

Searching for New Physics at the Quantum Technology Frontier 21st Jan. 2022

> Duarte Pais UCN group at PSI

On the path to improve the nuclear g-factor of ¹³³Cs

Outline

- 1. Improve the measurement of the nuclear Landé g-factor of the ¹³³Cs ground state
- 2. The measurement exploiting Bell-Bloom magnetometry
- 3. Preliminary analysis (and potential relevance for axion-wind effects)

1. Precession frequency and Landé g-factors

The spin of a particle precesses around the magnetic field.

This frequency is given by

 $\omega = \gamma \left| \vec{B} \right|$

Where γ is the gyromagnetic ratio of the spin state.

This γ itself is a function of

$$\gamma = rac{g \ \mu_B}{\hbar}$$

1. Precession frequency and Landé g-factors

When the spin is associated with a hyperfine level, the corresponding Landé g-factor is

$$g_F = g_J \frac{F(F+1) - I(I+1) + J(J+1)}{2F(F+1)} + g_I \frac{F(F+1) + I(I+1) - J(J+1)}{2F(F+1)}$$

where F, I and J are the hyperfine, nuclear and electronic angular momenta quantum numbers.

The ground state of ¹³³Cs is 6
$${}^{2}S_{1/2}$$
. Given that $I = \frac{7}{2}$ and $J = \frac{1}{2}$ there are two possibilities for $F = 3, 4$.

$$F = 4$$
$$g_{F=3} = \frac{g_J + 7g_I}{8}$$

$$F = 3$$
$$g_{F=3} = \frac{-g_J + 9g_I}{8}$$

1. Precession frequency and Landé g-factors

If two precession frequencies associated with each hyperfine level are measured **at the same time**, then

$$R = \frac{\omega_{F=3}}{\omega_{F=4}} = \frac{|\gamma_{F=3}||\vec{F}|}{|\gamma_{F=4}||\vec{F}|} = \frac{\frac{g_{F=3}}{h}}{\frac{g_{F=3}}{h}} = \frac{|-g_{I} + 9g_{I}|}{|g_{I} + 7g_{I}|}$$

magnetometer array for the n2EDM experiment", Pais 2021

Frequency ratio uncertainty ΔR

2.1 The measurement: Bell-Bloom magnetometry

The CsM is based on the Bell-Bloom technique, with linear polarisation, and **it measures** $|\vec{B}|$.

This is achieved by pumping and probing a coherent precession of an **aligned** spin ensemble of Cs atoms.

In order to do so, the light power must be appropriately modulated.

6

2.1 The measurement: Bell-Bloom magnetometry

2.1 The measurement: Bell-Bloom magnetometry - probing

Both \vec{S}_1 and \vec{S}_2 precess with the Larmor frequency $\omega_L = \gamma |\vec{B}|$.

Since the 'head' and 'tail' are indistinguishable, this spin alignment precesses at $2\omega_L$.

2.1 The measurement: Bell-Bloom magnetometry - the signal

2.1 The measurement: Bell-Bloom magnetometry - the signal

2.1 The measurement: Bell-Bloom magnetometry - the signal

2.2 The dual Bell-Bloom measurement

Both $\omega_{F=4}$ and $\omega_{F=3}$ can be **alternatingly** obtained with the following setup

2.2 The dual Bell-Bloom measurement

id est...

In order to cancel for unknowns drifts, a 3rd order ABBABABA... was followed.

Initially, a fixed probe light power was chosen, allowing the best ω_F estimation.

This measurement has been running continuously, whenever possible.

When daytime data is neglected, a clear offset from the literature value of R is visible.

This offset seems to be light intensity dependent.

Doing an Allan standard deviation vs. integration time plot for the first batch of data indicates that the ΔR limit to improve Δg_I can be achieved between 10 days and 1 month.

However, light intensity corrections need to be taken into account.

Conclusion

- 1. The measurement of the larmour precession frequency of both hyperfine ground states of ¹³³Cs could potentially be used to improve Δg_I
- 2. A measurement type is suggested: the dual Bell-Bloom magnetometer.
- 3. The analysis is ongoing. The current plan is to take care of the probe light power dependency of $R = \frac{\omega_{F=3}}{\omega_{F=4}}$

Merci Vielmals!