

Low Energy Particle Physics Group IPA, ETH Zürich

temperatures

Damian Goeldi Searching for New Physics at the Quantum Technology Frontier

Muonium gravity experiment See Anna Soter's talk from yesterday 🗹

test weak equivalence principle using second-generation leptonic antimatter

ETH zürich

- μ^+ to vacuum
 - M conversion
- low emittance
- narrow momentum distribution

Interferometry

- 3-grating interferometer
- g shifts interference pattern

Detection

coincidence signal of e^+ from μ^+ decay and atomic e^-

Low Energy Particle Physics Group IPA, ETH Zürich

?

Novel atomic M beam from SFHe

- *M* source based on SFHe
 - M gravity experiment requires novel M beam with low emittance and narrow momentum distribution

- M detection
 - triple coincidence of horizontally emitted e^+ in two e^+ detectors plus signal in atomic e^- detector

 $\mu + \underbrace{E \text{ field}}_{\text{SFHe}(200 \text{ mK})} \underbrace{e^+}_{\text{LF4}}$

Detector requirements

- fast timing
- high efficiency
- high background rejection
- operation at T < 200 mK

Cryogenic SiPMs Setup in dilution cryostat

Cryogenic SiPMs Wiring

- SiPM: Hamamatsu S13370-3075CN/6075CN
 - pixel pitch: $75\,\mu m,$ active area: $3\,mm \times 3\,mm$ / $6\,mm \times 6\,mm$
 - designed for LAr / LXe VUV scintillation light
 - no window
- wiring with \approx 7 m micro coax cables
 - 38 AWG, $\varnothing 0.4\,mm,\,50\,\Omega$
 - compromise between heat load and signal quality
 - 3-stage thermalisation
 - 40 dB preamplifier
 - DRS4 digitiser

Low Energy Particle Physics Group IPA, ETH Zürich

Cryogenic SiPMs Electrical characterisation

- measure reverse IV curve under low-light condition
 - linear increase up to $V_{
 m bd}$, then quadratic increase
 - steeper increase after $V_{\rm bd}$ at low temperature
- determine $V_{\rm bd}$ from
 - logarithmic derivative with Landau fit
 - gain vs. bias with linear fit

Cryogenic SiPMs Operating range

- non-linear $V_{\rm bd}$ at cryogenic temperatures
- explained by Baraff's model (10.1063/1.1754731)

- no proper operation from 20 K to 40 K
- $V_{\rm over}$ limited to $\approx 2 \,{\rm V}$ at ultra low temperatures

ETH zürich

Cryogenic SiPMs Single photon detection

Single photon counting possible at ultra low temperatures

condition – photons from WLS fibre coupled to pulsed LED

• Poisson fit to estimate detected photons

measure charge spectrum under low-light

• compare low-temperature measurement to room-temperature measurement

Low Energy Particle Physics Group IPA, ETH Zürich

ETH zürich

Commissioning with μ^+ beam

- test detectors with μ^+ beam at PSI
- *e*⁺ energy follows Michel spectrum

Michel decay

SNPQTF 2022 8/15

e^+ detectors

- plastic scintillator bars
- Eljen EJ-204, 20 mm × 3 mm × (2 mm to 4 mm)
- wrapped in PTFE
- no optical cement (thermal stress)
- 3D-printed acrylic sleeves

- energy deposition in thin absorber \Rightarrow Landau distribution
- lower gain at cryogenic temperatures, but full peak resolved

Atomic e^- detector Design

- Goal
 - remove μ^+ background in e^+ detectors
 - coincidence detection of e^+ from μ^+ decay and atomic e^-

- Method
 - HV electrode to accelerate e⁻ towards scintillator pill
 - detect low-energy (<10 keV) electrons

Atomic e^- detector Energy and time spectrum

- operate with HV off and on
- high-energy Michel e^+ from μ^+ decay (always)
- accelerated e⁻ from μ⁺ hitting Cu walls (only with HV on)

- Success at ultra low temperatures in vacuum
- Not (yet) in SFHe

$CeBr_3$ scintillator

https://www.epic-crystal.com

- short decay time: 20 ns
- high light yield: $6 \times 10^4 \text{ ph/MeV}$
- peak emission wavelength: 380 nm
- very good energy resolution: ${<}4.5\,\%$
- might allow for lower electric field

Superconducting nanowire single-photon detectors $\ensuremath{\mathsf{Operating\ principle}}$

- incoming particle produces local hotspot
- hotspot confines bias current
- nanowire becomes normally conducting above critical current density
- bias current quench produces voltage pulse

ETH zürich

Superconducting nanowire single-photon detectors Electron detection

- well established for photon detection
- very high efficiency (>0.9)

- proofs of concept for e^- detection
- efficiency drops at low energies (charge build-up suspected)
- not clear what happens if e⁻ hits between meanders

Conclusion and outlook

- successfully operated Hamamatsu VUV4 SiPMs at $T < 20 \, {\rm K}$
- achieved single photon counting at $T < 1 \,\mathrm{K}$
- detected low-energy e^- at $T < 0.2 \,\text{K}$ in vacuum
- not yet in SFHe
- investigating low-threshold scintillators and superconducting nanowire single-photon detectors as alternatives
- constructing a field emission e^- gun for tests without μ beam

Low Energy Particle Physics Group

- Anna Soter
- Damian Goeldi
- Robert Waddy
- Jesse Zhang
- Paul Wegmann

