Double Field Theory as the Double Copy of Yang-Mills Theory

Felipe Díaz Jaramillo
arXiv:2109.01153 [FDJ, O. Hohm, J. Plefka]
arXiv:2203.07397 [R. Bonezzi, FDJ, O. Hohm]
arXiv:2212.XXXX [R. Bonezzi, C. Chiaffrino, FDJ, O. Hohm]

QCD meets gravity
December 12th 2022

Outline

Main goal: Develop an off-shell, gauge invariant and local approach to double copy based on homotopy algebras that:

- allows to identify a "kinematic algebra"
- gives gravity in the form of double field theory up to and including quartic interactions.

The talk will be divided into:

- Framework: double copy, algebras and Yang-Mills.
- Algebraic double copy and double field theory.
- 4-point amplitudes.

Double copy (DC)

- BCJ DC: Color \rightarrow Kinematics (YM \rightarrow Gravity+B-field+Dilaton)
[Bern, Carrasco, Johansson 2008]
- Loops? Kinematic algebra? General classical solutions?
\longrightarrow Investigate the double copy at the level of gauge invariant action and gauge symmetries (including non-linear).

Otherwise stated: construct gravity using Yang-Mills building blocks.
[Bern, Dennen, Huang, Kiermaier 2010; Anastasiou, Borsten, Duff, Nagy, Zoccali 2020; Borsten, Jurco, Kim, Macrelli, Saemann, Wolf 2020,2021,2022;...]

L_{∞}-algebras and field theory

$$
S_{\mathrm{YM}}=\int A_{a}^{\mu} \square A_{\mu}^{a}-\varphi_{a} \varphi^{a}+\varphi_{a} \partial^{\mu} A_{\mu}^{a}+\partial A^{3}+A^{4}
$$

An L_{∞}-algebra is a graded vector space $X_{\mathrm{YM}}=\bigoplus_{i} X_{\mathrm{YM}}^{i}$ equipped with a differential Q such that
and multilinear maps $B_{n}: X_{\mathrm{YM}}^{\otimes n} \rightarrow X_{\mathrm{YM}}\left(\mathcal{A}=\left(A_{\mu}^{a}, \varphi^{a}\right)\right)$

- $S_{\mathrm{YM}}=\frac{1}{2!}\langle\mathcal{A}, Q \mathcal{A}\rangle+\frac{1}{3!}\left\langle\mathcal{A}, B_{2}(\mathcal{A}, \mathcal{A})\right\rangle+\frac{1}{4!}\left\langle\mathcal{A}, B_{3}(\mathcal{A}, \mathcal{A}, \mathcal{A})\right\rangle$
- $\delta_{\lambda} \mathcal{A}=Q \lambda+B_{2}(\mathcal{A}, \lambda)$ (gauge transformations)
that obey a set of relations (generalized Jacobi identities) encoding the consistency of the theory.

L_{∞}-algebras and field theory

Example: action of the differential

$$
\begin{gathered}
Q \mathcal{A}=\binom{\partial \cdot A^{a}-\varphi^{a}}{\square A_{\mu}^{a}-\partial_{\mu} \varphi^{a}} \in X_{-1}^{\mathrm{YM}} \\
Q \lambda=\binom{\partial_{\mu} \lambda^{a}}{\square \lambda^{a}} \in X_{0}^{\mathrm{YM}}
\end{gathered}
$$

Stripping off color

There is a manifest factorization: $X_{\mathrm{YM}}=\mathcal{K} \otimes \mathfrak{g}$ [Zeitlin 2008] \mathcal{K} is a C_{∞}-algebra and \mathfrak{g} is a Lie algebra.

$$
\begin{aligned}
S_{\mathrm{YM}}=\frac{1}{2!}\left\langle\mathcal{A}^{a}, Q \mathcal{A}_{a}\right\rangle & +\frac{1}{3!} f_{a b c}\left\langle\mathcal{A}^{a}, m_{2}\left(\mathcal{A}^{b}, \mathcal{A}^{c}\right)\right\rangle \\
& +\frac{1}{4!} f^{e}{ }_{a b} f_{e c d}\left\langle\mathcal{A}^{a}, m_{3}\left(\mathcal{A}^{b}, \mathcal{A}^{c}, \mathcal{A}^{d}\right)\right\rangle
\end{aligned}
$$

e.g: $m_{2 \mu}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)=2 A_{1} \cdot \partial A_{2 \mu}+\partial_{\mu} A_{1} \cdot A_{2}+\partial \cdot A_{1} A_{2 \mu}-(1 \leftrightarrow 2)$

There exists a map b such that ($\mathcal{K}, b, Q, \square, m_{2}, m_{3}$) forms an off-shell and gauge independent kinematic algebra up to tri-linear maps. ($B V_{\infty}^{\square}$-algebra [Reiterer 2019])

$$
\begin{aligned}
b^{2} & =0, \quad Q b+b Q=\square \\
b \mathcal{A} & =0 \text { (gauge fixing) } \quad h=\frac{b}{\square} \text { (propagator) }
\end{aligned}
$$

Action of b

b acts on X_{YM} as

$$
\begin{gathered}
b \mathcal{A}=\binom{\varphi^{a}}{0} \in X_{\mathrm{YM}}^{1} \quad b \mathcal{E}=\binom{E_{\mu}^{a}}{0} \in X_{\mathrm{YM}}^{0} \\
X_{\mathrm{YM}}^{1} \xrightarrow{Q} X_{\mathrm{YM}}^{0} \xrightarrow{Q} X_{\mathrm{YM}}^{-1} \xrightarrow{Q} X_{\mathrm{YM}}^{-2} \\
\lambda^{a} \underbrace{}_{b} A_{\mu}^{a} \underbrace{{ }^{b}}_{\varphi^{a}}{ }^{E^{a}}{ }_{E_{\mu}^{a}}^{{ }^{b}} \mathcal{N}^{a}
\end{gathered}
$$

Kinematic algebra

Warm-up: Poisson algebra $\{F, G \cdot H\}-\{F, G\} \cdot H-G \cdot\{F, H\}=0$
The bracket $\{$,$\} obeys Jacobi and the product \cdot$ is associative.
One can generalize this to get a kinematic algebra (\mathcal{K}, b, \ldots)

$$
\begin{aligned}
\cdot & \rightarrow\left(m_{2}, m_{3}\right) \\
\{,\} & \rightarrow b_{2}\left(u_{1}, u_{2}\right):=b m_{2}\left(u_{1}, u_{2}\right)-m_{2}\left(b u_{1}, u_{2}\right)-m_{2}\left(u_{1}, b u_{2}\right)
\end{aligned}
$$

The compatibility relation generalizes to

$$
\begin{aligned}
b_{2}\left(u_{1}, m_{2}\left(u_{2}, u_{3}\right)\right) & -m_{2}\left(b_{2}\left(u_{1}, u_{2}\right), u_{3}\right)-m_{2}\left(u_{2}, b_{2}\left(u_{1}, u_{3}\right)\right) \\
+ & {\left[Q, \theta_{3}\right]\left(u_{1}, u_{2}, u_{3}\right)+d_{\square} m_{3}\left(u_{1}, u_{2}, u_{3}\right)=0 }
\end{aligned}
$$

A similar algebraic structure was found for Chern-Simons.
[Ben-Shahar, Johansson 2021]

Algebraic double copy

Following BCJ

$$
\begin{aligned}
X_{\mathrm{YM}} & =\mathcal{K} \otimes \mathfrak{g} \rightarrow X_{\mathrm{DC}}=\mathcal{K} \otimes \overline{\mathcal{K}} \\
X_{\mathrm{DFT}} & =\left\{\Psi \in \mathcal{K} \otimes \overline{\mathcal{K}} \mid b^{-} \Psi=0\right\}, \quad b^{-}=b-\bar{b}
\end{aligned}
$$

For the maps to quartic order one has

$$
\begin{gathered}
B_{1}=Q+\bar{Q}, \quad B_{2}=b^{-} m_{2} \otimes \bar{m}_{2}=b_{2} \otimes \bar{m}_{2}-m_{2} \otimes \bar{b}_{2} \\
B_{3}=b^{-}\left\{\theta_{3} \otimes \bar{m}_{2} \bar{m}_{2}+m_{2} b_{2} \otimes \bar{m}_{3}+d_{\square} m_{3} \otimes \bar{m}_{3}+\text { (un)-barred }\right\}
\end{gathered}
$$

These maps form an L_{∞}-algebra encoding gauge invariant double field theory (DFT) to quartic order!

$$
S_{\mathrm{DFT}}=\frac{1}{2!}\left\langle\Psi, B_{1}(\Psi)\right\rangle+\frac{1}{3!}\left\langle\Psi, B_{2}(\Psi, \Psi)\right\rangle+\frac{1}{4!}\left\langle\Psi, B_{3}(\Psi, \Psi, \Psi)\right\rangle+\ldots
$$

With $\Psi=\left(e_{\mu \bar{\nu}}, d\right), \quad e_{\mu \bar{\nu}}(x, \bar{x})=A_{\mu}(x) \otimes \bar{A}_{\bar{\nu}}(\bar{x})$

Amplitudes and algebras

First Yang-Mills: $Q \mathcal{A}=0, b \mathcal{A}=0$. Equivalently $p_{i}^{2}=0, p_{i} \cdot \epsilon_{i}\left(p_{i}\right)=0$ and the propagator is $h=\frac{b}{\square}$
A 4-point amplitude can be written as

$$
\begin{aligned}
\mathcal{A}_{\text {Tree }}^{(4)} & =\left\langle\epsilon_{4},\left\{m_{2}\left(h m_{2}\left(\epsilon_{1}, \epsilon_{2}\right), \epsilon_{3}\right)+m_{3 h}\left(\epsilon_{1}, \epsilon_{2} \mid \epsilon_{3}\right)\right\}\right\rangle \operatorname{Tr}\left(t_{4}\left[\left[t_{1}, t_{2}\right], t_{3}\right]\right)+\ldots \\
& =\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}
\end{aligned}
$$

with numerators $n_{s}=\left\langle\epsilon_{4}, \mathfrak{n}_{s}\right\rangle, \mathfrak{n}_{s}^{\mu}=m_{2}\left(b_{2}\left(\epsilon_{1}, \epsilon_{2}\right), \epsilon_{3}\right)+s m_{3 h}\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$

Recall that
$b_{2}\left(\epsilon_{1}, \epsilon_{2}\right)=b m_{2}\left(\epsilon_{1}, \epsilon_{2}\right)-m_{2}\left(b \epsilon_{1}, \epsilon_{2}\right)-m_{2}\left(\epsilon_{1}, b \epsilon_{2}\right)=b m_{2}\left(\epsilon_{1}, \epsilon_{2}\right)$
and $d_{\square} m_{3}\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=s m_{3}\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$

4-point DFT amplitude

Similarly, for tensors in DFT $\varepsilon_{i \mu \bar{\nu}}\left(p_{i}, \bar{p}_{i}\right)=\epsilon_{i \mu}\left(p_{i}\right) \otimes \bar{\epsilon}_{i \bar{\nu}}\left(\bar{p}_{i}\right)$

$$
\begin{aligned}
\mathcal{M}_{\text {Tree }}^{(4)} & =\left\langle\varepsilon_{4}, B_{2}\left(\mathfrak{h} B_{2}\left(\varepsilon_{1}, \varepsilon_{2}\right), \varepsilon_{3}\right)+B_{3}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)\right\rangle+\ldots \\
& =\frac{n_{s} \bar{n}_{s}}{s}+\frac{n_{t} \bar{n}_{t}}{t}+\frac{n_{u} \bar{n}_{u}}{u}
\end{aligned}
$$

The consistency of this amplitude relies on the Poisson relation

$$
\left[b, m_{2} m_{2}\right]-3 m_{2} b_{2} \pi-\left[Q, \theta_{3}\right]-m_{3 h}\left(d_{\square}-3 d_{s} \pi\right)=0
$$

Taking the inner product of this relation with a polarization vector one obtains

$$
n_{s}+n_{t}+n_{u}=0
$$

Summary and Outlook

Take-home messages:

- We have developed an algebraic approach to DC that is local, off-shell and gauge invariant.
- A new perspective on $n_{s}+n_{t}+n_{u}=0$.

For the future

- Higher orders.
- Implementation to classical solutions.
- Applications to gravitational waves.

Thank you very much for your attention!

