

Feynman Integrals

Samuel Abreu

CERN \& The University of Edinburgh

15th of December 2022, QCD Meets Gravity — Zurich

$$
I\left(p_{1}, \ldots, p_{E} ; m_{1}^{2}, \ldots, m_{p}^{2} ; \nu ; D\right)=\int\left(\prod_{j=1}^{L} e^{\gamma_{E} \varepsilon} \frac{d^{D} k_{j}}{i \pi^{D / 2}} \frac{\mathcal{N}\left(\left\{k_{j} \cdot k_{l}, k_{j} \cdot p_{l}\right\} ; D\right)}{\prod_{j=1}^{p}\left(m_{j}^{2}-q_{j}^{2}-i \varepsilon\right)^{\nu_{j}}}\right.
$$

+ Ubiquitous in any perturbative OFT calculation
\checkmark Truly where QCD meets gravity
+ Major bottleneck when number of scales/loops increases
- Diagrammatic representation with associated Feynman rules

- In this talk:
\checkmark The ν_{j} are integers (see tomorrow for other cases)
\checkmark Use dimensional regularisation $D=4-2 \epsilon$ to regulate all divergences
+ Lorentz invariant quantities with well defined mass dimension
\checkmark Scaleless integrals vanish in dimensional regularisation
* Parametric representations
+ Linear relations between Feynman integrals
- Differential equations
- Numerical evaluation of Feynman integrals
* Analytic Tools For Feynman Integrals, V.A. Smirnov (Springer, 2012)
* Feynman Integrals, S. Weinzierl, 2201.03593
+ Sagex Review on Scattering Amplitudes, 2203.13011
\checkmark Chapter 3: Mathematical Structures in Feynman integrals, S. Abreu, R. Britto, C. Duhr
\checkmark Chapter 4: Muti-loop Feynman integrals, J. Blümlein, C. Schneider
* ... many other lecture notes (references found in above reviews)

PARAMETRIC REPRESENTATIONS

Feynman parameter integrals
Cutkosky-Baikov representation
Direct integration and types of functions

Parametric Representations - Feynman parameters

$I(x ; \nu ; D)=\int\left(\prod_{j=1}^{L} e^{\gamma_{E} \epsilon} \frac{d^{D} k_{j}}{i \pi^{D / 2}}\right) \frac{\mathcal{N}\left(\left\{k_{j} \cdot k_{l}, k_{j} \cdot p_{l}\right\} ; D\right)}{\prod_{j=1}^{p}\left(m_{j}^{2}-q_{j}^{2}-i \varepsilon\right)^{\nu_{j}}}$

$$
I(x ; \nu ; D)=e^{\gamma_{E} L \epsilon} \Gamma\left(|\nu|-\frac{L D}{2}\right) \prod_{j=1}^{p} \int_{0}^{\infty} d \alpha_{j} \frac{\alpha_{j}^{\nu_{j}-1}}{\Gamma\left(\nu_{j}\right)} \delta\left(1-\sum_{j=1}^{p} \alpha_{j}\right) \frac{\mathscr{U}(\alpha)^{|\nu|-\frac{(L+1) D}{2}}}{\mathscr{F}(\alpha ; x)^{|\nu|-\frac{L D}{2}}}
$$

\checkmark Feynman-parameter representation (similar to Schwinger, Lee-Pomeranski, ...)
$\checkmark \mathscr{U}$ and \mathscr{F} are (graph) polynomials in kinematics and the α_{j}
\checkmark Potential alternative definition of Feynman integrals in dim reg
\checkmark Important observation: very similar dependence on ν and $D / 2$
\checkmark Defines a projective integral over (positive) real projective space

Parametric Representations - Cutkosky-Baikov

$I(x ; \nu ; D)=\int\left(\prod_{j=1}^{L} e^{\gamma_{E} \epsilon} \frac{d^{D} k_{j}}{i \pi^{D / 2}}\right) \frac{\mathcal{N}\left(\left\{k_{j} \cdot k_{l}, k_{j} \cdot p_{l}\right\} ; D\right)}{\prod_{j=1}^{p}\left(m_{j}^{2}-q_{j}^{2}-i \varepsilon\right)^{\nu_{j}}}$

$$
I(x ; \nu ; D)=N(D) G\left(p_{1}, \ldots, p_{E-1}\right)^{\frac{E-D}{2}} \int_{\Delta} \prod_{a=1}^{p} d z_{a} \mathscr{B}(z)^{\frac{D-K-1}{2}} \frac{\mathcal{N}\left(\left\{z_{k} ; x\right\} ; D\right)}{\prod_{c=1}^{p} z_{c}^{\nu_{c}}}
$$

\checkmark Obtained by making the propagators the integration variables
$\checkmark G$ is the Gram determinant of the external legs
$\checkmark \mathscr{B}$ is the Baikov polynomial (computable as a Gram determinant)
\checkmark Natural representation to study cuts of Feynman integrals (\sim set $z_{c}=0$)

Parametric Representations - Direct Integration

\checkmark Parametric representations used for direct interaction (analytic or numerical)
\checkmark One-loop bubble with one massive propagator

$$
-=I\left(p^{2} ; m_{1}^{2}, 0 ; 1,1 ; D\right)=e^{\gamma_{E} \epsilon}\left(m_{1}^{2}\right)^{-2+D / 2} \frac{\Gamma(2-D / 2)}{D / 2-1}{ }_{2} F_{1}\left(1,2-\frac{D}{2} ; \frac{D}{2} ; \frac{p^{2}}{m_{1}^{2}}\right)
$$

\checkmark Expansion around integer dimensions

$$
I\left(p^{2} ; m_{1}^{2}, 0 ; 1,1 ; 2-2 \epsilon\right)=\frac{1}{\epsilon\left(p^{2}-m_{1}^{2}\right)}\left[1-2 \epsilon \log \left(1-p^{2} / m_{1}^{2}\right)+\epsilon^{2}\left(\frac{\pi^{2}}{12}+2 \log ^{2}\left(1-p^{2} / m_{1}^{2}\right)+2 \mathrm{Li}_{2}\left(p^{2} / m_{1}^{2}\right)\right)+\mathcal{O}\left(\epsilon^{3}\right)\right]
$$

\checkmark Types of functions that appear in evaluation of Feynman integrals

- Hypergeometric functions (in dim reg)
- Logarithms and Multiple Polylogarithms MPLs (expansions around integer dim)
- Elliptic integrals and beyond (expansions around integer dim)

Functions we need to understand to compute Feynman integrals

LINEAR RELATIONS

FIXED KINEMATICS

Integration-by-parts (IBP) relations
Master integrals
Dimension-shifting relations
Laporta algorithm, intersection theory, ...

Linear Relations — IBPs

\checkmark Feynman integrals with fixed kinematics and dimensions, as function of the ν_{j}
\checkmark Integration by parts have no boundary terms in dim. reg. For any v^{μ}

$$
\int d^{D} k_{i} \frac{\partial}{\partial k_{i}^{\mu}}\left[v^{\mu} \frac{\mathcal{N}\left(\left\{k_{j} \cdot k_{l}, k_{j} \cdot p_{l}\right\} ; D\right)}{\prod_{j=1}^{p}\left(m_{j}^{2}-q_{j}^{2}-i \varepsilon\right)^{\nu_{j}}}\right]=0
$$

- Linear relations with integrals with different ν_{j}
\checkmark Example: one-loop bubble, massless propagators $\quad \int d^{D} k \frac{\partial}{\partial k^{\mu}}\left[\nu^{\mu} \frac{1}{\left.\left(k^{2}\right)^{\nu_{1}\left((k+p)^{2}\right)^{\nu_{2}}}\right]=0}\right.$

$$
\left\{\begin{array}{l}
\left(D-2 \nu_{1}-\nu_{2}\right) I\left(\nu_{1}, \nu_{2}\right)-\nu_{2} I\left(\nu_{1}-1, \nu_{2}+1\right)-\nu_{2} p^{2} I\left(\nu_{1}, \nu_{2}+1\right)=0 \\
\left(\nu_{1}-\nu_{2}\right) I\left(\nu_{1}, \nu_{2}\right)-\nu_{1} I\left(\nu_{1}+1, \nu_{2}-1\right)-\nu_{1} p^{2} I\left(\nu_{1}+1, \nu_{2}\right)+\nu_{2} I\left(\nu_{1}-1, \nu_{2}+1\right)+\nu_{2} p^{2} I\left(\nu_{1}, \nu_{2}+1\right)=0
\end{array}\right.
$$

$$
\left\{\begin{array}{rlr}
I\left(\nu_{1}, \nu_{2}\right) & =-\frac{\nu_{1}+\nu_{2}-1-D}{p^{2}\left(\nu_{2}-1\right)} I\left(\nu_{1}, \nu_{2}-1\right)-\frac{1}{p^{2}} I\left(\nu_{1}-1, \nu_{2}\right) & \\
I\left(\nu_{2} \neq 1\right. \\
\left.I, \nu_{2}\right) & =-\frac{\nu_{1}+\nu_{2}-1-D}{p^{2}\left(\nu_{1}-1\right)} I\left(\nu_{1}-1, \nu_{2}\right)-\frac{1}{p^{2}} I\left(\nu_{1}, \nu_{2}-1\right) & \\
\nu_{1} \neq 1 \\
& \Rightarrow \quad I\left(\nu_{1}, \nu_{2}\right)=0 \quad \text { or } \quad I\left(\nu_{1}, \nu_{2}\right) \propto I(1,1) &
\end{array}\right.
$$

Linear Relations — IBPs

$$
I(x ; \nu ; D)=\int\left(\prod_{j=1}^{L} e^{\gamma_{E} \epsilon} \frac{d^{D} k_{j}}{i \pi^{D / 2}}\right) \frac{\mathcal{N}\left(\left\{k_{j} \cdot k_{l}, k_{j} \cdot p_{l}\right\} ; D\right)}{\prod_{j=1}^{p}\left(m_{j}^{2}-q_{j}^{2}-i \varepsilon\right)^{\nu_{j}}}
$$

\checkmark IBP relations can generate integrals with extra propagators

- A topology contains enough propagators for this not to happen
\checkmark Integrals in a topology are related by IBP relations, which are rational in scales and D
- Integrals in a topology related to a basis of integrals, called master integrals
\checkmark The number of master integrals is always finite
- Can be computed from critical points, Euler characteristics, ...
- Only a finite number of integrals needs to be computed to solve a topology
\checkmark Each topologies defines a (finite dimensional) vector space
- Like for any vector space, some bases are better than others

Linear Relations - Dimension Shifting

$$
I(x ; \nu ; D)=e^{\gamma_{E} L e} \Gamma\left(|\nu|-\frac{L D}{2}\right) \prod_{j=1}^{p} \int_{0}^{\infty} d \alpha_{j} \frac{\alpha_{j}^{\nu_{j}-1}}{\Gamma\left(\nu_{j}\right)} \delta\left(1-\sum_{j=1}^{p} \alpha_{j}\right) \frac{\mathscr{U}(\alpha))^{|L|-\frac{(L+1 D)}{2}}}{\mathscr{F}(\alpha ; x)^{|\nu|-\frac{L D}{2}}}
$$

\checkmark Relations between different $\nu_{j} \sim$ relations between different $D / 2$
\checkmark Go up in dimensions, $D-2 \rightarrow D$

$$
I(x ; \nu ; D-2)=(-1)^{L} \mathcal{U}\left(\frac{\partial}{\partial m_{1}^{2}}, \ldots, \frac{\partial}{\partial m_{p}^{2}}\right) I(x ; \nu ; D)
$$

\checkmark Go down in dimensions, $D+2 \rightarrow D\left(b_{i}\right.$ lowers ν_{i} by 1$)$

$$
I(x ; \nu ; D+2)=\frac{2^{L} G\left(p_{1}, \ldots, p_{E-1}\right)}{(D-K+1)_{L}} \mathscr{B}\left(b_{1}, \ldots, b_{K}\right) I(x ; \nu ; D)
$$

\checkmark Integrals in different dimensions can be used when building basis of master integrals
\checkmark Combine with IBPs to simplify r.h.s. of relations

Linear Relations — Solving IBP relations

\checkmark Major bottleneck in many applications
\checkmark Laporta's algorithm, the most successful approach

- build relations for explicit values of ν_{j}, within some $|\nu|$ bound
- solve (very!) large linear system
- new approaches based on finite fields and functional reconstruction
- algorithmic approach, scales badly with $|\nu|$
\checkmark Solve recurrence relations (what we did for the bubble example)
- construct all IBP relations, and solve the recurrence relations
- full solution, not algorithmic, contains too much information (we never need to reduce integrals with very large $|\nu|$)
\checkmark Intersection theory
- build on the vector space perspective
- construct operators to project integrals onto a basis
- elegant new formalism, still not competitive with Laporta's algorithm

DIFFERENTIAL EQUATIONS

Compute master integrals
Pure bases (what, why, and how)
Compute integrals and organise analytic structure (symbols, special functions)
Beyond MPLs?

Differential Equations - Generic Basis

\checkmark Let $\overrightarrow{\mathscr{F}}$ be a vector of master integrals. It's closed under differentiation

$$
\partial_{x_{i}} \overrightarrow{\mathscr{F}}(x, \epsilon)=A_{x_{i}}(x, \epsilon) \overrightarrow{\mathscr{F}}(x, \epsilon)
$$

- derivatives change powers of propagators \Rightarrow reduce to masters with IBPs
- IBP relations are rational $\Rightarrow A_{x_{i}}(x, \epsilon)$ has rational entries
\checkmark Example: one-loop bubble with one massive propagator, $\mathscr{F}=\{I(1,1), I(1,0)\}$

$$
\partial_{m_{1}^{2}} \overrightarrow{\mathscr{I}}=\binom{-I(2,1)}{-I(2,0)}=\left(\begin{array}{cc}
\frac{(D-3)\left(m_{1}^{2}-p^{2}\right)}{\left(p^{2}-m_{1}^{2}\right)^{2}} & \frac{(D-2)\left(m_{1}^{2}-p^{2}\right)}{2 m_{1}^{2}\left(p^{2}-m_{1}^{2}\right)^{2}} \\
0 & \frac{D-2}{2 m_{1}^{2}}
\end{array}\right) \overrightarrow{\mathscr{I}}
$$

\checkmark By solving the differential equations we evaluate all master integrals
\checkmark Complicated to solve for generic basis \mathscr{F}
\checkmark Different orders in the ϵ expansion of the integrals mix in the differential equation

Differential Equations - Pure basis

\checkmark For large classes of integrals we can do better (e.g., those that evaluate to MPLs)!

- find new basis $\overrightarrow{\mathcal{F}}(x, \epsilon)$ such that

$$
\overrightarrow{d \mathscr{F}}(x, \epsilon)=\epsilon A(x) \overrightarrow{\mathscr{J}}(x, \epsilon)
$$

$$
A(x)=\sum_{i} A_{i} d \log W_{i}
$$

- A_{i} are matrices of rational numbers, all x dependence in W_{i}
- differential equation is in canonical (dlog) form
- only has logarithmic singularities, explicit in the differential equation
- different orders in ϵ don't mix
- solution trivial to write in terms of MPLs, order by order in ϵ
\checkmark Basis change between generic basis $\overrightarrow{\mathscr{F}}$ and pure basis $\overrightarrow{\mathscr{F}}$ not rational (but algebraic)
\checkmark No general algorithm to find a pure basis (but some automated codes exist)
- leading singularities (see William's talk)
- cuts of Feynman integrals, on-shell differential equations
- ideas from $\mathcal{N}=4$

Differential Equations - Pure basis example

\checkmark Pure basis: basis transformation for $\mathscr{F}=\{I(1,1), I(1,0)\}$

$$
\overrightarrow{\mathscr{F}}\left(p^{2}, m_{1}^{2} ; 2-2 \epsilon\right)=\frac{1}{\epsilon}\left(\begin{array}{cc}
\frac{1}{p^{2}-m_{1}^{2}} & 0 \\
0 & 1
\end{array}\right) \overrightarrow{\mathcal{J}}\left(p^{2}, m_{1}^{2} ; 2-2 \epsilon\right)
$$

\checkmark Differential equation in canonical form $\left(u=p^{2} / m_{1}^{2}\right)$

$$
\partial_{u} \overrightarrow{\mathcal{F}}(u ; \epsilon)=\epsilon\left[\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right) \mathrm{d} \log (1-u)+\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) \operatorname{dlog} u\right] \overrightarrow{\mathcal{F}}(u ; \epsilon)
$$

\checkmark Boundary condition: solution should be regular at $u=0$, fixes bubble w.r.t. tadpole

$$
\mathscr{J}_{2}(\epsilon)=e^{\gamma_{E} \epsilon} \Gamma(1+\epsilon)
$$

\checkmark Solution

$$
\mathscr{J}_{1}(u ; \epsilon)=1-2 \epsilon \log (1-u)+\epsilon^{2}\left(\frac{\pi^{2}}{12}+2 \log ^{2}(1-u)+2 \operatorname{Li}_{2}(u)\right)+\mathcal{O}\left(\epsilon^{3}\right)
$$

Differential Equations - Pure basis and analytic structure

$$
\overrightarrow{d \overrightarrow{\mathcal{F}}}(x, \epsilon)=\epsilon A(x) \overrightarrow{\mathcal{F}}(x, \epsilon)
$$

$$
A(x)=\sum_{i} A_{i} d \log W_{i}
$$

\checkmark Can learn a lot without solving the equation!
\checkmark Directly read the alphabet and build the symbol of the topology $\overrightarrow{\mathcal{J}}$

- Useful input for ansatzing coefficients of amplitudes (same singular points)
- Study analytic properties of $\overrightarrow{\mathscr{F}}$
- Bootstrapping approaches
- Discontinuities, (extended) Steinmann relations, ...
\checkmark Trivial to solve in terms of Chen iterated integrals, order by order in ϵ
- Construct basis of special functions algorithmically
- Build dedicated codes to evaluate topology $\overrightarrow{\mathcal{F}}$

Differential Equations - Beyond MPLs

\checkmark Very active area of study
$\checkmark \epsilon$-factorisation helpful for numerical solutions
\checkmark What are pure elliptic (and beyond) functions?
\checkmark How to extract/organise analytic structure from DEs beyond MPLs? What is the symbol?
(See Christoph's, Sebastian's talks)

EVALUATING FEYNMAN INTEGRALS

From representation in terms of 'known functions'
Directly from DEs
With dedicated codes

Evaluating Feynman Integrals — Known Functions

\checkmark Solve Feynman integrals in terms of known functions

- Classical polylogarithms $\operatorname{Li}_{n}(x)$, MPLs $G(\vec{a} ; x)$
- eMPLs $\mathscr{E}_{3 / 4} / \tilde{\Gamma}$ or iterated integrals of modular forms
\checkmark Use publicly available codes (GiNaC, HandyG) when available
\checkmark Representation is region specific (branch cuts), introduces spurious poles
- Slow convergence
\checkmark Example: Elliptic integrals in quarkonium two-loop corrections
- Very large expressions with thousands of eMPLs
- Several days to get ~7 digits

- Same performance as Monte-Carlo codes like pySecDec

Evaluating Feynman Integrals — From DEs

$$
\partial_{x_{i}} \overrightarrow{\mathscr{F}}(x, \epsilon)=A_{x_{i}}(x, \epsilon) \overrightarrow{\mathscr{F}}(x, \epsilon)
$$

\checkmark Numerically solve differential equations (public codes: Diffexp, AMFlow)

- Start from known initial condition, and evolve along path
- Generalised power-series solution with finite convergence radius

$$
\sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{N_{i, k}} \mathbf{c}_{k}^{\left(i, j_{1}, j_{2}\right)}\left(t-t_{k}\right)^{j_{1}} \log \left(t-t_{k}\right)^{j_{2}}
$$

- Match solutions along path
\checkmark Requires building differential equation (more efficient with pure basis)
\checkmark Very high-precision solution at each point
\checkmark Ideal for few dynamical scales, a bit slow for phenomenology when many scales
\checkmark Example: $\mathcal{O}(1000)$ digits for quarkonium two-loop corrections

Evaluating Feynman Integrals — Dedicated Codes

\checkmark For fast evaluation in multi-dimensional phase-space

- Complicated branch-cut structure \Rightarrow inefficient with known functions
- Large phase-space \Rightarrow many numerical evaluations needed
\checkmark Build special basis for a given topology from differential equation
- Pentagon functions, hexagon functions, ...
\checkmark Build special basis for a given topology from differential equation
\checkmark Example: two-loop five-point one mass

SUMMARY AND OUTLOOK

\checkmark Feynman integrals appear in all perturbative calculations

- Several approaches to compute and study them
- A lot of technology has been developed in the last decades
\checkmark For integrals evaluating to MPLs, we have very mature tools
- Not yet at the edge of what can be achieved with it
\checkmark State of the art is at the evaluation of elliptic integrals and beyond
- How to organise their analytic structure?
- How to efficiently compute them?
\checkmark Many more interesting topics that I did not have the time to mention here...

THANK YOU!

