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Classification Autoencoders Results
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n
features

= 7× 8
︸ ︷︷ ︸

jets

+1× 7
︸ ︷︷ ︸

lepton

+1× 4
︸ ︷︷ ︸

MET

= 67
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MC Simulation

compute prob. 
distributions

Pure semi-leptonic channel for 
the ttbb and ttHbb processes.

...
apply cuts and 
normalise

Input for conventional 
classifiers and our AEs

Classifier models use the normalised data to produce a test statistic:

l Conventional ML models: Boosted Decision Trees (BDTs), Deep Neural Networks (NNs) exploiting all input 
feature correlations [ATL20, CMS19] | due to NISQ device limitaitons we only use 16 out of the 67 variables.

l State-of-the-art approaches for ttH(bb): graph and attention networks, etc. [C.Reissel@ML4Jets] : 0.74 -0.76 AUC.

Systematic survey for several normalisation schemes: 
minmax determined best normalisation for our study.

...
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l The normalised data samples are split into training, validation, and testing data sets.
l Classification power metric: Receiver Operating Characteristic (ROC) curve.
l More compact metric: Area Under Curve (AUC) of the ROC curve.
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inherent in HEP data leading to performance advantages? 

l Goal in “Statistics/ML jargon” [KBS21]: Find inductive bias based on prior knowledge 
on the data generation (quantum process for HEP data). 

l If the bias can be constructed and is classically difficult to simulate → quantum 
advantage. 

l Example: quantum algorithm for HEP event shower simulation, produces accurate 
results [NPdJB21]. Can simulate naturally the interference diagram.
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SVM objective function is equivalent to (dual 
Lagrangian):

maximize

subject to

Kernel trick:

Make the kernel quantum:

Support Vector Machines

Classification Autoencoders Results
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• Data embedding circuit (feature map) here is fixed.
• Layers of parametrised quantum gates → trainable parameters.
• Output of the model → expectation value of an observable on the prepared state  

e.g. measure the first qubit on the computational basis

• Classification: if → signal, otherwise background. 

Variational Quantum Circuits

Classification Autoencoders Results
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|ψ("x, "θ)〉

O = σz ⊗ ⊗ · · ·⊗ ,

f(!x, !θ) = 〈ψ(!x, !θ)| O |ψ(!x, !θ)〉 ≡ 〈ψ(!x)|G†(!θ)OG(!θ) |ψ(!x)〉 ≡ 〈O〉
!x,!θ

.

〈O〉
!x,!θ > 0



Hybrid Quantum-Classical ML Classifiers

Classification Autoencoders Results

Noisy Intermediate Scale Quantum (NISQ) devices:

l Circuit width: limited number of qubits 
(superconducting qubits at IBM up to 127).
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l Circuit width: limited number of qubits 
(superconducting qubits at IBM up to 127).

l Circuit depth: limited number of operations per 
qubit (small decoherence times).

QML models for classification:

l Kernel methods: Quantum Support Vector Machine (QSVM).
l Quantum “Neural Networks”: Variational/Parametrized Quantum Circuits (VQC/PQC).

To accommodate for NISQ limitations, feature reduction is needed.
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The Vanilla AE

Loss function: Mean Squared Error (MSE) between the input data and the reconstructed data. 

The learning rate and the batch size were optimised for minimum MSE loss, yielding
0.0012 for the learning rate with 128 events per batch.

Classification Autoencoders Results
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LMSE = (y− f(x, θ))2



Notable properties: irregular latent space, tendency to overtrain.

The loss obtained in this model shows a two fold improvement compared to the standard AE used 
in the QSVM study at arXiv:2104.07692 with a loss of 

The Vanilla AE

Classification Autoencoders Results
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LMSE = 4.77± 10
−4



Classification Autoencoders Results

The Variational AE

Loss function: Mean Squared Error (MSE) and the KL Divergence. 

The learning rate and the batch size were optimised for minimum overall loss, yielding
0.001 for the learning rate with 128 events per batch, while α=0.5.

10/19

LVAE = (1− α)LMSE + αDKL (N(µ,σ), N(0, I)) DKL = q(x)[log (q(x))− log (p(x))]



Introduction The Classification Problem The AE Zoo

Further, the value of the weight was fine-tuned as well for the best raw reconstruction loss (MSE), 
giving α=0.0005.

Classification Autoencoders Results

The Variational AE
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LMSE = 4.49× 10
−4
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The Classifier AE

Loss function: Mean Squared Error (MSE) and the Binary Cross Entropy (BCE). 

The learning rate and the batch size were optimised for minimum overall loss, yielding
0.001 for the learning rate with 128 events per batch, while α=0.5.
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LCAE = (1− α)LMSE + αLBCE LBCE = −
1

N

N∑

i=1

yi log (p(yi))− (1− yi) log (1− p(yi))



b)
b)a)

a)
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Again, the latent space is irregular and prone to overtraining.

a)

b)

Classification Autoencoders Results

The Classifier AE

Further,  α was fine-tuned as well for: 
l the best raw reconstruction loss (MSE): a) α=3x10-5.
l the best unweighted classification loss (BCE): b) α=0.6.
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The Sinkhorn AE

The hyperparameters are optimised (α=0.5) yielding: learning rate of 0.001 with batch size 128.

Loss function: Mean Squared Error (MSE) and the Sinkhorn Loss. 

14/19

LSAE = (1− α)LMSE + αLSH Wc(q, p) = inf
Γ∈Π(q,p)

∫ ∫
c(x, y)Γ(x, y)dxdy



Introduction The Classification Problem The AE Zoo

The latent space is regularised but allows for divergences from a strict standard normal distribution.
The Sinkhorn regularisation is less strict than the variational one.

The α weight was fined tuned as well for lowest MSE, giving α=0.06 and a loss of

Classification Autoencoders Results

The Sinkhorn AE
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L!"# = 9.65×10$%
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The Sinkclass AE

Loss function: all of them!

16/19
LSCAE = αLSH + βLBCE + LMSE



Introduction The Classification Problem The AE Zoo

The hyperparameters of the Sinkclass AE were optimised by first setting α=1 and β=1, 
yielding a learning rate of 0.001 and batch size of 128.

Then, the loss weights were optimised for 
a) the lowest unweighted BCE. 
b) the lowest unweighted MSE. 

The obtained values are a) α=0.02 and β=0.2 and b) α=0.9 and β=0.0008.

a)

b)

Classification Autoencoders Results

The Sinkclass AE
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Sinkclass AE shows best performance when considering both 
reconstruction power and classification power.

It even matches the classical state-of-the-art result!
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Conclusions and Outlook
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Summary:

• State-of-the-art performance of the developed hybrid data 
compression models.

• Feature reduction is crucial, training classical + quantum at the same 
time yields better results (hybrid VQC) than step-wise training.

One-gate Error
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Summary:

• State-of-the-art performance of the developed hybrid data 
compression models.

• Feature reduction is crucial, training classical + quantum at the same 
time yields better results (hybrid VQC) than step-wise training.

One-gate Error

CNOT Error

Readout Error

Ongoing work:

• Simulations including hardware noise and real hardware runs.
• Anomaly detection (AD) for model independent searches of new physics:

• Kernel based models.

In preparation: Hybrid VQC for Higgs identification (presented in ACAT 2021)

Future work:
• Quantum branches (QSVM+VQC) on developed networks for feature reduction and AD.



Thank You!



Backup slides.



Introduction The Classification Problem The AE Zoo

A set of selection cuts were applied to the simulated data to reduce additional backgrounds:

Furthermore, each event must contain at least 4 jets, 2 b-tagged jets, and exactly 1 lepton. 
Finally, the 7 most energetic jets are selected, allowing for an extra jet to account for possible 
final state radiation. The variables in the analysed data set are as follows:

T

Introduction The Classification Problem The AE ZooClassification Autoencoders Results

Event Selection
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• Assess performance of realistic HEP 
approaches on generated our data set. 

• Full CMS simulation yields higher 
classifier performance. 

• Models trained on full set of input 
features (67) and a reduced set (16) → 
benchmark.

• Measure of information loss 
(discriminating power reduction). 

Introduction The Classification Problem The AE ZooClassification Autoencoders Results

Classification with conventional methods
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VQC circuits
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QSVM Circuit



Conventional FR
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Best results obtained with Bernoulli Restricted Boltzmann Machine:
This method is very close to an autoencoder.



Kernel-based models (Quantum Support 
Vector Machines): 
• Convex optimization tasks. 
• Typically required circuits are deeper. 
• 𝒪(𝑛2) complexity construction of the kernel 
matrix elements. 

Quantum machine learning classifier models

Classification Autoencoders Results

Quantum Neural Networks (Variational 
Quantum Circuits): 
• Non-convex optimization. 
• Vanishing gradient problem (Barren 
plateaus). 
• 𝒪(𝑛) complexity. 

Encoding (embedding) the classical data in a quantum circuit [SP18]: 

Amplitude encoding: exponentially decrease the needed number of qubits but 
have deep circuits. 

Angle (direct) encoding: map each feature to a separate qubit shallow but wider circuits. 

Data re-uploading [PSCLGFL20]: repeat any data embedding circuit. 



Basics of quantum information processing
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Quantum gates and universality
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Hardware Preliminary Results
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