\left(u, \lambda_{A}\right) .
$$

For f as above, these fields satisfy [Tsai, 1996]

$$
\partial_{A_{1}}^{B} \varphi_{B A_{2} \cdots A_{2 s}}(x)=m \varphi_{A_{1} A_{2} \cdots A_{2 s}}(x) .
$$

For $s=1(s=2)$, this is the spinor EOM for topologically massive EM (gravity).

Twistor-Cotton Double Copy

We see then that the Cotton DC can be expressed as [Carillo-Gonzalez, Emond,
NM, Rumbutis \& White]

$$
\check{f}_{\text {grav }}^{(-6)}=\frac{\check{f}_{E M}^{(-4)} \tilde{f}_{E M}^{(-4)}}{\check{f}_{\text {scal. }}^{(-2)}}=e^{-m \frac{\langle a \mu\rangle}{\langle a\rangle\rangle}} \frac{g_{E M}^{(-4)} \tilde{g}_{E M}^{(-4)}}{g_{\text {scal. }}^{(-2)}}=e^{-m \frac{\langle a \mu\rangle}{\langle a \lambda\rangle}} g_{\text {grav }}^{(-6)}
$$

From the amplitude representation we find

$$
\varphi_{A_{1} \cdots A_{2 s}} \sim \oint\langle\lambda d \lambda\rangle \lambda_{A_{1}} \cdots \lambda_{A_{2 s}} \frac{e^{-m \frac{\langle\mu| u|\lambda\rangle}{\langle\lambda| u|\lambda\rangle}}}{\langle\lambda| u|\lambda\rangle^{s+1}}
$$

This has an essential singularity, required to give the transcendental solutions to the EOM (Bessel functions).

No simple Cotton DC beyond type- N in position space!

What's been done?

- (Top. Massive Gauge) ${ }^{2}$ ~ Top. Massive Gravity [NM, 2020] [González, Momeni \& Rumbutis, 2021] [Hang, He \& Shen, 2021] [NM, 2021]
- BCJ Duality up to 5pt [Gonzalez, Momeni \& Rumbuis, 2021]
- Non-Perturbative [nN, 2021]
- Matter (Anyons) [Burger, Emond \& NM, 2021], Eikonal [Gorzäez, Momeni \& Rumbutis, 2021]
- Aharonov-Bohm [Burger, Emond \& NM, 2021] [Emond, NM \& Wei, 2021]
- Cotton DC ${ }_{[E m o n d}$ \& NM, 2022] [Gorzález, Momeni \& Rumbutis, 202z] inc AdS/Shockwaves [González, Momeni \& Rumbutis, 2022]

Plenty left to do:

- Stringy origin? Likely arises from Green-Schwarz mechanism, $m=f\left(\alpha^{\prime}\right)$ - See talk by Markou
- Kinematic algebra - See talks by Ben-Shahar, Chen
- Supersymmetry easily added to topologically massive theories [Agamal, Lpstein \& Young, 2014] — Double copy? See talk by Engelbrecht
- Hints that there should be a DC of the form NLSM $\otimes \mathrm{YM} \sim$ top. massive Born-Infeld [NM, 2021]
- Hints that this generalises to curved space [Gonzäez, Momeni \& Rumbuis, 202z]
- Lagrangian double copy? Double field theory? See talk by Diaz-Jaramillo

Thank you for listening.

Any Questions?

\oplus
©

In Kerr-Schild coordinates, the plane-wave metric is

$$
g_{\mu \nu}=\eta_{\mu \nu}+\kappa \delta(\ell \cdot x) H\left(x^{\mu}\right) \ell_{\mu} \ell_{\nu}
$$

where $\ell^{2}=0, \ell_{\mu}=\partial_{\mu} u$ and u is a retarded coordinate.
${ }^{\circ}{ }^{(1)}$

In Kerr-Schild coordinates, the plane-wave metric is

$$
g_{\mu \nu}=\eta_{\mu \nu}+\kappa \delta(\ell \cdot x) H\left(x^{\mu}\right) \ell_{\mu} \ell_{\nu}
$$

where $\ell^{2}=0, \ell_{\mu}=\partial_{\mu} u$ and u is a retarded coordinate.
In vacuum, the EOM become

$$
G_{\mu \nu}+\frac{1}{m} C_{\mu \nu}=-\frac{\kappa}{2} \delta(\ell \cdot x) \ell_{\mu} \ell_{\nu}\left[\frac{1}{m} H^{\prime \prime \prime}(x)+H^{\prime \prime}(x)\right]=0
$$

In Kerr-Schild coordinates, the plane-wave metric is

$$
g_{\mu \nu}=\eta_{\mu \nu}+\kappa \delta(\ell \cdot x) H\left(x^{\mu}\right) \ell_{\mu} \ell_{\nu}
$$

where $\ell^{2}=0, \ell_{\mu}=\partial_{\mu} u$ and u is a retarded coordinate.
In vacuum, the EOM become

$$
G_{\mu \nu}+\frac{1}{m} C_{\mu \nu}=-\frac{\kappa}{2} \delta(\ell \cdot x) \ell_{\mu} \ell_{\nu}\left[\frac{1}{m} H^{\prime \prime \prime}(x)+H^{\prime \prime}(x)\right]=0 .
$$

Assuming $x>0$, we find

$$
H(x)=\kappa e^{-m|x|}+c_{1}|x|+c_{2}
$$

Note: delta function sets $|x|=x$ or $|x|=y$, depending on choice of u. We drop c_{1} and c_{2} terms.

On the gauge theory side, we need to solve

$$
\left(\partial^{2}-m^{2}\right) \tilde{F}^{\mu}=0
$$

Solved by $\tilde{F}^{\mu}=e \delta(\ell \cdot x) e^{-m|x|} \ell^{\mu}$.

On the gauge theory side, we need to solve

$$
\left(\partial^{2}-m^{2}\right) \tilde{F}^{\mu}=0
$$

Solved by $\tilde{F}^{\mu}=e \delta(\ell \cdot x) e^{-m|x|} \ell^{\mu}$.
Kerr-Schild double copy for topologically massive plane waves

$$
\begin{aligned}
h_{\mu \nu}(x) & =\kappa \delta(\ell \cdot x) e^{-m \sqrt{x^{2}}} \ell_{\mu} \ell_{\nu}, \quad A_{\mu}(x)=e \delta(\ell \cdot x) e^{-m \sqrt{x^{2}}} \ell_{\mu}, \\
\phi(x) & =\lambda \delta(\ell \cdot x) e^{-m \sqrt{x^{2}}} .
\end{aligned}
$$

Let's examine the spinor form.

The Maxwell spinor is given simply by

$$
\Phi_{A B}=-2 m \delta(\langle\ell| x|\ell\rangle) e^{-m \sqrt{x^{2}}}|\ell\rangle_{A}|\ell\rangle_{B}
$$

The Maxwell spinor is given simply by

$$
\Phi_{A B}=-2 m \delta(\langle\ell| x|\ell\rangle) e^{-m \sqrt{x^{2}}}|\ell\rangle_{A}|\ell\rangle_{B} .
$$

and the Cotton spinor by

$$
\begin{aligned}
\Psi_{A B C D} & =-\frac{\kappa}{2} \delta(\ell \cdot x) \varepsilon^{\lambda}{ }_{\mu} \sigma_{A B}^{\mu} \partial_{\lambda} \partial^{2} H(x) \ell_{\sigma} \ell_{C D} \\
& =\kappa^{2} m^{3} \delta(\langle\ell| x|\ell\rangle) e^{-m \sqrt{x^{2}}}|\ell\rangle_{A}|\ell\rangle_{B}|\ell\rangle_{C}|\ell\rangle_{D}
\end{aligned}
$$

using $\partial_{\lambda} H(x)=-m \hat{x}_{\lambda} H(x)$.

The Maxwell spinor is given simply by

$$
\Phi_{A B}=-2 m \delta(\langle\ell| x|\ell\rangle) e^{-m \sqrt{x^{2}}}|\ell\rangle_{A}|\ell\rangle_{B} .
$$

and the Cotton spinor by

$$
\begin{aligned}
\Psi_{A B C D} & =-\frac{\kappa}{2} \delta(\ell \cdot x) \varepsilon^{\lambda \sigma} \sigma_{A B}^{\mu} \partial_{\lambda} \partial^{2} H(x) \ell_{\sigma} \ell_{C D} \\
& =\kappa^{2} m^{3} \delta(\langle\ell| x|\ell\rangle) e^{-m \sqrt{x^{2}}}|\ell\rangle_{A}|\ell\rangle_{B}|\ell\rangle_{C}|\ell\rangle_{D}
\end{aligned}
$$

using $\partial_{\lambda} H(x)=-m \hat{x}_{\lambda} H(x)$.
The type- N Cotton double copy holds in position space

$$
\Psi_{A B C D}(x)=\frac{m}{2} \frac{\Phi_{A B}(x) \Phi_{C D}(x)}{\phi(x)} .
$$

Type-D more complicated... Let's turn to twistor space.

Aharonov-Bohm Effect

Famously, anyons give rise to a non-zero AB phase. Defined as

$$
\alpha=i e \oint \mathbf{A} \cdot d \mathbf{x}=e \int \mathbf{B} \cdot \hat{n} \mathrm{~d} \text { Area },
$$

where \mathbf{A} is the vector potential. Can we derive this on-shell?

Aharonov-Bohm Effect

Famously, anyons give rise to a non-zero AB phase. Defined as

$$
\alpha=i e \oint \mathbf{A} \cdot d \mathbf{x}=e \int \mathbf{B} \cdot \hat{n} \mathrm{~d} \text { Area, }
$$

where \mathbf{A} is the vector potential. Can we derive this on-shell?
In the Born approximation, we can derive the relation

$$
\alpha=\left.\frac{i e}{4 m_{2}} \oint d \mathbf{r} \int \frac{d^{D-1} q}{(2 \pi)^{D-1}} e^{i \boldsymbol{q} \cdot \mathbf{r}} \frac{\partial \mathcal{A}}{\partial \mathbf{p}_{1}}\right|_{\mathbf{p}_{1}=0}
$$

In 3D

$$
\alpha_{D=3}=\left.\frac{i e}{4 m_{2}} \int_{0}^{2 \pi} \int_{0}^{R} d r d \theta \epsilon^{i j} \partial_{i} \int \frac{d^{2} q}{(2 \pi)^{2}} e^{i \boldsymbol{q} \cdot \mathbf{r}} \frac{\partial \mathcal{A}}{\partial p_{1}^{j}}\right|_{\mathbf{p}_{1}=0}
$$

Plugging the \mathcal{A} at large r with $e \rightarrow \infty$ and $m \rightarrow \infty$ then gives

$$
\alpha_{D=3}=\frac{e^{2}}{m}
$$

This agrees with the literature [Deser \& McCarthy, 1990, Orizi, 1990] .
Gravitational anyons also have a phase, given by taking $e \rightarrow \frac{1}{2} \kappa m_{2}$

$$
\alpha_{D=3}^{\text {Gravity }}=\frac{\kappa^{2} m_{2}^{2}}{4 m}=8 \pi G \frac{m_{2}^{2}}{m}
$$

Aharonov-Bohm phase also double copies!

Twistor-Weyl Double Copy

For a spinless source $\sim \delta(u \cdot k), Q_{A B}=\left(\begin{array}{cc}0 & u_{B^{\prime}}^{A} \\ u^{B}{ }_{A^{\prime}} & 0\end{array}\right)$.
Spinning (dual) sources via Janis-Newman (duality) shift

$$
\mathcal{A}_{3}^{(s)} \rightarrow \mathcal{A}_{3}^{(s)} e^{s(i k \cdot a+\theta)}
$$

We find the so-called kinematic twistor [Penrose \& MacCallum, 1972$]$ [Luna, nm \& White, 2022]

$$
\tilde{Q}_{A B}=e^{-\theta}\left(\begin{array}{cc}
0 & u^{A} A \\
u_{A^{\prime}}^{B} & -u_{A^{\prime}}^{\left(A^{\prime}\right.} a^{B) A^{\prime}}
\end{array}\right)
$$

Spinning-Dyon for $s=1$ and Kerr-Taub-NUT for $s=2$.

