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I(p1, …, pE; m2
1 , …, m2

p ; ν; D) = ∫
L

∏
j=1

eγEϵ
dDkj

iπD/2

𝒩({kj ⋅ kl, kj ⋅ pl}; D)

∏p
j=1 (m2

j − q2
j − iε)νj

✦ Ubiquitous in any perturbative QFT calculation

✓ The  are integers (see tomorrow for other cases)νj
✓ Use dimensional regularisation  to regulate all divergencesD = 4 − 2ϵ

✦ Diagrammatic representation with associated Feynman rules

✓ Truly where QCD meets gravity

✦ Major bottleneck when number of scales/loops increases

✦ In this talk:

✦ Lorentz invariant quantities with well defined mass dimension
✓ Scaleless integrals vanish in dimensional regularisation



Outline 3

✦ Parametric representations

✦ Linear relations between Feynman integrals

✦ Differential equations

✦ Numerical evaluation of Feynman integrals



Reviews 4

✦ Analytic Tools For Feynman Integrals, V.A. Smirnov (Springer, 2012)

✦ Feynman Integrals, S. Weinzierl, 2201.03593

✦ Sagex Review on Scattering Amplitudes, 2203.13011
✓ Chapter 3: Mathematical Structures in Feynman integrals, S. Abreu, R. Britto, C. Duhr
✓ Chapter 4: Muti-loop Feynman integrals, J. Blümlein, C. Schneider

✦ … many other lecture notes (references found in above reviews) 



PARAMETRIC REPRESENTATIONS 

Feynman parameter integrals
Cutkosky-Baikov representation
Direct integration and types of functions
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I(x; ν; D) = ∫
L

∏
j=1

eγEϵ
dDkj

iπD/2

𝒩({kj ⋅ kl, kj ⋅ pl}; D)

∏p
j=1 (m2

j − q2
j − iε)νj

I(x; ν; D) = eγELϵ Γ ( |ν | −
LD
2 )

p

∏
j=1

∫
∞

0
dαj

ανj−1
j

Γ(νj)
δ 1 −

p

∑
j=1

αj
𝒰(α)|ν|− (L + 1)D

2

ℱ(α; x)|ν|− LD
2

⇔

✓ Feynman-parameter representation (similar to Schwinger, Lee-Pomeranski, …)

✓  and  are (graph) polynomials in kinematics and the 𝒰 ℱ αj

✓ Potential alternative definition of Feynman integrals in dim reg

✓ Important observation: very similar dependence on  and  ν D/2

✓ Defines a projective integral over (positive) real projective space



Parametric Representations — Cutkosky-Baikov 7

I(x; ν; D) = ∫
L

∏
j=1

eγEϵ
dDkj

iπD/2

𝒩({kj ⋅ kl, kj ⋅ pl}; D)

∏p
j=1 (m2

j − q2
j − iε)νj

⇔

✓ Obtained by making the propagators the integration variables

✓  is the Gram determinant of the external legsG

✓  is the Baikov polynomial (computable as a Gram determinant)ℬ

✓ Natural representation to study cuts of Feynman integrals (  set )∼ zc = 0

I(x; ν; D) = N(D) G(p1, …, pE−1)
E − D

2 ∫Δ

p

∏
a=1

dza ℬ(z)D − K − 1
2

𝒩({zk; x}; D)
∏p

c=1 zνc
c



Parametric Representations — Direct Integration 8

✓ One-loop bubble with one massive propagator

✓ Expansion around integer dimensions

✓ Types of functions that appear in evaluation of Feynman integrals

= I(p2; m2
1 ,0; 1,1; D) = eγEϵ(m2

1)−2+D/2 Γ(2 − D/2)
D/2 − 1 2F1 (1,2 −

D
2

;
D
2

;
p2

m2
1 )

✓ Parametric representations used for direct interaction (analytic or numerical)

I(p2; m2
1 ,0; 1,1; 2 − 2ϵ) =

1
ϵ(p2 − m2

1) [1 − 2ϵ log(1 − p2 /m2
1) + ϵ2 ( π2

12
+ 2 log2 (1 − p2 /m2

1) + 2 Li2 (p2 /m2
1)) + 𝒪(ϵ3)]

‣ Hypergeometric functions (in dim reg)

‣ Logarithms and Multiple Polylogarithms MPLs (expansions around integer dim)

‣ Elliptic integrals and beyond (expansions around integer dim)

Functions we need to understand to 
compute Feynman integrals 



Integration-by-parts (IBP) relations

Dimension-shifting relations
Master integrals

LINEAR RELATIONS 
FIXED KINEMATICS

Laporta algorithm, intersection theory, …



Linear Relations — IBPs 10

✓ Feynman integrals with fixed kinematics and dimensions, as function of the νj

∫ dDki
∂

∂kμ
i

vμ
𝒩({kj ⋅ kl, kj ⋅ pl}; D)

∏p
j=1 (m2

j − q2
j − iε)νj

= 0

✓ Integration by parts have no boundary terms in dim. reg. For any  vμ

✓ Example: one-loop bubble, massless propagators ∫ dDk
∂

∂kμ [vμ 1
(k2)ν1((k + p)2)ν2 ] = 0

(D − 2ν1 − ν2) I(ν1, ν2) − ν2 I(ν1 − 1,ν2 + 1) − ν2p2 I(ν1, ν2 + 1) = 0

(ν1 − ν2) I(ν1, ν2) − ν1 I(ν1 + 1,ν2 − 1) − ν1p2 I(ν1 + 1,ν2) + ν2 I(ν1 − 1,ν2 + 1) + ν2p2 I(ν1, ν2 + 1) = 0

I(ν1, ν2) = −
ν1 + ν2 − 1 − D

p2(ν2 − 1)
I(ν1, ν2 − 1) −

1
p2

I(ν1 − 1,ν2) ν2 ≠ 1

{

I(ν1, ν2) = −
ν1 + ν2 − 1 − D

p2(ν1 − 1)
I(ν1 − 1,ν2) −

1
p2

I(ν1, ν2 − 1){ ν1 ≠ 1

‣ Linear relations with integrals with different νj

⇒ I(ν1, ν2) = 0 I(ν1, ν2) ∝ I(1,1)or



Linear Relations — IBPs 11

✓ IBP relations can generate integrals with extra propagators

‣ A topology contains enough propagators for this not to happen

I(x; ν; D) = ∫
L

∏
j=1

eγEϵ
dDkj

iπD/2

𝒩({kj ⋅ kl, kj ⋅ pl}; D)

∏p
j=1 (m2

j − q2
j − iε)νj

✓ Integrals in a topology are related by IBP relations, which are rational in scales and D

‣ Integrals in a topology related to a basis of integrals, called master integrals

✓ The number of master integrals is always finite

‣ Can be computed from critical points, Euler characteristics, …

✓ Each topologies defines a (finite dimensional) vector space

‣ Only a finite number of integrals needs to be computed to solve a topology

‣ Like for any vector space, some bases are better than others

(See Christoph’s, Pavel’s, Sebastian’s talks)



Linear Relations — Dimension Shifting 12

I(x; ν; D − 2) = (−1)L 𝒰 ( ∂
∂m2

1
, …,

∂
∂m2

p ) I(x; ν; D)

I(x; ν; D + 2) =
2L G(p1, …, pE−1)

(D − K + 1)L
ℬ(b1, …, bK)I(x; ν; D)

I(x; ν; D) = eγELϵ Γ ( |ν | −
LD
2 )

p

∏
j=1

∫
∞

0
dαj

ανj−1
j

Γ(νj)
δ 1 −

p

∑
j=1

αj
𝒰(α)|ν|− (L + 1)D

2

ℱ(α; x)|ν|− LD
2

✓ Relations between different   relations between different νj ∼ D/2

✓ Go up in dimensions, D − 2 → D

✓ Go down in dimensions,  (  lowers  by 1)D + 2 → D bi νi

✓ Integrals in different dimensions can be used when building basis of master integrals

✓ Combine with IBPs to simplify r.h.s. of relations



Linear Relations — Solving IBP relations 13

✓ Major bottleneck in many applications

✓ Laporta’s algorithm, the most successful approach
‣ build relations for explicit values of , within some  boundνj |ν |

‣ solve (very!) large linear system

‣ new approaches based on finite fields and functional reconstruction 

✓ Solve recurrence relations (what we did for the bubble example)

‣ construct all IBP relations, and solve the recurrence relations

‣ algorithmic approach, scales badly with |ν |

‣ full solution, not algorithmic, contains too much information (we never 
need to reduce integrals with very large ) |ν |

✓ Intersection theory
‣ build on the vector space perspective
‣ construct operators to project integrals onto a basis
‣ elegant new formalism, still not competitive with Laporta’s algorithm

(See Pouria’s talk)



Compute master integrals
Pure bases (what, why, and how)
Compute integrals and organise analytic structure (symbols, special functions)

DIFFERENTIAL EQUATIONS 

Beyond MPLs?



Differential Equations — Generic Basis 15

✓ Let  be a vector of master integrals. It’s closed under differentiation⃗ℐ

∂xi
⃗ℐ(x, ϵ) = Axi

(x, ϵ) ⃗ℐ(x, ϵ)

‣ derivatives change powers of propagators  reduce to masters with IBPs⇒
‣ IBP relations are rational  has rational entries ⇒ Axi

(x, ϵ)

∂m2
1

⃗ℐ = (−I(2,1)
−I(2,0)) =

(D − 3)(m2
1 − p2)

(p2 − m2
1)2

(D − 2)(m2
1 − p2)

2m2
1(p2 − m2

1)2

0 D − 2
2m2

1

⃗ℐ

✓ Example: one-loop bubble with one massive propagator, ℐ = {I(1,1), I(1,0)}

✓ By solving the differential equations we evaluate all master integrals

✓ Complicated to solve for generic basis ℐ

✓ Different orders in the  expansion of the integrals mix in the differential equationϵ



Differential Equations — Pure basis 16

✓ For large classes of integrals we can do better (e.g., those that evaluate to MPLs)!

d ⃗𝒥(x, ϵ) = ϵ A(x) ⃗𝒥(x, ϵ)

‣ differential equation is in canonical (dlog) form

‣ only has logarithmic singularities, explicit in the differential equation

A(x) = ∑
i

Ai d log Wi

‣ find new basis  such that  ⃗𝒥(x, ϵ)

‣  are matrices of rational numbers, all  dependence in Ai x Wi

‣ different orders in  don’t mix ϵ

✓ Basis change between generic basis  and pure basis  not rational (but algebraic)⃗ℐ ⃗𝒥

‣ solution trivial to write in terms of MPLs, order by order in  ϵ

✓ No general algorithm to find a pure basis (but some automated codes exist)

‣ leading singularities   (see William’s talk)

‣ ideas from  𝒩 = 4
‣ cuts of Feynman integrals, on-shell differential equations  



✓ Pure basis: basis transformation  for

Differential Equations — Pure basis example 17

⃗ℐ(p2, m2
1 ; 2 − 2ϵ) =

1
ϵ

1
p2 − m2

1
0

0 1

⃗𝒥(p2, m2
1 ; 2 − 2ϵ)

∂u
⃗𝒥(u; ϵ) = ϵ [(−2 0

0 0) dlog (1 − u) + (1 −1
0 0 ) dlog u] ⃗𝒥(u; ϵ)

ℐ = {I(1,1), I(1,0)}

✓ Differential equation in canonical form ( )u = p2/m2
1

✓ Boundary condition: solution should be regular at , fixes bubble w.r.t. tadpoleu = 0

𝒥2(ϵ) = eγEϵΓ(1 + ϵ)

✓ Solution

𝒥1(u; ϵ) = 1 − 2 ϵ log(1 − u) + ϵ2 ( π2

12
+ 2 log2(1 − u) + 2 Li2(u)) + 𝒪 (ϵ3)



Differential Equations — Pure basis and analytic structure 18

d ⃗𝒥(x, ϵ) = ϵ A(x) ⃗𝒥(x, ϵ) A(x) = ∑
i

Ai d log Wi

✓ Directly read the alphabet and build the symbol of the topology ⃗𝒥

‣ Bootstrapping approaches
‣ Discontinuities, (extended) Steinmann relations, …

‣ Study analytic properties of ⃗𝒥

✓ Trivial to solve in terms of Chen iterated integrals, order by order in ϵ

‣ Build dedicated codes to evaluate topology ⃗𝒥
‣ Construct basis of special functions algorithmically

✓ Can learn a lot without solving the equation!

‣ Useful input for ansatzing coefficients of amplitudes (same singular points)



Differential Equations — Beyond MPLs 19

✓ -factorisation helpful for numerical solutionsϵ

✓ What are pure elliptic (and beyond) functions?

✓ Very active area of study

✓ How to extract/organise analytic structure from DEs beyond MPLs? What is the symbol?

(See Christoph’s, Sebastian’s talks)



From representation in terms of `known functions’
Directly from DEs
With dedicated codes

EVALUATING FEYNMAN INTEGRALS 



Evaluating Feynman Integrals — Known Functions 21

✓ Solve Feynman integrals in terms of known functions

‣ Classical polylogarithms , MPLs Lin(x) G( ⃗a; x)
‣ eMPLs /  or iterated integrals of modular formsℰ3/4 Γ̃

✓ Use publicly available codes (GiNaC, HandyG) when available 

✓ Representation is region specific (branch cuts), introduces spurious poles

‣ Slow convergence

✓ Example: Elliptic integrals in quarkonium two-loop corrections 

‣ Very large expressions with thousands of eMPLs

‣ Several days to get ~7 digits

‣ Same performance as Monte-Carlo codes like pySecDec 



Evaluating Feynman Integrals — From DEs 22

✓ Numerically solve differential equations (public codes: DiffExp, AMFlow)

∂xi
⃗ℐ(x, ϵ) = Axi

(x, ϵ) ⃗ℐ(x, ϵ)

‣ Start from known initial condition, and evolve along path

‣ Generalised power-series solution with finite convergence radius
∞

∑
j1=0

Ni,k

∑
j2=0

c(i, j1, j2)
k (t − tk)

j1
2 log (t − tk)

j2

‣ Match solutions along path

✓ Requires building differential equation (more efficient with pure basis)

✓ Very high-precision solution at each point

✓ Example: (1000) digits for quarkonium two-loop corrections 𝒪

✓ Ideal for few dynamical scales, a bit slow for phenomenology when many scales



Evaluating Feynman Integrals — Dedicated Codes 23

✓ For fast evaluation in multi-dimensional phase-space

‣ Complicated branch-cut structure  inefficient with known functions⇒
‣ Large phase-space  many numerical evaluations needed⇒

✓ Build special basis for a given topology from differential equation
‣ Pentagon functions, hexagon functions, … 

✓ Build special basis for a given topology from differential equation

✓ Example: two-loop five-point one mass PRELIMINARY

PRELIMINARY
PRELIMINARY

PRELIMINARY



SUMMARY AND OUTLOOK 
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✓ Feynman integrals appear in all perturbative calculations

‣ Several approaches to compute and study them

‣ A lot of technology has been developed in the last decades

✓ For integrals evaluating to MPLs, we have very mature tools

✓ Many more interesting topics that I did not have the time to mention here…

✓ State of the art is at the evaluation of elliptic integrals and beyond
‣ How to organise their analytic structure?

‣ How to efficiently compute them?

‣ Not yet at the edge of what can be achieved with it



THANK YOU!


