

Search for nonresonant Higgs boson pair production in the HH → bbyy decay channel

Nadya Chernyavskaya

PhD advisor : Günther Dissertori

Higgs boson self-coupling

- <u>mH = 125.38 ± 0.14 GeV</u>
- Interactions with fermions and vector bosons established...

Higgs boson self-coupling

- <u>mH = 125.38 ± 0.14 GeV</u>
- Interactions with fermions and vector bosons established...
- But Higgs boson self-interactions are not yet measured experimentally!

$$V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \lambda_{HHH}vH^{3} + \frac{1}{4}\lambda_{HHHH}H^{4} - \frac{\lambda}{4}v^{4}$$

$$\lambda_{HHH} = \lambda_{HHHH} = \lambda = \frac{m_H^2}{2v^2} \approx 0.13$$

 λ HHH : direct access to the shape of the scalar potential

Nadya Chernyavskaya

HH production in the SM : ggF

Gluon-gluon fusion (ggF) - dominant production mode : $\sigma_{ggF HH}^{SM} = 31.05$ fb

- Large destructive interference between the 2 diagrams and a very small cross section
- Not sensitive to SM prediction with current LHC data
- However **BSM effects** can significantly change kinematics and cross section

Nadya Chernyavskaya

ggF HH : physics beyond SM

- Anomalous values of Higgs boson couplings have strong effect on kinematics and cross section
- In EFT approach ggF HH can be described by 5 parameters controlling tree-level interactions : k_λ, k_t, c_{2g}, c_g, c₂
- *c_g*, *c_{2g}*, *c₂* are not predicted in SM but could arise through BSM

^g eller <u>Vt</u>

^g $\mathcal{V}_{\mathcal{V}}$ \mathbf{Y}_{t} \mathbf{K}_{λ}

HH is a place to look for BSM physics with current LHC data

- Cluster points in 5D coupling space and create benchmarks with similar kinematics [Ref]
- Set limits on production of these benchmarks models and anomalous values of k_λ, k_t, c_{2g}, c_g, c₂

HH → bbγγ

HH production in the SM : VBF

Vector boson fusion (VBF) - 2nd most important production mode : $\sigma_{VBF HH}^{SM} = 1.72$ fb

- Tiny cross section (~18x smaller than ggF) but very distinct topology
- The only direct way to access C2V coupling (VVHH)
- Anomalous values of C2V dramatically change kinematic and cross section and can be explored with the current LHC data

Nadya Chernyavskaya

M(HH) for different couplings

• While the sensitivity to SM is very limited with the current LHC data, anomalous values of couplings can be explored already now

- M(HH) distribution is particularly sensitive to different values of the couplings
- In this analysis, a reconstructed variable M_X is used which is less dependent on dijet and diphoton energy resolutions

$$\tilde{M}_X = M(\gamma\gamma jj) - M(jj) - M(\gamma\gamma) + 2M_H$$

 $HH \rightarrow bb\gamma\gamma$

71

Final state and selections

ΞTł

10⁻¹

H(bb) - highest branching ratio \mathcal{B} high b-tagging efficiency and low fake rate

H(γγ) - simple topology Excellent mass resolution But limited by small *B*

bb

33.6%

 WW
 24.8%

 gg
 10⁻²

 gg
 10⁻³

 ττ
 7.3%

 ZZ
 10⁻⁴

 yγ
 0.26%

 bb
 WW

 gg
 ττ

 rarer
 bb

 wW
 gg

 rarer
 ττ

 $\mathcal{B}(\mathrm{HH} \rightarrow \mathrm{xx yy})$

 $m_{\rm H} = 125 \,\, {\rm GeV}$

Use $H \rightarrow bb$ to keep \mathcal{B} high

Select reconstructed objets : 2 γ and 2 b-jets **Distinctive topology of VBF** signal helps to tag these events : additionally require 2 light q-jets with largest m(jj)

HH → bbγγ

Nadya Chernyavskaya

 $HH \rightarrow bbyy$

08/09/2020

Nadya Chernyavskaya

 $HH \rightarrow bbyy$

08/09/2020

Nadya Chernyavskaya

CMS

Improving mass resolution

ETH

- Resonant signal : peaking distribution in M(gg) and M(jj)
- Excellent photon energy resolution, but b jet energy resolution is 10 times worse

- Goal: improve b-jet energy resolution
- b-jet fragmentation is different from light quarks and could benefit from a dedicated energy correction
- **Task**: Develop a multidimensional b-jet energy regression based on jet composition and shape information

b-jet energy regression for CMS

New b-jet energy regression in CMS : (part of my PhD thesis)

- Implemented in a Deep Neural Network (DNN) and trained per jet
- Improves resolution of b jets regardless of the final state of a process and already in use by multiple analyses in CMS
- Provides jet energy correction and resolution estimator on jet-by-jet basis
- Technique validated in data, and improves per jet energy resolution by ~ 13%, and djiet
 - 20-25%
- Improvement in dijet mass resolution brought by this regression helped to reach observation of H → bb

arXiv: 1912.06046, Accepted for publication in CSBS

 $HH \rightarrow bb\gamma\gamma$

Nadya Chernyavskaya

CMS

 $HH \rightarrow bb\gamma\gamma$

08/09/2020 14/27

Reducing background

The main background can be split in 2 types :

- Resonant (at $m_H = 125$ GeV) single Higgs production
- Dominant nonresonant γγbb :
 - irreducible prompt diphoton production ($\gamma\gamma$ + jets)
 - reducible γ + *jets* where jets are misindentified

Machine learning techniques are used to reduce the 2 types of background

- The dominant resonant background is ttH
- DNN is trained using high-level physics-motivated observables and low-level information (physics objects)
- Trained on MC HH signal versus ttH BG
- Optimized selection of the DNN output yields 80% background rejection at 95% signal efficiency

ggF HH : Reducing background

Dominant **nonresonant** background:

- Train BDT on MC events to differentiate HH signal from BG
- Train separate BDTs to discriminate ggF and VBF HH signals from BG

ggF HH signal BDT :

- As BG use $\gamma\gamma$ + jets and γ + jets
- As signal use a mixture of SM and 12 BSM benchmarks to be sensitive to a broad spectrum of theoretical scenarios
- Classification using Gradient Boosting algorithm and <u>XGBoost</u>
- Inputs variables include kinematic variables, object identification variables, and object resolution variables

]]]!

VBF HH : Reducing background

VBF HH signal BDT :

- $\gamma\gamma$ + jets and γ + jets dominant source of BG
- In addition, ggF HH events are considered as BG
- Input variables are similar to the ggF HH BDT plus the VBF-topology features

 $HH \rightarrow bbyy$

2 M_X signal regions

- VBFHH process is very sensitive to anomalous values of C2V coupling
- VBF phase space is split in 2 signal regions : $M_X > / < 500 \text{ GeV}$
- M_X >500 GeV is sensitive to anomalous values of C2V, M_X <500 GeV retains sensitivity to SM
- 2 BDTs are trained using a mixture of SM+C2V=0 MC samples as signal

08/09/2020

17/27

]]]!

Analysis signal regions

- In order to maximize sensitivity of the search, events are split into different categories based on BDT output and M_X
- Categorization is optimized by maximizing the expected significance over all categories
- 2 VBF HH and 12 ggF HH signal enriched categories are created
- Depending on the coupling values low/high M_X categories are important

Nadya Chernyavskaya

Analysis signal regions

- 2 VBF HH and 12 ggF HH signal enriched categories are created
- VBF and ggF categories are mutually exclusive. Events are categorized, not rejected.

14 HH categories in total

Nadya Chernyavskaya

Nadya Chernyavskaya

CMS

/27

Signal extraction, 2D fit (M(yy) vs M(jj))

- Makehoge resonant nature of HH signal and
- fit signal taneously Merection M(jj) in all categories
- Shape templates of M(yy) and M(jj) are ody Magnstructed fram MC signal tegorand single Higgs/basen, BG
- Model to describe nonresonant BG extracted from data using <u>discrete profiling method</u>
 A-based
 MVA-based
 tegories method treats model choices as discrete nuisance parameters in the likeling <u>preliminary</u>
- Final 2D model is implemented independent medels of M(xx) an ategories
 limits for separate bined limitorrelations between M(xx) and to be negligible with present sta

Nadya Chernyavskaya

Systematic uncertainties

ETH

- Statistically limited search. Total impact of systematics is ~3%
- Mainly affect signal and single H models
- Systematic unc. can affect the overall normalization, or variation in category yields
- Theory uncertainties :
 - QCD scale, PDF choice, α_s unc., $\mathcal{B}(HH \rightarrow bbgg)$, cross-section predictions
- Experimental uncertainties :
 - Photon identification, energy scale and resolution
 - Jet energy scale and smearing
 - Jet b tagging
 - Trigger efficiencies
 - Photon preselection
 - Integrated luminosity
 - Pileup jet identification

Nadya Chernyavskaya

CMS

 $HH \rightarrow bb\gamma\gamma$

08/09/2020 23/27

Results (CMS restricted)

m_{vv} (GeV)

137 fb⁻¹ (13 TeV)

All Categories S/(S+B) weighted

Full Run II, 136.8 fb⁻¹

SM HH : $\sigma(pp \rightarrow HH) \times \mathcal{B}(HH \rightarrow bb \chi \chi) = 0.76$ (exp. 0.45) fb which corresponds to 7.7 (5.2) times SM prediction

S/(S+B) Weighted Events / (1 GeV) Data S+B fit 20 HX+B component - B component $\pm 1\sigma$ ±2 σ

CMS Work in progress

HH→γγbb

²⁵ m_H = 125.0 GeV

95% CL upper limits on the crosssection as a function of k_{λ}

Obs. $k_{\lambda} \in$ [-3.3, 8.5] **Exp.** $k_{\lambda} \in [-2.5, 8.2]$

Results (CMS restricted)

• Upper limits on **HH VBF** production

SM HH : σ (VBF HH) x \mathcal{B} (HH \rightarrow bbyy) = **1.02 (exp. 0.94) fb** which corresponds to **225 (208) times SM** prediction

95% CL upper limits on the cross-section as a function of C_{2V}

Obs. $C_{2V} \in [-1.3, 3.5]$ Exp. $C_{2V} \in [-0.9, 3.0]$

• Upper limits on **BSM ggF production**

Obs. $C_2 \in$ [-0.58, 1.01] Exp. $C_2 \in$ [-0.40, 0.88]

 $HH \rightarrow bbyy$

- Search for HH → bbγγ is performed with full Run II data collected by the CMS experiment 136.8 fb⁻¹
- Each step of the analysis was carefully optimized leading to 30% improvement with the respect to previously published CMS search
- Presented results are the **best DiHiggs results** to date
- We expected to release a preliminary PAS in September/October and a paper by Moriond 2021
- b-jet energy regression has already been public and accepted for publication in CSBS
- Graduation schedule spring 2021

Additional Material

Nadya Chernyavskaya

 $HH \rightarrow bb\gamma\gamma$

08/09/2020 2

Cluster points in 5D coupling space and create benchmarks with similar kinematics [Ref]

	1	2	3	4	5	6	7	8	9	10	11	12	SM
κ_{λ}	7.5	1.0	1.0	-3.5	1.0	2.4	5.0	15.0	1.0	10.0	2.4	15.0	1.0
$\kappa_{\rm t}$	1.0	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0	1.5	1.0	1.0	1.0
c_2	-1.0	0.5	-1.5	-3.0	0.0	0.0	0.0	0.0	1.0	-1.0	0.0	1.0	0.0
C_{g}	0.0	-0.8	0.0	0.0	0.8	0.2	0.2	-1.0	-0.6	0.0	1.0	0.0	0.0
c_{2g}	0.0	0.6	-0.8	0.0	-1.0	-0.2	-0.2	1.0	0.6	0.0	-1.0	0.0	0.0

ETH

$M_X > 500 \; GeV$

$M_X < 500 \text{ GeV}$

Input variables for ggF HH BDT classifier:

- b-tagging scores : leading, subleading jets
- $|\cos\theta^*_{CS}|$, $|\cos\theta^*_{bb}|$, $|\cos\theta^*_{\gamma\gamma}|$
- $p_T(\gamma\gamma)/m(HH)$, $p_T(bb)/m(HH)$
- $p_T(\gamma)/m(H)$, $p_T(b)/m(H)$ for leading, subleading photons and jets
- Photon ID MVA : leading, subleading Photons
- Photon resolution $\sigma_{\text{E}}/\text{E}$ leading, subleading photons; σ_{M}/M diphoton resolution
- Jet resolution σ_j leading, subleading jets; σ_{jj} dijet resolution
- min $\Delta R(jet,\gamma)$ and $\Delta R^{other}(jet,\gamma)$ for the other pair (sub)leading jet (sub)leading photon not used in min $\Delta R(jet,\gamma)$ calculation

Additional variables for VBF HH BDT classifier:

- VBF-tagged jet kinematics : p_T^{VBF}/m^{VBF}_{jj} , η^{VBF}
- VBF-tagged jet invariant mass : m^{VBF}jj
- Rapidity gap: product and difference of pseudorapidity between the VBF-tagged jets
- Quark-gluon likelihood of the two VBF-tagged jets. A likelihood discriminator used to distinguish between jets originating from quarks and from gluons
- HH system kinematics: M_x and the transverse momentum of the pair of the reconstructed Higgs bosons p_T (HH)
- Angular distance: minimum ΔR between a photon and a VBF-tagged jet, and between a b jet and a VBF-tagged jet
- Centrality variables for the reconstructed Higgs boson candidates

$$C_{xx} = exp\left(-\frac{4}{(\eta_1^{VBF} - \eta_2^{VBF})^2}\left(\eta^{xx} - \frac{\eta_1^{VBF} + \eta_2^{VBF}}{2}\right)^2\right),$$

where xx is Higgs boson candidate from diphoton or dijet pairs

ttHScore: DNN to reduce ttH BG

- ttH is a important background contribution
- DNN was developed to kill this contribution with the following inputs :
 - global kinematic variables : sumE_T, MET, $\Delta \phi(j_1, MET)$, $\Delta \phi(j_2, MET)$, $\Delta R_{min}(\gamma, j)$, N_j, χ_{tt} , $|cos\theta^*_{CS}|$, $|cos\theta^*_{bb}|$
 - Reconstructed objects: (p_T , η , ϕ) of 2 leading electrons, 2 leading muons, selected b jets, diphoton, MET ($\eta = 0$)
 - Network architecture and hyper-parameters optimized with Bayesian optimization:
 - 2 hidden dense layers with 500 dense nodes
 - 3 RNN (GRU) layers with size 180
 - dropout rate for dense layer: 0.11, GRU: 0.83
 - initial learning rate: 8e-4
 - batch_size: 316

ETH

Nadya Chernyavskaya

 $HH \rightarrow bbyy$

Angles

Nadya Chernyavskaya

 $HH \rightarrow bbyy$

08/09/2020

Nadya Chernyavskaya

Events

 $HH \rightarrow bbyy$

08/09/2020

37/27

ETH

Event categorization

14 HH categories in total

Category	MVA	$\widetilde{M}_{\mathrm{X}}$ (GeV)
VBF CAT 0	0.52-1.00	>500
VBF CAT 1	0.86-1.00	250-500
ggF CAT 0	0.78-1.00	>600
ggF CAT 1		510-600
ggF CAT 2		385-510
ggF CAT 3		250-385
ggF CAT 4	0.62-0.78	>540
ggF CAT 5		360-540
ggF CAT 6		330-360
ggF CAT 7		250-315
ggF CAT 8	0.37-0.62	>585
ggF CAT 9		375-585
ggF CAT 10		330-375
ggF CAT 11		250-330

Signal and single H model

Signal model

- Signal and single Higgs (ttH,ggH,VBF,VH) parametric models are built from MC simulation
- M(γγ) model is built from a sum of up to 5 Gaussians
 - Determine how many Gaussians should be used to describe distribution with F-test
- M(jj) model depends on the process :
 - HH signal double sided Crystal Ball
 - •VH Crystal Ball
 - ttH Gaussian
 - ggH and VBF Bernstein polynomial

Nonresonant background model

 $HH \rightarrow bbyy$

Background model

- choice of BG model is done using discrete profiling method
- method treating model choices as discrete nuisance parameters
- Profile the choice and take the envelope
- · Choice of which models to include open to user

Implementation :

- First generate the background model to be used for the envelope method :
- pick a sensible subset of functions which could describe data using fTest. Functions considered :
 - Polynomial, Exp, Laurent, Power Law up to 7th order
- Treat the choice of function as discrete nuisance parameter in the final fit

Combination of HH and ttH

- HH and ttH production are sensitive to the Higgs trilinear coupling λ and y_t
- · Fit σ_{HH} and σ_{ttH} simultaneously to extract λ and yt

possible

different single H production

• tags are mutually exclusive and the order of tags was optimized to maximize HH signal efficiency with minimum contamination of other single H processes, and maximize ttH signal efficiency

events • Hgg tags are used as additional categories targeting

Therefore additional categories are needed to select ttH

• Main HH analysis categories are designed to remove as

much contamination from single Higgs background as

Tag sequence 1. VBF HH 2. ggF HH

08/09/2020