Chern-Simons meets DBI

Maor Ben-Shahar

December 122022

QCD meets gravity
 Based on:

[M.B.S, H. Johansson, 2112.11452]
[M.B.S, M. Guillen, 2108.11708]
[M.B.S, L. Garozzo, H. Johansson, 2212.XXXX]

Outline

- BCJ relations and double copy
- Chern-Simons matter and on-shell double copy
- Off-shell color-kinematics duality for pure CS
- Kinematic algebra and off-shell double copy
- Summary and upcoming work

Background and Motivation

- Ongoing search for theories obeying the CK duality [review: 1909.01358]
- Typically conformal [Cheung, Mangan, Shen], supersymmetric [Chiodaroli, Jin, Roiban]
- Double-copy table [chi, Evvang, Herderscheea, Jonesa, Paranijpe]

	$N L S M_{2}$	$Y M_{4}$	$B A S_{6}$
$N L S M_{2}$	$s G A L_{-2}$	$B I_{0}$	$N L S M_{2}$
$Y M_{4}$	$B I_{0}$	$G R_{2}$	$Y M_{4}$
$B A S_{6}$	$N L S M_{2}$	$Y M_{4}$	$B A S_{6}$
	$D_{L}+D_{R}-6=D_{\text {d.c. }}$		

Background and Motivation

- Ongoing search for theories obeying the CK duality [review: 1909.01358]
- Typically conformal [Cheung, Mangan, Shen], supersymmetric [Chiodaroli, Jin, Roiban]
- Double-copy table [Chi, Elvang, Herderscheea, Jonesa, Paranjipe]

	$N L S M_{2}$	$Y M_{4}$	$B A S_{6}$
$N L S M_{2}$	$s G A L_{-2}$	$B I_{0}$	$N L S M_{2}$
$Y M_{4}$	$B I_{0}$	$G R_{2}$	$Y M_{4}$
$B A S_{6}$	$N L S M_{2}$	$Y M_{4}$	$B A S_{6}$
	$D_{L}+D_{R}-6=D_{\text {d.c. }}$		

- Can we double-copy 3d CS theory?
- 3-Lie algebra in $\mathcal{N}=6 \mathrm{ABJM}$ and $\mathcal{N}=8 \mathrm{BLG}$ studied before [Bargheer, He, McLoughlin; Johansson, Huang].
- Off-shell color-kinematics is still an open problem.

Color-Kinematics duality

Relationship between scattering amplitude building blocks: [Bern, Carassco, Johansson]

$$
\mathcal{A}_{n}=\sum_{i \in \Gamma_{n}} \frac{c_{i} n_{i}}{D_{i}}
$$

Color-Kinematics duality

Relationship between scattering amplitude building blocks: [Bern, Carassco, Johansson]

$$
\begin{aligned}
& \mathcal{A}_{n}=\sum_{i \in \Gamma_{n}} \frac{c_{i} n_{i}}{D_{i}} \\
& c_{i}+c_{j}+c_{k}=0 \Leftrightarrow n_{i}+n_{j}+n_{k}=0,
\end{aligned}
$$

Double copy:

$$
\mathcal{M}_{n}=\sum_{i \in \Gamma_{n}} \frac{\tilde{n}_{i} n_{i}}{D_{i}}
$$

BCJ relations and double-copy

On-shell picture, for adjoint particles:

$$
\mathcal{A}_{n}=\sum_{\sigma} A\left(1, \sigma_{2}, \ldots, \sigma_{n}\right) \operatorname{Tr}\left(T^{a_{1}} T^{a_{\sigma_{2}}} \ldots T^{a_{\sigma_{n}}}\right)
$$

From DDM basis of $(n-2)$! to $(n-3)$! using BCJ relations:
Example $\left(s_{i j} \equiv\left(p_{i}+p_{j}\right)^{2}\right)$:

$$
s_{23} A(1234)=s_{13} A(1243)
$$

BCJ relations and double-copy

On-shell picture, for adjoint particles:

$$
\mathcal{A}_{n}=\sum_{\sigma} A\left(1, \sigma_{2}, \ldots, \sigma_{n}\right) \operatorname{Tr}\left(T^{a_{1}} T^{a_{\sigma_{2}}} \ldots T^{a_{\sigma_{n}}}\right)
$$

From DDM basis of $(n-2)$! to $(n-3)$! using BCJ relations:
Example $\left(s_{i j} \equiv\left(p_{i}+p_{j}\right)^{2}\right)$:

$$
s_{23} A(1234)=s_{13} A(1243)
$$

KLT double copy [Kawai, Lewellen, Tye]

$$
\mathcal{M}_{n}=\sum_{\sigma, \rho} A(1, \sigma, n-1, n) S[\sigma \mid \rho] \tilde{A}(1, \rho, n, n-1)
$$

four-point example:

$$
\mathcal{M}_{4}=s_{12} A(1234) A(1243)
$$

Chern-Simons matter

Adjoint matter with all marginal couplings:

$$
\begin{aligned}
\mathcal{L}= & \frac{\epsilon_{\mu \nu \rho}}{2}\left(A^{a \mu} \partial^{\nu} A^{a \rho}-\frac{g i}{3} f^{a b c} A^{a \mu} A^{b \nu} A^{c \rho}\right)+\left(D_{\mu} \bar{\phi}\right)^{a}\left(D^{\mu} \phi\right)^{a} \\
& +\alpha^{(1)} g^{4} \phi^{a} \bar{\phi}^{b} \bar{\phi}^{d} \phi^{c} \phi^{e} \bar{\phi}^{h} f^{a b x} f^{x d y} f^{y c z} f^{z e h}
\end{aligned}
$$

Chern-Simons matter

Adjoint matter with all marginal couplings:

$$
\begin{aligned}
\mathcal{L}= & \frac{\epsilon_{\mu \nu \rho}}{2}\left(A^{a \mu} \partial^{\nu} A^{a \rho}-\frac{g i}{3} f^{a b c} A^{a \mu} A^{b \nu} A^{c \rho}\right)+\left(D_{\mu} \bar{\phi}\right)^{a}\left(D^{\mu} \phi\right)^{a} \\
& +\alpha^{(1)} g^{4} \phi^{a} \bar{\phi}^{b} \bar{\phi}^{d} \phi^{c} \phi^{e} \bar{\phi}^{h} f^{a b x} f^{x d y} f^{y c z} f^{z e h} \\
& +i \bar{\psi}^{a}(\not D \psi)^{a}+i g^{2} \bar{\psi}^{a} \psi^{b} \bar{\phi}^{c} \phi^{d}\left(\alpha^{(2)} f^{a c x} f^{x d b}+\alpha^{(3)} f^{a d x} f^{x c b}\right) .
\end{aligned}
$$

Chern-Simons matter

Adjoint matter with all marginal couplings:

$$
\begin{aligned}
\mathcal{L}= & \frac{\epsilon_{\mu \nu \rho}}{2}\left(A^{a \mu} \partial^{\nu} A^{a \rho}-\frac{g i}{3} f^{a b c} A^{a \mu} A^{b \nu} A^{c \rho}\right)+\left(D_{\mu} \bar{\phi}\right)^{a}\left(D^{\mu} \phi\right)^{a} \\
& +\alpha^{(1)} g^{4} \phi^{a} \bar{\phi}^{b} \bar{\phi}^{d} \phi^{c} \phi^{e} \bar{\phi}^{h} f^{a b x} f^{x d y} f^{y c z} f^{z e h} \\
& +i \bar{\psi}^{a}(\not D \psi)^{a}+i g^{2} \bar{\psi}^{a} \psi^{b} \bar{\phi}^{c} \phi^{d}\left(\alpha^{(2)} f^{a c x} f^{x d b}+\alpha^{(3)} f^{a d x} f^{x c b}\right) .
\end{aligned}
$$

3D spinors: $|p\rangle\langle p|=-p^{\mu} \gamma_{\mu}, \quad p^{2}=0, \quad \mathbb{Z}_{2}$ little group

Chern-Simons matter

Adjoint matter with all marginal couplings:

$$
\begin{aligned}
\mathcal{L}= & \frac{\epsilon_{\mu \nu \rho}}{2}\left(A^{a \mu} \partial^{\nu} A^{a \rho}-\frac{g i}{3} f^{a b c} A^{a \mu} A^{b \nu} A^{c \rho}\right)+\left(D_{\mu} \bar{\phi}\right)^{a}\left(D^{\mu} \phi\right)^{a} \\
& +\alpha^{(1)} g^{4} \phi^{a} \bar{\phi}^{b} \bar{\phi}^{d} \phi^{c} \phi^{e} \bar{\phi}^{h} f^{a b x} f^{x d y} f^{y c z} f^{z e h} \\
& +i \bar{\psi}^{a}(\not D \psi)^{a}+i g^{2} \bar{\psi}^{a} \psi^{b} \bar{\phi}^{c} \phi^{d}\left(\alpha^{(2)} f^{a c x} f^{x d b}+\alpha^{(3)} f^{a d x} f^{x c b}\right) .
\end{aligned}
$$

3D spinors: $|p\rangle\langle p|=-p^{\mu} \gamma_{\mu}, \quad p^{2}=0, \quad \mathbb{Z}_{2}$ little group

$$
A_{4}\left(\psi_{1} \bar{\psi}_{2} \psi_{3} \bar{\psi}_{4}\right)=\frac{\langle 13\rangle^{3}}{\langle 21\rangle\langle 14\rangle} \quad A_{4}\left(\psi_{1} \bar{\psi}_{2} \bar{\psi}_{4} \psi_{3}\right)=\frac{\langle 42\rangle\langle 23\rangle}{\langle 21\rangle} \leftarrow \text { soft pole! }
$$

Check BCJ relations, eg: $s_{24} A_{4}\left(\psi_{1} \bar{\psi}_{2} \bar{\psi}_{4} \psi_{3}\right)=s_{14} A_{4}\left(\psi_{1} \bar{\psi}_{2} \psi_{3} \bar{\psi}_{4}\right)$

Chern-Simons matter

Adjoint matter with all marginal couplings:

$$
\begin{aligned}
\mathcal{L}= & \frac{\epsilon_{\mu \nu \rho}}{2}\left(A^{a \mu} \partial^{\nu} A^{a \rho}-\frac{g i}{3} f^{a b c} A^{a \mu} A^{b \nu} A^{c \rho}\right)+\left(D_{\mu} \bar{\phi}\right)^{a}\left(D^{\mu} \phi\right)^{a} \\
& +\alpha^{(1)} g^{4} \phi^{a} \bar{\phi}^{b} \bar{\phi}^{d} \phi^{c} \phi^{e} \bar{\phi}^{h} f^{a b x} f^{x d y} f^{y c z} f^{z e h} \\
& +i \bar{\psi}^{a}(\not D \psi)^{a}+i g^{2} \bar{\psi}^{a} \psi^{b} \bar{\phi}^{c} \phi^{d}\left(\alpha^{(2)} f^{a c x} f^{x d b}+\alpha^{(3)} f^{a d x} f^{x c b}\right) .
\end{aligned}
$$

3D spinors: $|p\rangle\langle p|=-p^{\mu} \gamma_{\mu}, \quad p^{2}=0, \quad \mathbb{Z}_{2}$ little group

$$
A_{4}\left(\psi_{1} \bar{\psi}_{2} \psi_{3} \bar{\psi}_{4}\right)=\frac{\langle 13\rangle^{3}}{\langle 21\rangle\langle 14\rangle} \quad A_{4}\left(\psi_{1} \bar{\psi}_{2} \bar{\psi}_{4} \psi_{3}\right)=\frac{\langle 42\rangle\langle 23\rangle}{\langle 21\rangle} \leftarrow \text { soft pole! }
$$

Check BCJ relations, eg: $s_{24} A_{4}\left(\psi_{1} \bar{\psi}_{2} \bar{\psi}_{4} \psi_{3}\right)=s_{14} A_{4}\left(\psi_{1} \bar{\psi}_{2} \psi_{3} \bar{\psi}_{4}\right)$ Constrain $\alpha^{(2,3)}$ from $A_{4}\left(\psi_{1} \bar{\psi}_{2} \bar{\phi}_{3} \phi\right)$ and $\alpha^{(1)}$ from A_{6}.

Chern-Simons matter

Adjoint matter with all marginal couplings:

$$
\begin{aligned}
\mathcal{L}= & \frac{\epsilon_{\mu \nu \rho}}{2}\left(A^{a \mu} \partial^{\nu} A^{a \rho}-\frac{g i}{3} f^{a b c} A^{a \mu} A^{b \nu} A^{c \rho}\right)+\left(D_{\mu} \bar{\phi}\right)^{a}\left(D^{\mu} \phi\right)^{a} \\
& +\alpha^{(1)} g^{4} \phi^{a} \bar{\phi}^{b} \bar{\phi}^{d} \phi^{c} \phi^{e} \bar{\phi}^{h} f^{a b x} f^{x d y} f^{y c z} f^{z e h} \\
& +i \bar{\psi}^{a}(\not D \psi)^{a}+i g^{2} \bar{\psi}^{a} \psi^{b} \bar{\phi}^{c} \phi^{d}\left(\alpha^{(2)} f^{a c x} f^{x d b}+\alpha^{(3)} f^{a d x} f^{x c b}\right) .
\end{aligned}
$$

$B C J$ relations imply:

Chern-Simons matter

Adjoint matter with all marginal couplings:

$$
\begin{aligned}
\mathcal{L}= & \frac{\epsilon_{\mu \nu \rho}}{2}\left(A^{a \mu} \partial^{\nu} A^{a \rho}-\frac{g i}{3} f^{a b c} A^{a \mu} A^{b \nu} A^{c \rho}\right)+\left(D_{\mu} \bar{\phi}\right)^{a}\left(D^{\mu} \phi\right)^{a} \\
& +\alpha^{(1)} g^{4} \phi^{a} \bar{\phi}^{b} \bar{\phi}^{d} \phi^{c} \phi^{e} \bar{\phi}^{h} f^{a b x} f^{x d y} f^{y c z} f^{z e h} \\
& +i \bar{\psi}^{a}(\not D \psi)^{a}+i g^{2} \bar{\psi}^{a} \psi^{b} \bar{\phi}^{c} \phi^{d}\left(\alpha^{(2)} f^{a c x} f^{x d b}+\alpha^{(3)} f^{a d x} f^{x c b}\right) .
\end{aligned}
$$

BCJ relations imply:

- $\alpha^{(i)}=1$
- Opposite statistics (!)
- $\mathcal{N}=4$ SUSY ($S O(4)$ R-symmetry, no additional flavour)
- Same partial amplitudes as $\mathcal{N}=4 \mathrm{CS}$ with bi-fundamental matter [Gaiotto, Witten], $(\mathcal{N}=4$ truncations of ABJM)

Chern-Simons matter

Adjoint matter with all marginal couplings:

$$
\begin{aligned}
\mathcal{L}= & \frac{\epsilon_{\mu \nu \rho}}{2}\left(A^{a \mu} \partial^{\nu} A^{a \rho}-\frac{g i}{3} f^{a b c} A^{a \mu} A^{b \nu} A^{c \rho}\right)+\left(D_{\mu} \bar{\phi}\right)^{a}\left(D^{\mu} \phi\right)^{a} \\
& +g^{4} \phi^{a} \bar{\phi}^{b} \bar{\phi}^{d} \phi^{c} \phi^{e} \bar{\phi}^{h} f^{a b x} f^{x d y} f^{y c z} f^{z e h} \\
& +i \bar{\psi}^{a}(\not D \psi)^{a}+i g^{2} \bar{\psi}^{a} \psi^{b} \bar{\phi}^{c} \phi^{d}\left(f^{a c x} f^{x d b}+f^{a d x} f^{x c b}\right) .
\end{aligned}
$$

How to realize $S O(4)$ R-symmetry? Define $\phi_{\alpha}=(\bar{\phi}, \phi), \psi_{\dot{\alpha}}=(\bar{\psi}, \psi)$

Chern-Simons matter

Adjoint matter with all marginal couplings:

$$
\begin{aligned}
\mathcal{L}= & \frac{\epsilon_{\mu \nu \rho}}{2}\left(A^{a \mu} \partial^{\nu} A^{a \rho}-\frac{g i}{3} f^{a b c} A^{a \mu} A^{b \nu} A^{c \rho}\right)+\left(D_{\mu} \bar{\phi}\right)^{a}\left(D^{\mu} \phi\right)^{a} \\
& +g^{4} \phi^{a} \bar{\phi}^{b} \bar{\phi}^{d} \phi^{c} \phi^{e} \bar{\phi}^{h} f^{a b x} f^{x d y} f^{y c z} f^{z e h} \\
& +i \bar{\psi}^{a}(\not D \psi)^{a}+i g^{2} \bar{\psi}^{a} \psi^{b} \bar{\phi}^{c} \phi^{d}\left(f^{a c x} f^{x d b}+f^{a d x} f^{x c b}\right) .
\end{aligned}
$$

How to realize $S O(4)$ R-symmetry? Define $\phi_{\alpha}=(\bar{\phi}, \phi), \psi_{\dot{\alpha}}=(\bar{\psi}, \psi)$ then $S O(4)_{R}$ as $S U(2) \times S U(2)$.

Chern-Simons matter

Adjoint matter with all marginal couplings:

$$
\begin{aligned}
\mathcal{L}= & \frac{\epsilon_{\mu \nu \rho}}{2}\left(A^{a \mu} \partial^{\nu} A^{a \rho}-\frac{g i}{3} f^{a b c} A^{a \mu} A^{b \nu} A^{c \rho}\right)+\left(D_{\mu} \bar{\phi}\right)^{a}\left(D^{\mu} \phi\right)^{a} \\
& +g^{4} \phi^{a} \bar{\phi}^{b} \bar{\phi}^{d} \phi^{c} \phi^{e} \bar{\phi}^{h} f^{a b x} f^{x d y} f^{y c z} f^{z e h} \\
& +i \bar{\psi}^{a}(\not D \psi)^{a}+i g^{2} \bar{\psi}^{a} \psi^{b} \bar{\phi}^{c} \phi^{d}\left(f^{a c x} f^{x d b}+f^{a d x} f^{x c b}\right)
\end{aligned}
$$

How to realize $S O(4)$ R-symmetry? Define $\phi_{\alpha}=(\bar{\phi}, \phi), \psi_{\dot{\alpha}}=(\bar{\psi}, \psi)$ then $S O(4)_{R}$ as $S U(2) \times S U(2)$.

$$
\begin{aligned}
\delta \phi_{\alpha} & =\bar{\xi}_{\alpha}^{\dot{\alpha}} \psi_{\dot{\alpha}} \\
\delta A_{\mu}^{a} & =g \bar{\xi}^{\alpha \dot{\alpha}} \gamma_{\mu} \psi_{\dot{\alpha}}^{b} \phi_{\alpha}^{c} f^{a b c} \\
\delta \psi_{\dot{\alpha}}^{a} & =i\left(\not D \phi^{\alpha}\right)^{a} \xi_{\alpha \dot{\alpha}}+\ldots,
\end{aligned}
$$

Supersymmetric amplitudes with on-shell supercharges Q_{A}^{α} :

$$
A\left(\Psi_{1} \Psi_{2} \Psi_{3} \Psi_{4}\right)=\delta^{4}(Q) \frac{\langle 13\rangle\langle 24\rangle}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}
$$

Double Copy

What is the double copy of this $\mathcal{N}=4 \mathrm{CS}$ theory?

$$
\mathcal{M}_{4}=s_{12} A(1234) A(1243)=\delta^{8}(Q) \quad(\text { no pole! })
$$

Match DBI with maximal SUSY in 3D.

Double Copy

What is the double copy of this $\mathcal{N}=4 \mathrm{CS}$ theory?

$$
\left.\mathcal{M}_{4}=s_{12} A(1234) A(1243)=\delta^{8}(Q) \quad \text { (no pole! }\right)
$$

Match DBI with maximal SUSY in 3D.

Correct statistics after double copy!

$$
(\phi+\psi+c . c .) \otimes(\phi+\psi+\text { c.c. }) \rightarrow \varphi_{i}+\psi_{i}
$$

R-symmetry: $S O(4) \times S O(4) \rightarrow S O(8)$.

Off-shell Color-Kinematics duality

Off-shell Color-Kinematics duality

Can CK duality hold off-shell?
Is there a kinematic algebra responsible for the kinematic identities?

$$
c_{i}+c_{j}+c_{k}=0 \Leftrightarrow n_{i}+n_{j}+n_{k}=0
$$

Kinematic algebra in Chern-Simons theory

Feynman rules of pure CS in Lorenz $\partial_{\mu} A^{\mu}=0$ gauge:

$$
\mu \longrightarrow_{\nu}^{\nu}=\frac{\epsilon^{\mu p \nu}}{p^{2}}
$$

Kinematic algebra in Chern-Simons theory

Feynman rules of pure CS in Lorenz $\partial_{\mu} A^{\mu}=0$ gauge:

$$
\mu \longrightarrow_{\nu}^{\nu}=\frac{\epsilon^{\mu p \nu}}{p^{2}}
$$

Kinematic algebra in Chern-Simons theory

Feynman rules of pure CS in Lorenz $\partial_{\mu} A^{\mu}=0$ gauge:

$$
\mu \varlimsup_{\nu}^{\nu}=\frac{\epsilon^{\mu p \nu}}{p^{2}}
$$

$\left(\right.$ transverse to $\left.p_{12}=p_{1}+p_{2}\right)$

Kinematic algebra in Chern-Simons theory

Feynman rules of pure CS in Lorenz $\partial_{\mu} A^{\mu}=0$ gauge:

Kinematic algebra in Chern-Simons theory

Feynman rules of pure CS in Lorenz $\partial_{\mu} A^{\mu}=0$ gauge:

Kinematic algebra in Chern-Simons theory

Feynman rules in Lorenz $\partial_{\mu} A^{\mu}=0$ gauge:

Kinematic algebra in Chern-Simons theory

Feynman rules in Lorenz $\partial_{\mu} A^{\mu}=0$ gauge:

Kinematic algebra in Chern-Simons theory

Feynman rules in Lorenz $\partial_{\mu} A^{\mu}=0$ gauge:

Algebra of volume preserving diffeos: under $x_{\mu} \rightarrow x_{\mu}+A_{\mu}+\ldots$, $d^{3} x \rightarrow d^{3} x$ (for $\partial \cdot A=0$)

Kinematic algebra in Chern-Simons theory

What about ghosts?

Kinematic algebra in Chern-Simons theory

What about ghosts? Consider Axelrod-Singer formulation:

$$
S=\frac{k}{2 \pi} \int d^{3} x d^{3} \theta \operatorname{Tr}\left(\frac{1}{2} \Psi Q \Psi+\frac{i}{3} \Psi \Psi \Psi\right)
$$

Superfield for Faddeev-Popov ghosts and vector:

$$
\Psi=c+\theta_{\mu} A^{\mu}+\theta_{\mu} \theta_{\nu} \epsilon^{\mu \nu \rho} \partial_{\rho} \bar{c},
$$

Kinetic (exterior derivative, world line BRST operator)

$$
Q=\theta_{\mu} \partial^{\mu}
$$

Kinematic algebra in Chern-Simons theory

What about ghosts? Consider Axelrod-Singer formulation:

$$
S=\frac{k}{2 \pi} \int d^{3} x d^{3} \theta \operatorname{Tr}\left(\frac{1}{2} \Psi Q \Psi+\frac{i}{3} \Psi \Psi \Psi\right)
$$

Superfield for Faddeev-Popov ghosts and vector:

$$
\Psi=c+\theta_{\mu} A^{\mu}+\theta_{\mu} \theta_{\nu} \epsilon^{\mu \nu \rho} \partial_{\rho} \bar{c}
$$

Kinetic (exterior derivative, world line BRST operator)

$$
Q=\theta_{\mu} \partial^{\mu}
$$

To define the propagator $b=\frac{\partial}{\partial \theta^{\mu}} \partial^{\mu}$ (co-differential, b-ghost):

- $b^{2}=0$
- $b Q+Q b=\partial_{\mu} \partial^{\mu}=\square$

Kinematic algebra in Chern-Simons theory

Feynman rules in gauge $b \Psi=0 \rightarrow \partial_{\mu} A^{\mu}=0$:

Kinematic algebra in Chern-Simons theory

Feynman rules in gauge $b \Psi=0 \rightarrow \partial_{\mu} A^{\mu}=0$:

Kinematic algebra in Chern-Simons theory

Feynman rules in gauge $b \Psi=0 \rightarrow \partial_{\mu} A^{\mu}=0$:

From Leibniz rule: $b=\frac{\partial}{\partial \theta^{\mu}} \partial^{\mu}$:

$$
b\left(b\left(\Psi_{1} \Psi_{2}\right) \Psi_{3}\right)+\operatorname{cyclic}(1,2,3)=0
$$

Using $b^{2}=0$ which implies $b\left(\Psi_{i}\right)=0$.

Kinematic algebra in Chern-Simons theory

Algebraic interpretation of:

Recall: $b\left(\Psi_{i}\right)=0$ and $b=\frac{\partial}{\partial \theta^{\mu}} \partial^{\mu}$ so:

Kinematic algebra in Chern-Simons theory

Algebraic interpretation of:

Recall: $b\left(\Psi_{i}\right)=0$ and $b=\frac{\partial}{\partial \theta^{\mu}} \partial^{\mu}$ so:
$b\left(\Psi_{i} \Psi_{j}\right)=\frac{\partial}{\partial \theta_{\mu}} \Psi_{i} \partial_{\mu} \Psi_{j}-\partial_{\mu} \Psi_{i} \frac{\partial}{\partial \theta_{\mu}} \Psi_{j}$

Kinematic algebra in Chern-Simons theory

Algebraic interpretation of:

Recall: $b\left(\Psi_{i}\right)=0$ and $b=\frac{\partial}{\partial \theta^{\mu}} \partial^{\mu}$ so:
$b\left(\Psi_{i} \Psi_{j}\right)=\frac{\partial}{\partial \theta_{\mu}} \Psi_{i} \partial_{\mu} \Psi_{j}-\partial_{\mu} \Psi_{i} \frac{\partial}{\partial \theta_{\mu}} \Psi_{j}$
Same Jacobi identity for diffeo generators:

$$
L_{\psi}(f) \equiv b(\psi f), \quad\left[L_{\psi}, L_{\phi}\right]=L_{b(\psi \phi)}
$$

$f(x, \theta) \rightarrow f+b(\phi f)+b(\phi b(\phi f)) / 2+\ldots \approx f\left(x+\frac{\partial}{\partial \theta} \phi, \theta+\partial \phi\right)$

Kinematic algebra in Chern-Simons theory

Algebraic interpretation of:

Recall: $b\left(\Psi_{i}\right)=0$ and $b=\frac{\partial}{\partial \theta^{\mu}} \partial^{\mu}$ so:
$b\left(\Psi_{i} \Psi_{j}\right)=\frac{\partial}{\partial \theta_{\mu}} \Psi_{i} \partial_{\mu} \Psi_{j}-\partial_{\mu} \Psi_{i} \frac{\partial}{\partial \theta_{\mu}} \Psi_{j}$
Same Jacobi identity for diffeo generators:

$$
L_{\psi}(f) \equiv b(\psi f), \quad\left[L_{\psi}, L_{\phi}\right]=L_{b(\psi \phi)}
$$

$f(x, \theta) \rightarrow f+b(\phi f)+b(\phi b(\phi f)) / 2+\ldots \approx f\left(x+\frac{\partial}{\partial \theta} \phi, \theta+\partial \phi\right)$
diffeos in (x, θ) space that preserve $d^{3} x \rightarrow d^{3} x, d^{3} \theta \rightarrow d^{3} \theta$.

Kinematic algebra in Chern-Simons theory

One loop example:

Define $X \equiv b\left(\Psi_{1} \tilde{b}\left(\delta_{\theta-\tilde{\theta}}^{3}\right)\right)$, which satisfies $b X=0$,

Kinematic algebra in Chern-Simons theory

One loop example:

Define $X \equiv b\left(\Psi_{1} \tilde{b}\left(\delta_{\theta-\tilde{\theta}}^{3}\right)\right)$, which satisfies $b X=0$,

$$
\begin{aligned}
& \rightarrow b\left(b\left(X \Psi_{2}\right) \Psi_{3}\right)-b\left(b\left(X \Psi_{3}\right) \Psi_{2}\right)-b\left(X b\left(\Psi_{2} \Psi_{3}\right)\right) \\
& =b\left(b\left(X \Psi_{2}\right) \Psi_{3}\right)+b\left(b\left(\Psi_{3} X\right) \Psi_{2}\right)+b\left(b\left(\Psi_{2} \Psi_{3}\right) X\right)=0
\end{aligned}
$$

Off-shell double copy

- At tree level, double copy with CS has zero amplitudes.

Off-shell double copy

- At tree level, double copy with CS has zero amplitudes.
- One can double copy Feynman rules and EOMs

Off-shell double copy

- At tree level, double copy with CS has zero amplitudes.
- One can double copy Feynman rules and EOMs
- $\mathrm{CS} \otimes(D F)^{2} \rightarrow$ CS-gravity, [See Moyniahn's talk!]

$$
\left(\epsilon^{\alpha \beta \gamma} F_{\alpha \beta}\right) \otimes\left(D_{\mu} D^{\rho} D_{\rho} F^{\mu \nu}\right)=0
$$

Off-shell double copy

- At tree level, double copy with CS has zero amplitudes.
- One can double copy Feynman rules and EOMs
- $\mathrm{CS} \otimes(D F)^{2} \rightarrow$ CS-gravity, [See Moyniahn's tak!]

$$
\left(\epsilon^{\alpha \beta \gamma} F_{\alpha \beta}\right) \otimes\left(D_{\mu} D^{\rho} D_{\rho} F^{\mu \nu}\right)=0
$$

Linearized cotton tensor appears in expansion of LHS

$$
C^{\mu \nu}=\epsilon^{\mu \alpha \beta} D_{\alpha} R_{\beta}^{\nu}+(\mu \leftrightarrow \nu),
$$

$C^{\mu \nu}=0$ follows from the action

$$
S_{\mathrm{CSgrav}}=\frac{1}{2 \pi} \int d^{3} \epsilon^{\mu \nu \rho}\left(\Gamma_{\mu \beta}^{\alpha} \partial_{\nu} \Gamma_{\rho \alpha}^{\beta}+\frac{2}{3} \Gamma_{\mu \beta}^{\alpha} \Gamma_{\nu \gamma}^{\beta} \Gamma_{\rho \alpha}^{\gamma}\right) .
$$

- no scattering amplitudes to test this

Conclusion

- Obtained CS-matter theories satisfying CK duality
- BCJ implied SUSY (related [Chiodaroli et. al. 1311.3600])
- Double copy to DBI, up to maximal $\mathcal{N}=8$ SUSY

	$N L S M_{2}$	$C S(m)_{3}$	$Y M_{4}$	$(D F)_{6}^{2}$
$N L S M_{2}$	$S G A L_{-2}$	$?$	$D B I_{0}$	$R+D F^{2}$
$C S(m)_{3}$	$?$	$D B I_{0}$	$?$	$C S G_{3}$
$Y M_{4}$	$D B I_{0}$	$?$	$G R_{2}$	$C G_{4}$
$(D F)_{6}^{2}$	$R+D F^{2}$	$C S G_{3}$	$C G_{4}$	R^{3}

Kinematic algebra in Chern-Simons theory

What ingredients implied the CK duality?

Kinematic algebra in Chern-Simons theory

What ingredients implied the CK duality?

- Action: $S \sim\left\langle\Psi Q \Psi+\Psi^{3}\right\rangle$
- Propagator-numerator $b: b^{2}=0$, second-order wrpt vertex
- Gauge $b \Psi=0$.

Kinematic algebra in Chern-Simons theory

What ingredients implied the CK duality?

- Action: $S \sim\left\langle\Psi Q \Psi+\Psi^{3}\right\rangle$
- Propagator-numerator $b: b^{2}=0$, second-order wrpt vertex
- Gauge $b \Psi=0$.
- Algebra and CK follow from second order b operator
- See related: [Reiterer; MBS, Guillen 2108.11708]
- The algebra implies off shell CK duality, and allows to construct any loop diagram.

Future research directions

- Wilson loops?
- What are the double copy actions?
- CK duality for more $\left\langle\Psi Q \Psi+\Psi^{3}\right\rangle$ actions
- Upcoming work on YM [mBs, Garozzo, Johansson]
- Lagrangian with fields $A,(B, \tilde{B}),(Z, \tilde{Z}),(X, \tilde{X})$
- tree level BCJ numerators in nMHV sector, inspired by fusion algebra [Gang Chen et. al.]
but off shell CK duality is still a mystery!

