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Big Open Question

Matter — Antimatter asymmetry?

Baryon number
violation

C and CP
violation
Departure from
thermal
equilibrium

Violation of CPinvariance, C asymmetry, and baryon asymmetry of the universe

A.D. Sakharov
(Submitted 23 September 1966)

Pis'ma Zh. Eksp. Teor. Fiz. §, 32-35 (1967) [JETP Lett. 5, 24-27 (1967).

Also 87, pp. 85-88]
Usp. Fiz. Nauk 161, 6164 (May 1991)

The theory of the expanding universe, which presup-
poses a superdense initial state of matter, apparently ex-
cludes the possibility of macroscopic separation of matter
from antimatter; it must therefore be assumed that there are
no antimatter bodies in nature, i.e., the universe is asymmet-
rical with respect to the number of particles and antiparticles
(C asymmetry). In particular, the absence of antibaryons
and the proposed absence of baryonic neutrinos implies a
nonzero baryon charge (baryonic asymmetry ). We wish to
point out a possible explanation of C asymmetry in the hot
model of the expanding universe (see Ref, 1) by making use
of effects of CPinvariance violation (see Ref. 2). To explain
baryon asymmeiry, we propose in addition an approximate
character for the baryon conservation law.

We assume that the baryon and muon conservation
laws are mot absolute and should be unified into a “com-
bined" baryon-muon charge n, = 3n, —n, . We put

for antimuons i, and ¥, = jigin, = =l,n, = +1.

for muons _ and v, =pgin, = +1, n, = =1,

Literal translation: Out of S. Okubo's effect
At high temperature
A furcoat is sewed for the Universe
Shaped for its crooked figure.

negative in the excess of u neulrinos over y antineutrinos).

According to our hypothesis, the occurrence of C asym-
metry is the consequence of violation of CPinvariance in the
nonstationary expansion of the hot universe during the su-
perdense stage, as manifest in the difference between the par-
tial probabilities of the charge-conjugate reactions. This ef-
fect has not yet been observed experimentally, but its
existence is theoretically undisputed (the first concrete ex
ample, = , and X _ decay, was pointed out by S. Okubo as
earlyas 1958) and should, in our opinion, have much cosmo-
logical significance.

We assume that the asymmetry has occurred in an ear-
lier stage of the expansion, in which the particle, energy, and
entropy densities, the Hubble constant, and the tempera-
tures were of the order of unity in gravitational units (in
conventional units the particle and energy densities were
n~10"*cm- ' and £~ 10'"* crgfcm‘].

M. A. Markov (sec Ref. 3) proposed that during the
early stages there existed particles with maximum mass of
the order of one gravitational unit (M, = 2310~ *gin ordi-
nary units), and called them maximons. The presence of
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CP Violation

= No CP violation in strong sector = fine

tuning problem .
gp o = |f CPT is conserved:
* NEDM = CP violation: CP =T transformation
H =—-2(uB + dE)S — = Spin S and magnetic field B reversed under
T transformation
ﬂ CP-transformation ]
= Electric field E is not affected.

H=+2uB—-dE)S + H
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Measurement of an nEDM (1) external clock

spin-up
neutron
= Difference between E-field up and down:
/2 flip
AEN — 4dnE pUlSG
= Ultra cold neutrons (UCN) are stored in e
the precession chamber orecession
/2 flip

pulse
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Measurement of an nEDM (2)
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Measurement for different RF frequencies

- Ramsey pattern

Center of the curve = Larmor frequency of

the neutrons

a visibility
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NnEDM at PSI

PHYSICAL REVIEW LETTERS 124, 081803 (2020)

= Apparatus at PSI
= World’s best result:
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Measurement of the Permanent Electric Dipole Moment of the Neutron
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We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at
the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold
neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-
reversal invariance. The salient features of this experiment were the use of a '"’Hg comagnetometer and an
array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes.
The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of
systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of
the neutron EDM is d, = (0.0 + 1.1, +£0.2_ ) x 107 e.cm.
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Next Endeavour: n2EDM

B[Tesla]=10" t

= Goal: one order of magnitude of
Improvement

= Challenge: Control of magnetic fields

30 fT over 180s stability

Environmental Fields
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Achieving Magnetic Field Stability
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Solange Emmenegger | 08.09.2020 | 8



Axion-like Dark Matter

= SM Prediction:

Locp = —6 (g—;) GHGS,

= Current limitofd, > 68 < 1071°

= Pecceil Quinn suggest: turning 6 into an dynamical field, the axion a(x)
- Coherently oscillating field with amplitude depending on DM density
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Axion — Gluon Coupling (1)

=  Axion manifestation:

Cra
+2.4 x 10716 e . cm
a

d, =

= Search for Axionlike Dark Matter through
Nuclear Spin Precession in Electric and

Magnetic Fields
C. Abel et al. Phys. Rev. X 7, 041034 (2017)
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Axion — Gluon Coupling (2)

= Axion can also couple to the Hg-atoms Oscillation frequency (Hz)
103 103 10° 10°
Cca 1o \\e
G 4o Supernova energy-loss
dyg = +1.3 4@ cos(mgt) e - cm 10-6
fa Big Bang
. 107°
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Intrinsically smaller sensitivity
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= Advantage: higher sampling rate &
equidistant sampling 10-24 4

10-24 102! 10°18 101> 10712 10-° 10°°
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Hg Co-Magnetometer

50’000 cycles x 180 s x 100 Hz

Layout of nEDM
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What signal to expect?

DC offset

FM-modulation of the Mercury frequency

Hg Peak « Axion peak appears on
both sides

* ng _fap = fa

some Axion signal

/

Log(ADC/\Hz)

_filter

I .|I L L+ level of ADC noise
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Outline of the Analysis

= RMS Average FT of the data (average over 50°'000 cycles)
Construct Hy:

Hg signal + Gaussian noise

+ filter + ADC

Construct H;: ... + axion signal

= Use CLs method
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Filter, Noise & ADC Noise

108
= filtered signal power spectrum

= Transmission function of the 107 ] — windowed signal power spectrum

windowed signal power spectrum

f||ter |S glven Lo - filter's frequency response, max=18.12
= Can extract ADC noise
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Distribution of power for every frequency

100 simulations of 50’000 cycles
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power
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Axion Hypothesis

Aje ™+ Ase 2D xsin(2uf (1 + A, sin(2nf, * t + @y) * t + Qyg)
g

axion part

Which of those axion signals would one see ?
= Depends on 4, and f, (axion amplitude and axion frequency)

= Simulate datasets with axions in this 2D parameter space
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Axion Hypothesis

Simulation with f, and 4,

power of the data
PDF time series

exclusion plot

smaller p-values
= exclusion

»

v
[

power at the axion peak

v

fa

—> cover the whole exclusion plot
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Conclusion

= With nEDM measurement very interesting side analysis are possible

= New result on axion-gluon coupling
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Thank you for the attention!
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