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On the path to improve the nuclear g-factor of 133Cs



Outline

1. Improve the measurement of the nuclear Landé g-factor of the 133Cs ground
state

2. The measurement exploiting Bell-Bloom magnetometry

3. Preliminary analysis (and potential relevance for axion-wind effects)



1. Precession frequency and Landé g-factors

The spin of a particle precesses around the
magnetic field.

This frequency is given by

-

® = y|B]|

Where y is the gyromagnetic ratio of the spin
state.

This y itself is a function of
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1. Precession frequency and Landé g-factors

When the spin is associated with a hyperfine level, the corresponding Landé g-factor is

FE+D) -I0+1D)+J0+1)  FE+D+I0+1)—J( +1)
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9gr = 9j

where F, | and ] are the hyperfine, nuclear and electronic angular momenta quantum numbers.

The ground state of 133Cs is 6 251/2 . Given that [ = % and | = % there

are two possibilities for F = 3, 4.




1. Precession frequency and Landé g-factors

If two precession frequencies associated with each hyperfine level
are measured at the same time, then

o Gr=3
R_(UF=3_|VF=3|J3T_ =2 B‘_|—g]+9g1|

B Wr=4 B |YF=4|WT_ %ﬁ% - |g] + 7gl|

Given that g; = 2.002 540 32(20)
and g, = —0.000 398 853 95(52),

(White et al. PR A 7(3) 1973 and Arimondo et al. Rev. Mod. Phys. 49(1) 1977)

my idea was to improve Ag;

More on Chapter 8 of “Development of the caesium
magnhetometer array for the n2EDM experiment”, Pais 2021
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https://journals.aps.org/pra/abstract/10.1103/PhysRevA.7.1178
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.49.31
https://www.research-collection.ethz.ch/handle/20.500.11850/511496

2.1 The measurement: Bell-Bloom magnetometry

62S, ,,F=4—62P, , F'=3
Laser - 1|/2 e

The CsM is based on the Bell-Bloom technique, with linear polarisation, and
Freq. . -
i it measures |B|
stabiliser

Electrooptical modulator (EOM)

This is achieved by pumping and probing a coherent precession of an
aligned spin ensemble of Cs atoms.

In order to do so, the light power must be appropriately modulated.

Converging lens and N\
linear polariser N |
\

, Cs cell (glass
@ 3 cm tw\, . '/ container with
~ saturated atomic

| Cs vapour)
Photodiode

More on Chapter 3 of “Development of the caesium
magnetometer array for the n2EDM experiment”, Pais 2021 g
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2.1 The measurement: Bell-Bloom magnetometry
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» it measures |B|

stabiliser

This is achieved by pumping and probing a coherent precession of an
Electrooptical modulator (EOM) aligned spin ensemble of Cs atoms.

In order to do so, the light power must be appropriately modulated.
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2.1 The measurement: Bell-Bloom magnetometry - probing

Both §1 and §2 precess with the Larmor frequency w; = y|§|

Since the ‘head’ and ‘tail’ are indistinguishable, this spin alignment precesses at 2w;.

The aligned spins prec
\ freely around Z

ﬂ’robing precessioh

eD

ﬂ’robing precessioh

Whenever S| E, absorption is

ﬂ’robing precessiorN

at its maximum

Whenever S || E, absorption
is at its minimum




2.1 The measurement: Bell-Bloom magnetometry - the signal
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2.1 The measurement: Bell-Bloom magnetometry - the signal

Laser -
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2.1 The measurement: Bell-Bloom magnetometry - the signal
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2.2 The dual Bell-Bloom measurement

Both wp-4 and wg-3 can be alternatingly obtained with the following setup

Laser System A locked to
6251/2,F:4—>62P1/2,F1:3

Laser System B locked to

Signal at photodiode A
used to get wp—4

Signal at photodiode B
used to get wp_3



2.2 The dual Bell-Bloom measurement

Photocurrent (uA)
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3 Preliminary Analysis

In order to cancel for unknowns drifts, a 3
order ABBABABBA... was followed.

Initially, a fixed probe light power was chosen,
allowing the best wp estimation.

This measurement has been running
continuously, whenever possible.

3520 ~

w
a
=
o

Frequency (Hz)

3480 -

1.0034
] I 100331
L

1.0032

m 1.0031 A

1.0030 A

A2 2% 2> Jols 22
AP0 A0 AR N0 A A0
‘\,00._0 ‘\,00. Q! \,00. Q \00.9 ‘\,QU_Q

date and time

" B
"0
‘&00.9

2o
A0
‘\,00. Q'

2%
N0
P

11



3 Preliminary Analysis

1le—-5+1.003

e 1.5 uA
3.0 A

When daytime data is neglected, a
clear offset from the literature value
of R Is visible.

This offset seems to be light
intensity dependent.
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3 Preliminary Analysis

Doing an Allan standard deviation vs.
iIntegration time plot for the first
batch of data indicates that the AR
limit to improve Ag; can be achieved
between 10 days and 1 month.

However, light intensity corrections
need to be taken into account.
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3 Preliminary Analysis

According to Bevington et al. PR A
032804 (2020), such a measurement
of AR can be used to probe axion-
wind effects (for both axion-nucleon
and axion-electron interactions).

Much more stringent limits are
required though, of the order of
AR~10719.
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https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.032804

Conclusion

1. The measurement of the larmour precession frequency of both hyperfine
ground states of 133Cs could potentially be used to improve Ag;

2. A measurement type Is suggested: the dual Bell-Bloom magnetometer.

3. The analysis i1s ongoing. The current plan i1s to take care of the probe
WF=3
WF=4

light power dependency of R =

Merci Vielmals!
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