Searches for Dark Matter with Atoms and Optics: Varying Fundamental "Constants"

Yevgeny Stadnik

Australian Research Council DECRA Fellow

University of Sydney, Australia

Workshop on "Searching for New Physics at the Quantum Technology Frontier", ETH Zurich, Switzerland, 20th January 2022

Dark Matter

Strong astrophysical evidence for existence of **dark matter** (~5 times more dark matter than ordinary matter)

Dark Matter

Dark Matter

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)

Ensemble of $N \gg 1$ particles:

$$\varphi(t) \propto \sum_{i=1}^{N} \cos\left[m_{\varphi}c^{2}t/\hbar + m_{\varphi}v_{i}^{2}t/(2\hbar) + \theta_{i}\right]$$

The particle velocities v_i are randomly distributed according to a Maxwell-Boltzmann-type distribution On timescales $\Delta t \ll \tau_{\rm coh} \sim 2\pi/(m_{\varphi} \langle v_{\varphi}^2 \rangle)$, the accumulated random phases are $\ll 2\pi$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$

Probability distribution function of φ_0 (Rayleigh distribution)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\mathrm{dB},\varphi}/2\pi)^3 \gg 1$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\mathrm{dB},\varphi}/2\pi)^3 \gg 1$
- $10^{-21} \text{ eV} \lesssim m_{\varphi} \lesssim 1 \text{ eV} \iff 10^{-7} \text{ Hz} \lesssim f_{\text{DM}} \lesssim 10^{14} \text{ Hz}$ $T_{\text{osc}} \sim 1 \text{ month}$ IR frequencies

Lyman-α forest measurements [suppression of structures for $L \leq O(\lambda_{dB,\varphi})$]

[Related figure-of-merit: $\lambda_{dB,\varphi}/2\pi \le L_{dwarf\,galaxy} \sim 100 \,\mathrm{pc} \Rightarrow m_{\varphi} \gtrsim 10^{-21} \,\mathrm{eV}$]

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \lesssim 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\text{dB},\varphi}/2\pi)^3 \gg 1$
- $10^{-21} \,\mathrm{eV} \lesssim m_{\varphi} \lesssim 1 \,\mathrm{eV} \iff 10^{-7} \,\mathrm{Hz} \lesssim f_{\mathrm{DM}} \lesssim 10^{14} \,\mathrm{Hz}$

Lyman- α forest measurements [suppression of structures for $L \leq O(\lambda_{dB,\varphi})$]

Wave-like signatures [cf. particle-like signatures of WIMP DM]

Dark-Matter-Induced Variations of the Fundamental Constants

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_0 \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_0 \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$

Dark-Matter-Induced Variations of the Fundamental Constants

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$
$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$

Dark-Matter-Induced Variations of the Fundamental Constants

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$
$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$
$$\varphi = \varphi_{0} \cos(m_{\varphi} t - \boldsymbol{p}_{\varphi} \cdot \boldsymbol{x}) \Rightarrow \boldsymbol{F} \propto \boldsymbol{p}_{\varphi} \sin(m_{\varphi} t)$$

$$\mathcal{L}_{\gamma}' = \frac{\varphi^{2}}{\left(\Lambda_{\gamma}'\right)^{2}} \frac{F_{\mu\nu}F^{\mu\nu}}{4} \\ \mathcal{L}_{f}' = -\frac{\varphi^{2}}{\left(\Lambda_{f}'\right)^{2}} m_{f}\bar{f}f$$

 φ^2 interactions also exhibit the same oscillating-in-time signatures as above, as well as ...

Dark-Matter-Induced Variations of the Fundamental Constants

$$\begin{split} \mathcal{L}_{\gamma} &= \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \\ \mathcal{L}_{f} &= -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} \\ \varphi &= \varphi_{0} \cos(m_{\varphi} t - \boldsymbol{p}_{\varphi} \cdot \boldsymbol{x}) \Rightarrow \boldsymbol{F} \propto \boldsymbol{p}_{\varphi} \sin(m_{\varphi} t) \\ \mathcal{L}_{\gamma}' &= \frac{\varphi^{2}}{\left(\Lambda_{\gamma}'\right)^{2}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \\ \mathcal{L}_{f}' &= -\frac{\varphi^{2}}{\left(\Lambda_{f}'\right)^{2}} m_{f} \bar{f} f \end{cases} \end{cases} \Rightarrow \begin{cases} \frac{\delta \alpha}{\alpha} \propto \frac{\delta m_{f}}{m_{f}} \propto \Delta \rho_{\varphi} \\ \boldsymbol{F} \propto \nabla \rho_{\varphi} \end{cases} \end{split}$$

Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings ($\varphi \overline{X}X$)

 $\Box \varphi + m_{\varphi}^2 \varphi = \pm \kappa \rho$ Source term

Profile outside of a spherical body

Fifth Forces: Linear vs Quadratic Couplings

Amplification/screening

Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)] Consider the effect of a massive body (e.g., Earth) on the scalar DM field Quadratic couplings ($\varphi^2 \overline{X} X$) Linear couplings ($\phi \overline{X} X$) $\Box \varphi + m_{\varphi}^2 \varphi = \pm \kappa \rho$ Source term $\Box \varphi + m_{\varphi}^2 \varphi = \pm \kappa' \rho \varphi$ Effective mass $\varphi = \underline{\varphi_0 \cos(m_{\varphi} t)} \pm A \frac{e^{-m_{\varphi} r}}{r} \quad \varphi = \underline{\varphi_0 \cos(m_{\varphi} t)} \left(1 \pm \frac{B}{r}\right) - \hbar C \frac{e^{-2m_{\varphi} r}}{r^3}$ Motional gradients: $\varphi_0 \cos(m_{\varphi}t - \mathbf{p}_{\varphi} \cdot \mathbf{x})$ "Fifth-force" searches with accelerometers: Amplification/screening torsion pendula, atom interferometry

Fifth Forces: Linear vs Quadratic Couplings

Atomic Spectroscopy Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

Atomic spectroscopy (including clocks) has been used for decades to search for "slow drifts" in fundamental constants **Overview:** [Ludlow, Boyd, Ye, Peik, Schmidt, *Rev. Mod. Phys.* **87**, 637 (2015)]

"Sensitivity coefficients" K_X required for the interpretation of experimental data have been calculated extensively by Flambaum group
 Reviews: [Flambaum, Dzuba, Can. J. Phys. 87, 25 (2009); Hyperfine Interac. 236, 79 (2015)]

Atomic Spectroscopy Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

- Dy/Cs [Mainz]: [Van Tilburg *et al.*, *PRL* 115, 011802 (2015)], [Stadnik, Flambaum, *PRL* 115, 201301 (2015)]
 - Rb/Cs [SYRTE]: [Hees *et al.*, *PRL* **117**, 061301 (2016)],
 [Stadnik, Flambaum, *PRA* **94**, 022111 (2016)]
- Al⁺/Yb, Yb/Sr, Al⁺/Hg⁺ [NIST + JILA]: [BACON Collaboration, *Nature* **591**, 564 (2021)]
 - Yb⁺(E3)/Sr [PTB]: [Huntemann, Peik *et al.*, Ongoing]

Cavity-Based Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter [Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRA* **93**, 063630 (2016)]

Solid material

 $L_{\text{solid}} \propto a_{\text{B}} = 1/(m_e \alpha)$ $\Rightarrow \nu_{\text{solid}} \propto 1/L_{\text{solid}} \propto m_e \alpha$ (adiabatic regime) Cavity-Based Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

[Stadnik, Flambaum, PRL **114**, 161301 (2015); PRA **93**, 063630 (2016)]

- Sr vs Glass cavity [Torun]: [Weislo et al., Nature Astronomy 1, 0009 (2016)]
- Various combinations [Worldwide]: [Wcislo et al., Science Advances 4, eaau4869 (2018)] ٠
 - Cs vs Steel cavity [Mainz]: [Antypas et al., PRL 123, 141102 (2019)]
 - Sr/H vs Silicon cavity [JILA + PTB]: [Kennedy et al., PRL 125, 201302 (2020)] ٠
 - Sr⁺ vs Glass cavity [Weizmann]: [Aharony et al., PRD 103, 075017 (2021)]
 - H vs Sapphire/Quartz cavities [UWA]: [Campbell et al., PRL 126, 071301 (2021)] ٠

Cavity-Based Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter [Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRA* **93**, 063630 (2016)]

Small-scale experiment currently under development at Northwestern University [Geraci et al., Snowmass 2021 LOI #129 (CF2 section)]

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Michelson interferometer (GEO600)

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

• Geometric asymmetry from beam-splitter

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

• Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nl)$

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

• Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nl)$

First results recently reported using GEO600 and Fermilab holometer data: [Vermeulen *et al.*, *Nature* 600, 424 (2021)], [Aiello *et al.*, arXiv:2108.04746]

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

- Geometric asymmetry from beam-splitter: $\delta(L_x L_y) \sim \delta(nl)$
- Both broadband and resonant narrowband searches possible: $f_{\rm DM} \approx f_{\rm vibr,BS}(T) \sim v_{\rm sound}/l \Rightarrow Q \sim 10^6$ enhancement

Atom Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Arvanitaki, Graham, Hogan, Rajendran, Van Tilburg, PRD 97, 075020 (2018)]

Phase shift between the two separated atom interferometers is maximised when $T_{\rm osc} \sim 2T$: $\delta(\Delta \Phi)_{\rm max} \sim \delta v_{\rm atom} \cdot T_{\rm osc}$

Constraints on Linear Interaction of Scalar Dark Matter with the Photon

Clock/clock: [*PRL* **115**, 011802 (2015)], [*PRL* **117**, 061301 (2016)], [*Nature* **591**, 564 (2021)]; Clock/cavity: [*PRL* **125**, 201302 (2020)]; GEO600: [*Nature* **600**, 424 (2021)]

Constraints on Linear Interaction of Scalar Dark Matter with the Photon

Clock/clock: [*PRL* **115**, 011802 (2015)], [*PRL* **117**, 061301 (2016)], [*Nature* **591**, 564 (2021)]; Clock/cavity: [*PRL* **125**, 201302 (2020)]; GEO600: [*Nature* **600**, 424 (2021)]

Constraints on Quadratic Interaction of Scalar Dark Matter with the Photon

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* **115**, 201301 (2015); *PRA* **94**, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees *et al.*, *PRD* **98**, 064051 (2018)]

Constraints on Quadratic Interaction of Scalar Dark Matter with the Photon

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* **115**, 201301 (2015); *PRA* **94**, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees *et al.*, *PRD* **98**, 064051 (2018)]

Summary

- Precision low-energy atomic and optical experiments provide powerful probes of dark matter via apparent variations of the fundamental "constants" of Nature
- We and other groups have improved the sensitivity to underlying interaction strengths between dark matter and ordinary matter by up to <u>15 orders of magnitude</u>
- Apparent variations of d_i, μ_i, g_i , can be induced by axionlike dark matter:
 - Ultracold neutrons (nEDM @ PSI) [PRX 7, 041034 (2017)]
 - Trapped antiprotons (BASE @ CERN) [Nature 575, 310 (2019)]
 - See also talks by Georg Bison and Joerg Jaeckel tomorrow

Back-Up Slides

 \rightarrow Time-varying

fundamental constants

- Atomic clocks
- Cavities and interferometers
 - Torsion pendula
 - Astrophysics (e.g., BBN)

→ Time-varying spin-

dependent effects

- Co-magnetometers
 - Particle g-factors
- Spin-polarised torsion pendula
- Spin resonance (NMR, ESR)

\rightarrow Time-varying

fundamental constants

- Atomic clocks
- Cavities and interferometers
 - Torsion pendula
 - Astrophysics (e.g., BBN)

Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

BBN Constraints on 'Slow' Drifts in Fundamental Constants due to Dark Matter [Stadnik, Flambaum, PRL 115, 201301 (2015)]

- Largest effects of DM in early Universe (highest $\rho_{\rm DM}$)
- Big Bang nucleosynthesis ($t_{\text{weak}} \approx 1 \text{ s} t_{\text{BBN}} \approx 3 \text{ min}$)
- Primordial ⁴He abundance sensitive to n/p ratio (almost all neutrons bound in ⁴He after BBN)

$$\frac{\Delta Y_p(^{4}\text{He})}{Y_p(^{4}\text{He})} \approx \frac{\Delta (n/p)_{\text{weak}}}{(n/p)_{\text{weak}}} - \Delta \begin{bmatrix} \int_{t_{\text{BBN}}}^{t_{\text{BBN}}} \Gamma_n(t) dt \\ \int_{t_{\text{weak}}}^{t_{\text{weak}}} \Gamma_n(t) dt \end{bmatrix}$$

$$p + e^- \rightleftharpoons n + \nu_e$$

$$n + e^+ \rightleftharpoons p + \overline{\nu}_e$$

$$n \to p + e^- + \overline{\nu}_e$$

Dark Matter

More traditional axion detection methods tend to focus on the **electromagnetic** coupling

> Here I focus on relatively new detection methods based on **non-electromagnetic** couplings

Pseudoscalars (Axions): $\varphi \xrightarrow{P} - \varphi$

Time-varying spindependent effects

- Co-magnetometers
 - Particle g-factors
- Spin-polarised torsion pendula
- Spin resonance (NMR, ESR)

"Axion Wind" Spin-Precession Effect

[Flambaum, talk at Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)]

$$\mathcal{L}_{f} = -\frac{\mathcal{L}_{f}}{2f_{a}} \partial_{i} [a_{0}\cos(m_{a}t - \mathbf{p}_{a} \cdot \mathbf{x})] \bar{f} \gamma^{i} \gamma^{5} f$$

 $\Rightarrow H_{\text{wind}}(t) = \boldsymbol{\sigma}_{f} \cdot \boldsymbol{B}_{\text{eff}}(t) \propto \boldsymbol{\sigma}_{f} \cdot \boldsymbol{p}_{a} \sin(m_{a}t)$

Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, *PRD* 84, 055013 (2011)] Atoms and molecules: [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

Electric Dipole Moment (EDM) = parity (*P*) and time-

reversal-invariance (T) violating electric moment

Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, *PRD* 84, 055013 (2011)] Atoms and molecules: [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

$$\mathcal{L}_{G} = \frac{C_{G}g^{2}}{32\pi^{2}f_{a}}a_{0}\cos(m_{a}t)G\tilde{G} \Rightarrow \frac{H_{\text{EDM}}(t) = \boldsymbol{d}(t) \cdot \boldsymbol{E}}{\boldsymbol{d}(t) \propto \boldsymbol{J}\cos(m_{a}t)}$$

In nuclei, *tree-level CP*-violating intranuclear forces dominate over *loop-induced* nucleon EDMs [loop factor = $1/(8\pi^2)$].

Searching for Spin-Dependent Effects

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources: <u>Atomic magnetometers</u>, <u>cold/ultracold particles</u>, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

Proposal + Experiment (\overline{p}): [BASE collaboration, *Nature* **575**, 310 (2019)]

$$\left(\frac{\nu_L}{\nu_c}\right)_{\bar{p}} = \frac{|g_{\bar{p}}|}{2} + R(t)$$

Constraints on Interaction of Axion Dark Matter with Gluons

nEDM constraints: [nEDM collaboration, *PRX* **7**, 041034 (2017)] HfF⁺ EDM constraints: [Roussy *et al.*, *PRL* **126**, 171301 (2021)]

Constraints on Interaction of Axion Dark Matter with the Antiproton

Antiproton constraints: [BASE collaboration, Nature 575, 310 (2019)]

