Towards quantum control and spectroscopy of a single hydrogen molecular ion

<u>N. Schwegler</u>, D. Holzapfel, J. P. Home, D. Kienzler

Be

Trapped Ion Quantum Information Group, ETH Zurich

21.01.2022 Searching for New Physics at the Quantum Technology Frontier

711

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation

- Be lon trap
- Rotation and vibration give access to fundamental constants ... ullet

Proton-to-electron mass ratio (and its potential drift in time)

HD⁺ ensemble:

• H₂⁺: simplest molecule

Theory H2+, D2+, and HD+ (10⁻¹²) : V. I. Korobov et al. 2017

 $m_p/m_e (10^{-12})$ \searrow S. Patra et al. 2020 (10.1126/science.aba0453) \implies I. V. Kortunov et al. 2021 (10.1038/s41567-020-01150-7)

Proton charge radius

(10.1103/PhysRevLett.118.233001)

- **Rydberg constant**
- ... or theory test

Probing QED, fifth force: e.g. M. Germann et al. 2021 (10.1103/PhysRevResearch.3.L022028)

Measure in same setup with enough transitions

J.-Ph. Karr et al. 2016 (10.1103/PhysRevA. 94.050501)

- Why **single** trapped H2+?
 - clean system
 - lower temperatures suppress Doppler shift
 - reduce negative effects from oscillating trapping potential

H₂⁺ ensemble: J. Schmidt et al. 2020 (https://doi.org/10.1103/PhysRevApplied.14.024053)

our setup

Single HD+: Ch. Wellers et al. 2021 (10.1080/00268976.2021.2001599)

lon trap

Linear Paul trap

High-precision micro-fabricated ion trap

- "tabletop" experiment (~few m³)
- subgroup of *Trapped Ion Quantum Information* group:
 Benefit from knowhow
 (complex control system, trap fabrication, cryostat, shared lasers, ...)
- Challenge: Reactions with background gas limit lifetime:

 $H_2^+ + H_2 \rightarrow H_3^+ + H$

 Ultra-High-Vacuum chamber
 trap cooled to ~10 K with liquid helium flow cryostat

Quantum control

- 1. laser cool ion motion
- ✓ 2. electronic state preparation
- ✓ 3. state-dependent
 - fluorescence readout
- 4. coherent control

- × 1. laser cool ion motion
- \mathbf{X} 2. electronic state preparation
- X 3. state-dependent fluorescence readout
- 4. coherent control
- Solution: Co-trap Be+ and H2+

Quantum control

1. sympathetic cooling of translational motion (groundstate)

Model: Coupled harmonic oscillator

Readout and state preparation using "quantum logic spectroscopy":

> non-destructive (keep H2+)

> Quantum Non-Demolition (QND) measurement.

Proposed experiment sequence

slow (O(10) minutes),

do once

proposed by S. Schiller et al. 2017
/ (https://doi.org/10.1103/PhysRevA.95.043411)

- 1. Co-trap Be+ and H2+
- 2. Helium buffer gas cools H2+ to rovibrational groundstate
- 3. Prepare H2+ in pure quantum state (hyperfine level)
- 4. Do spectroscopy experiments

"Quantum Logic Spectroscopy" Fast, do many times to gather statistics: 1 shot = 1 bit = 1 probe time (e.g. for 10 ms for 100 Hz linewidth) + ~20 ms overhead

convenient to have non-destructive readout and long lifetimes

Current state

- Load Be+ (photo-ionization laser) and Be+ control
- Load H2+ (electron impact ionization)
- Implementing control over H2+ (cool to motional groundstate, first steps towards quantum logic spectroscopy and buffer gas cooling)
- First goal: microwave spectroscopy of the hyperfine sub-levels of H2+ prepared in rovibrational groundstate

Future possibilities / dreams

• Apparatus and techniques applicable to other light (molecular) ions.

• Comparison matter vs. anti-matter: quantum logic spectroscopy with anti-H2-

modifications to the trap required to _ co-trap positive and negative charges.

