Anomaly and double copy in quantum self-dual Yang-Mills and gravity

Sam Wikeley ${ }^{1}$
${ }^{1}$ Centre for Theoretical Physics, Queen Mary University of London
QCD Meets Gravity 2022

Based on arxiv:2211.12407 with Ricardo Monteiro and Ricardo Stark-Muchão

Self-dual Yang-Mills (SDYM)

- The SDYM action is

$$
\begin{equation*}
S_{\mathrm{SDYM}}(B, A)=\operatorname{tr} \int B \wedge F_{\mathrm{ASD}} \tag{1}
\end{equation*}
$$

- Go to light-cone coordinates $x^{\mu}=\{u, v, w, \bar{w}\}$ with Minkowski metric

$$
\begin{equation*}
d s^{2}=2(-d u d v+d w d \bar{w}) \tag{2}
\end{equation*}
$$

- Adopt the light-cone gauge and integrate out two components of B to enforce

$$
\begin{equation*}
A_{u}=0, \quad A_{v}=\frac{1}{2} \partial_{w} \Psi, \quad A_{w}=0, \quad A_{\bar{w}}=\frac{1}{2} \partial_{u} \Psi \tag{3}
\end{equation*}
$$

- The result is [Chalmers, Siegel 96]

$$
\begin{equation*}
S_{\mathrm{SDYM}}(\Psi, \bar{\Psi})=\operatorname{tr} \int d^{4} x \bar{\Psi}\left(\square \Psi+i\left[\partial_{u} \Psi, \partial_{w} \Psi\right]\right) \tag{4}
\end{equation*}
$$

Self-dual gravity (SDG)

- Following a similar procedure we find the metric

$$
\begin{equation*}
d s^{2}=2(-d u d v+d w d \bar{w})+\partial_{w}^{2} \phi d v^{2}+\partial_{u}^{2} \phi d \bar{w}^{2}+2 \partial_{u} \partial_{w} \phi d u d w \tag{5}
\end{equation*}
$$

and an action

$$
\begin{equation*}
S_{\mathrm{SDG}}(\phi, \bar{\phi})=\int d^{4} x \bar{\phi}\left(\square \phi+\left\{\partial_{u} \phi, \partial_{w} \phi\right\}\right) \tag{6}
\end{equation*}
$$

with the Poisson bracket

$$
\begin{equation*}
\{f, g\}=\partial_{u} f \partial_{w} g-\partial_{w} f \partial_{u} g \tag{7}
\end{equation*}
$$

Feynman rules

	SDYM	SDG
Propagator $(+-)$	$\frac{1}{k^{2}} \delta^{a_{1} a_{2}}$	$\frac{1}{k^{2}}$
Vertex $(++-)$	$X\left(k_{1}, k_{2}\right) f^{a_{1} a_{2} a_{3}}$	$X\left(k_{1}, k_{2}\right)^{2}$
External $p_{i}^{ \pm}$	$\langle\eta i\rangle^{\mp 2}$	$\langle\eta i\rangle^{\mp 4}$

- $X\left(k_{i}, k_{j}\right)=k_{i w} k_{j u}-k_{i u} k_{j w}=-X\left(k_{j}, k_{i}\right)$
- η is an on-shell reference vector

Scattering in SDYM and SDG

- The only possible diagrams are

$$
\begin{aligned}
& \text { Tree-level }(-++\cdots+) \\
& \text { One-loop }(+++\cdots+)
\end{aligned}
$$

- The tree-level amplitudes vanish to all n

$$
\begin{equation*}
A_{n}^{\text {tree }}\left(1^{-} 2^{+} \cdots n^{+}\right)=0 \tag{8}
\end{equation*}
$$

- At 1-loop they are simple rational functions of external momenta, e.g. in SDYM

$$
\begin{equation*}
A_{4}^{1-\text { loop }}\left(1^{+} 2^{+} 3^{+} 4^{+}\right) \sim \frac{[12][34]}{\langle 12\rangle\langle 34\rangle} \tag{9}
\end{equation*}
$$

The double copy in the self-dual sector

- The double copy is well understood in the self-dual sector
- Colour-kinematics duality is manifest in the vertices

$$
\begin{equation*}
V_{\mathrm{SDYM}}=X\left(k_{1}, k_{2}\right) f^{a_{1} a_{2} a_{3}}, \quad V_{\mathrm{SDG}}=X\left(k_{1}, k_{2}\right)^{2} \tag{10}
\end{equation*}
$$

- $f^{a_{1} a_{2} a_{3}} \rightarrow$ structure constants of the colour Lie algebra $\operatorname{SU}(N)$
- $X\left(k_{1}, k_{2}\right) \rightarrow$ structure constants of the kinematic Lie algebra
- In the SD sector the kinematic algebra is that of area-preserving diffeomorphisms in the $u-w$ plane [Monteiro, O'Connell 11]

Classical integrability of SDYM

- Classical equations of motion

$$
\begin{align*}
& 0=\square \Psi+i\left[\partial_{u} \Psi, \partial_{w} \Psi\right] \tag{11}\\
& 0=\square \bar{\Psi}+i\left[\partial_{u} \bar{\Psi}, \partial_{w} \Psi\right]+i\left[\partial_{u} \Psi, \partial_{w} \bar{\Psi}\right] \tag{12}
\end{align*}
$$

- The second coincides with a linearised deformation of the first $\Psi \rightarrow \Psi+\epsilon \bar{\Psi}$
- It can be expressed as the conservation of a current, $\partial_{\mu} J^{\mu}=0$, where

$$
\begin{equation*}
J=\left(\partial_{\bar{w}} \bar{\Psi}-\frac{i}{2}\left[\bar{\Psi}, \partial_{u} \Psi\right]\right) \partial_{w}-\left(\partial_{v} \bar{\Psi}-\frac{i}{2}\left[\bar{\Psi}, \partial_{w} \Psi\right]\right) \partial_{u} \tag{13}
\end{equation*}
$$

Classical integrability of SDYM

- We can build an infinite tower of conserved currents

$$
\begin{equation*}
\partial_{\mu} J_{r}^{\mu}=0, \quad r=0,1,2, \ldots \tag{14}
\end{equation*}
$$

- Correspondingly, an infinite tower of solutions $\left\{\Lambda_{r}\right\}$ from $\Psi \rightarrow \Psi+\epsilon \Lambda_{r}$
- Can set up recursion relations to build this tower
- [Bardeen 96, Cangemi 97] showed that

$$
\begin{equation*}
\text { Classical integrability } \Longrightarrow A_{n}^{\text {tree }}\left(1^{-} 2^{+} \ldots n^{+}\right)=0 \tag{15}
\end{equation*}
$$

The quantum-corrected formalism

- To include quantum effects let us write

$$
\begin{equation*}
S_{\mathrm{q} . \mathrm{CSDYM}}(\Psi, \bar{\Psi})=\operatorname{tr} \int d^{4} x\left(\bar{\Psi}\left(\square \Psi+i\left[\partial_{u} \Psi, \partial_{w} \Psi\right]\right)+V_{1-\mathrm{loop}}[\Psi]\right) \tag{16}
\end{equation*}
$$

- $V_{1 \text {-loop }}[\Psi]$ contains an infinite number of one-loop effective vertices

$$
\begin{equation*}
V_{1-\text { loop }}[\Psi]=\sum_{m=2}^{\infty} V_{1-\text {-loop }}^{(m)}[\Psi], \quad V_{1 \text {-loop }}^{(m)}[\Psi] \sim \Psi^{m} \tag{17}
\end{equation*}
$$

- With $S_{\text {q.c.SDYM }}$ we only need to work at tree-level

Anomalous classical symmetries

- Quantum-corrected equations of motion

$$
\begin{align*}
& 0=\square \Psi+i\left[\partial_{u} \Psi, \partial_{w} \Psi\right] \tag{18}\\
& 0=\square \bar{\Psi}+i\left[\partial_{u} \bar{\Psi}, \partial_{w} \Psi\right]+i\left[\partial_{u} \Psi, \partial_{w} \bar{\Psi}\right]+\frac{\delta V_{1-\text { loop }}[\Psi]}{\delta \Psi} \tag{19}
\end{align*}
$$

- The second no-longer coincides with a linearised deformation of the first
- Can write a quantum-corrected current such that

$$
\begin{equation*}
\partial^{\mu} J_{\mu}^{\text {q.c. }}=\text { EoM } 2 \tag{20}
\end{equation*}
$$

- However the classical symmetries $\Psi \rightarrow \Psi+\epsilon \Lambda_{r}$ are now anomalous

$$
\begin{equation*}
\partial^{\mu} J_{r}^{\text {q.c.c. }}=\frac{1}{2} \frac{\delta V_{1-\text {-oop }}[\Psi]}{\delta \Psi}, \quad \forall r \tag{21}
\end{equation*}
$$

A route to $V_{1 \text {-loop }}$

- The one-loop vertices are off-shell and thus non-unique
\Longrightarrow Many possible approaches to construction
- We will take influence from recent work in twistor space [Costello 21; Costello, Paquette 22; Bittleston, Sharma, Skinner 22]
- Introduce an axion-like scalar field ρ with
- Quartic propagator $\frac{1}{k^{4}}$
- Coupling to the gauge field/graviton via $\rho F \wedge F, \rho R \wedge R$
- In SDYM this only works for restricted gauge groups

A route to $V_{1 \text {-loop }}$

- Our approach:

1. Integrate out the axion to obtain non-local effective vertices
2. Flip the sign of the vertices

- Along the way we will
- Extend the effective vertices to $\operatorname{SU}(N)$
- Find a novel loop-level double copy after integration
- Let's see how this works in practice...

The ρ-SDYM action

- Consider the action [Costello 21; Costello, Paquette 22;]

$$
\begin{equation*}
S_{\rho-\mathrm{SDYM}}(B, A, \rho)=\int \operatorname{tr}\left(B \wedge F_{\mathrm{ASD}}+d^{4} x \frac{1}{2}(\square \rho)^{2}+\tilde{a} \rho F \wedge F\right) \tag{22}
\end{equation*}
$$

- Cancellation occurs for $\operatorname{SU}(2), \mathrm{SU}(3), \mathrm{SO}(8)$ or an exceptional group

A 4-point one-loop vertex

- Restrict the gauge group and integrate out the axion

$$
\begin{gather*}
S_{\mathrm{q} . \mathrm{CSDYM}}^{\prime}(B, A)=\int \operatorname{tr}\left(B \wedge F_{\mathrm{ASD}}\right)+d^{4} x \frac{\tilde{a}^{2}}{2}\left(\frac{1}{\square} \operatorname{tr}\left(\varepsilon^{\mu \nu \rho \lambda} F_{\mu \nu} F_{\rho \lambda}\right)\right)^{2} \tag{23}\\
\qquad A_{u}=0 \\
S_{\mathrm{q} . \mathrm{CSDPM}}^{\prime}(\Psi, \bar{\Psi})=\int d^{4} x \operatorname{tr}\left(\bar{\Psi}\left(\square \Psi+i\left[\partial_{u} \Psi, \partial_{w} \Psi\right]\right)\right)+a\left(\frac{1}{\square} \operatorname{tr}\left(\Psi \stackrel{\leftrightarrow}{P}^{2} \Psi\right)\right)^{2} \tag{24}
\end{gather*}
$$

where

$$
\begin{equation*}
\overleftrightarrow{P}=\overleftarrow{\partial}_{u} \vec{\partial}_{w}-\overleftarrow{\partial}_{w} \vec{\partial}_{u} \tag{25}
\end{equation*}
$$

- In momentum space

$$
\begin{equation*}
\Psi(x) \stackrel{\leftrightarrow}{P} \Psi(x) \quad \rightarrow \quad X\left(k_{1}, k_{2}\right) \Psi\left(k_{1}\right) \Psi\left(k_{2}\right) \tag{26}
\end{equation*}
$$

A 4-point one-loop vertex

- We now have a 4-point one-loop vertex

$$
\begin{equation*}
\frac{X(1,2)^{2} X(3,4)^{2}}{s_{12}^{2}} \delta^{a_{1} a_{2}} \delta^{a_{3} a_{4}}, \quad s_{12}=\left(k_{1}+k_{2}\right)^{2} \tag{27}
\end{equation*}
$$

- The colour-ordered 4-point one-loop all-plus amplitude is then simply

$$
\begin{equation*}
\left(\prod_{i=1}^{4}\langle\eta i\rangle^{-2}\right) \frac{X(1,2)^{2} X(3,4)^{2}}{s_{12}^{2}}=\frac{[12]^{2}[34]^{2}}{s_{12}^{2}}=\frac{[12][34]}{\langle 12\rangle\langle 34\rangle} \tag{28}
\end{equation*}
$$

- Continuing beyond four-points we encounter an issue for $\operatorname{SU}(N)$
\rightarrow This is where the restriction of the gauge group acts

Quantum Feynman rules for SU(N) SDYM

- [Bern, Chalmers, Dixon, Kosower 94] observed that the colour-ordered amplitude splits as

$$
\begin{equation*}
A_{\mathrm{SDYM}}^{(1)}(123 \cdots n)=M_{n} \frac{E(123 \cdots n)+O(123 \cdots n)}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \tag{29}
\end{equation*}
$$

where

$$
\begin{align*}
& E(123 \cdots n)=\sum_{1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq n}\left\langle i_{1} i_{2}\right\rangle\left[i_{2} i_{3}\right]\left\langle i_{3} i_{4}\right\rangle\left[i_{4} i_{1}\right]+\left[i_{1} i_{2}\right]\left\langle i_{2} i_{3}\right\rangle\left[i_{3} i_{4}\right]\left\langle i_{4} i_{1}\right\rangle \tag{30}\\
& O(123 \cdots n)=-\sum_{1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq n} \varepsilon\left(i_{1}, i_{2}, i_{3}, i_{4}\right) \tag{31}
\end{align*}
$$

- Note that $O(1234)=0$

Quantum Feynman rules for SU(N) SDYM

- We work with the colour-dressed amplitudes

$$
\begin{equation*}
\mathcal{A}_{n \mathrm{SDYM}}^{(1)}=\sum_{\sigma \in S_{n-1}} c^{a_{\sigma(1)} a_{\sigma(2)} a_{\sigma(3)} \cdots a_{\sigma(n)}} A_{\mathrm{SDYM}}^{(1)}(\sigma(1) \sigma(2) \sigma(3) \cdots \sigma(n)) \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
c^{a_{1} a_{2} a_{3} \cdots a_{n}}=f^{b_{1} a_{1} b_{2}} f^{b_{2} a_{2} b_{3}} f^{b_{3} a_{3} b_{4}} \cdots f^{b_{n} a_{n} b_{1}} \tag{33}
\end{equation*}
$$

- We will also need

$$
\begin{align*}
c^{\left(a_{1} a_{2}\right) a_{3} \cdots a_{n}} & =c^{a_{1} a_{2} a_{3} \cdots a_{n}}+c^{a_{2} a_{1} a_{3} \cdots a_{n}} \\
c^{\left[a_{1} a_{2}\right] a_{3} \cdots a_{n}} & =c^{a_{1} a_{2} a_{3} \cdots a_{n}}-c^{a_{2} a_{1} a_{3} \cdots a_{n}} \\
c^{\left[\left(a_{1} a_{2}\right) a_{3}\right] a_{4} \cdots a_{n}} & =c^{\left(a_{1} a_{2}\right) a_{3} a_{4} \cdots a_{n}}-c^{a_{3}\left(a_{1} a_{2}\right) a_{4} \cdots a_{n}} \tag{34}
\end{align*}
$$

Quantum Feynman rules for SU(N) SDYM

- The following set of m-point one-loop vertices reproduce the E-part of the amplitude on-shell

$$
\begin{align*}
& \sum_{i=2}^{m-2} X\left(k_{1}, k_{2}\right)^{2}\left(\prod_{j=2}^{i-1} \frac{X\left(k_{1, \cdots, j}, k_{j+1}\right)}{s_{1 \cdots j}}\right) \frac{1}{s_{1}^{2} \cdots i}\left(\prod_{l=i+1}^{m-2} \frac{X\left(k_{1, \cdots, l-1}, k_{l}\right)}{s_{1 \cdots l}}\right) X\left(k_{m-1}, k_{m}\right)^{2} \\
& \quad \cdot c^{\left[\left[\cdots\left[\left(a_{1} a_{2}\right) a_{3}\right] \cdots\right] a_{i}\right]\left[a_{i+1}\left[\cdots\left[a_{m-2}\left(a_{m-1} a_{m}\right)\right] \cdots\right]\right]} \tag{35}
\end{align*}
$$

- Checked numerically up to 7-points
- Let's see some examples...

Quantum Feynman rules for SU(N) SDYM

- The four-point vertex is

$$
\begin{equation*}
\frac{X(1,2)^{2} X(3,4)^{2}}{s_{12}^{2}} c^{\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)}= \tag{36}
\end{equation*}
$$

- A contribution of this vertex at 5 -points is

$$
\begin{align*}
& \frac{X(1,2)^{2} X(3,4+5)^{2}}{s_{12}^{2}} c^{\left(a_{1} a_{2}\right)\left(a_{3} b\right)} \cdot \frac{X(4,5)}{s_{45}} f^{b a_{4} a_{5}} \\
& =\frac{X(1,2)^{2} X(3,4+5)^{2} X(4,5)}{s_{12}^{2} s_{45}} c^{\left(a_{1} a_{2}\right)\left(a_{3}\left[a_{4} a_{5}\right]\right)} \\
& ={ }_{1}^{2} \tag{37}
\end{align*}
$$

A 6-point one-loop example

Quantum Feynman rules for $\operatorname{SU}(N)$ SDYM

- These vertices can be encoded in the action via

$$
\begin{equation*}
\left(\left(\Psi \overleftrightarrow{P}^{2} \Psi\right) \frac{1}{1 \stackrel{\square}{\square}-\overleftarrow{\mathrm{ad}}_{\Psi \stackrel{\leftrightarrow}{P}}}\right)^{b c}\left(\frac{1}{\mathbb{1 D}-\overrightarrow{\mathrm{ad}}_{\Psi \overleftrightarrow{P}}}\left(\Psi \overleftrightarrow{P}^{2} \Psi\right)\right)^{c b} \tag{38}
\end{equation*}
$$

where $\operatorname{ad}_{X} Y=[X, Y]$ and we have the geometric series

$$
\begin{align*}
\left(\frac{1}{1 \stackrel{\rightharpoonup}{\square}-\overrightarrow{\mathrm{d}}_{\Psi \stackrel{\leftrightarrow}{P}}}\right. & \left.\left(\Psi^{a_{1}} \stackrel{\leftrightarrow}{P}^{2} \Psi^{a_{2}}\right) T^{a_{1}} T^{a_{2}}\right)^{b c}=\frac{1}{\vec{\square}} f^{b\left(a_{1} \mid e\right.} f^{\left.e \mid a_{2}\right) c}\left(\Psi^{a_{1}} \stackrel{\leftrightarrow}{P}^{2} \Psi^{a_{2}}\right) \\
& +\left(f^{b a_{3} d} f^{d\left(a_{1} \mid e\right.} f^{\left.e \mid a_{2}\right) c}-f^{b\left(a_{1} \mid e\right.} f^{\left.e \mid a_{2}\right) d} f^{d a_{3} c}\right) \frac{1}{\square}\left(\Psi^{a_{3}} \stackrel{\leftrightarrow}{P} \frac{1}{\vec{\square}}\left(\Psi^{a_{1}} \stackrel{\leftrightarrow}{P}^{2} \Psi^{a_{2}}\right)\right) \\
& +\mathcal{O}\left(\text { ffff } \frac{1}{\square}\left(\Psi P \frac{1}{\square}\left(\Psi P \frac{1}{\square}(\Psi P \Psi)\right)\right)\right) \tag{39}
\end{align*}
$$

The O-part

- The O-part of the amplitude can be written off-shell e.g. at 5-points

$$
\begin{equation*}
\frac{X(1,2)}{s_{12}} \frac{X(2,3)}{s_{23}} \frac{X(3,4)}{s_{34}} \frac{X(4,5)}{s_{45}} \frac{X(5,1)}{s_{51}} \varepsilon(1,2,3,4) c^{a_{1} a_{2} a_{3} a_{4} a_{5}} \tag{40}
\end{equation*}
$$

- We were unable to find an all-order expression for this part of the vertices
- Fortunately, it is the E-part that connects to SDG...

Quantum Feynman rules for SDG

- Take a tree-like double copy approach
- The SDG one-loop vertices are then

$$
\begin{equation*}
\sum_{i=2}^{m-2} X\left(k_{1}, k_{2}\right)^{4}\left(\prod_{j=2}^{i-1} \frac{X\left(k_{1, \cdots, j}, k_{j+1}\right)^{2}}{s_{1 \cdots j}}\right) \frac{1}{s_{1 \cdots i}^{2}}\left(\prod_{l=i+1}^{m-2} \frac{X\left(k_{1, \cdots, l-1}, k_{l}\right)^{2}}{s_{1 \cdots l}}\right) X\left(k_{m-1}, k_{m}\right)^{4} \tag{41}
\end{equation*}
$$

- Checked numerically up to 6-points
- This is unexpected! At loop-level the double copy usually applies at the level of the integrand

Quantum Feynman rules for SDG

- The quantum-corrected action is

$$
\begin{equation*}
S_{\mathrm{q} . \mathrm{c.SDG}}(\phi, \bar{\phi})=\int d^{4} x\left(\bar{\phi}\left(\square \phi+\left\{\partial_{u} \phi, \partial_{w} \phi\right\}\right)+V_{1-\operatorname{loop}}[\phi]\right) \tag{42}
\end{equation*}
$$

- Our effective vertices follow straightforwardly from the inclusion of

$$
\begin{equation*}
V_{1 \text {-loop }}[\phi]=\left(\frac{1}{\square_{\phi}}\left(\phi \stackrel{\leftrightarrow}{P}^{4} \phi\right)\right)^{2}=\left(\frac{1}{\square-(\phi \stackrel{\leftrightarrow}{P} 2 \cdot)}\left(\phi \stackrel{\leftrightarrow}{P}^{4} \phi\right)\right)^{2} \tag{43}
\end{equation*}
$$

where \square_{ϕ} is the wave operator on the background of the self-dual metric

- This action corresponds precisely to that presented in [Bittleston, Sharma, Skinner 22] after integrating out the axion and flipping the sign of the resulting interaction term

Summary and future directions

- We have studied the form of quantum-corrected actions for SDYM and SDG in light-cone gauge
- This led to quantum-corrected integrability currents that exhibit the anomaly suggested by W. Bardeen
- Our one-loop effective vertices feature an unexpected loop-level double copy after integration
- Future directions:
- Is there an all-order expression for the O-part of the vertices?
- Can the anomaly be connected to other known properties of self-dual amplitudes?
- Does our construction generalise in any way to the full theories?

Thanks!

