Update on the angular analysis of $B^0 \rightarrow K^{*0} e^+ e^- \operatorname{decay}$

Zhenzi Wang

8 September, 2020

Zurich PhD seminar 2020

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

A rare and interesting decay

- $B^0 \to K^{*0}(\to K^+\pi^-)e^+e^-$ is a flavour changing neutral current decay that features an underlying $b \to s\ell^+\ell^-$ process

- Decay is forbidden at tree-level in the Standard Model (SM), and sensitive to new physics (NP) effects

- Distribution of final state particles of $B^0 \to K^{*0}(\to K^+\pi^-)e^+e^-$ can be described by three angles: $\cos\theta_{\ell}$, $\cos\theta_K$, ϕ

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 \bar{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K - F_L \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{FB} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin^2 \theta_\ell \sin 2\phi \Big]$$

 $F_L - K^{*0}$ longitudinal polarisation fraction A_{FB} — forward-backward asymmetry of the dilepton system

- F_L , A_{FB} , S_i — angular observable that are sensitive to the underlying physics - P'_i — optimised observables with reduced theoretical uncertainties, e.g.

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

Zhenzi Wang

 θ_K

 K^{-}

The (in)famous P'_5

2013: first measurement of P'_5 of $B^0 \to K^{*0}\mu^+\mu^-$ revealed tension with SM [1]

2015: measurement with larger statistics (2011+2012) — tension persists

2020: most recent update with the addition of 2016 data — situation largely unchanged [3]

Lepton flavour universality (LFU) tests, such as R_{K^*} , continue to hint at deviation from SM

$$R_{K^*} = \frac{\mathscr{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathscr{B}(B^0 \to K^{*0} e^+ e^-)}$$
[4]

What about angular observables of $B^0 \to K^{*0}e^+e^-$?

Zhenzi Wang

[2]

The LHCb detector

- The LHCb is a specialised detector dedicated to the study of b/c-hadron decays
- Aim: search for NP indirectly

- $B^0 \to K^{*0}e^+e^-$ angular analysis is more challenging than that of $B^0 \to K^{*0}\mu^+\mu^-$
- Experimentally, muons and electrons are very different
- Muons leave clear signatures and are relatively easy to reconstruct
- Electron reconstruction is more difficult due to large bremsstrahlung losses

Some changes to the analysis strategy and progress have been made since the <u>last presentation</u>, the main ones include: **To cover today...**

- Model double semi-leptonic background (instead of cut)
- Strategy change: fix combinatorial background angular parameters
- Cross-check with $B^0 \to K^{*0}(\to K^+\pi^-)J/\psi(\to e^+e^-)$
- Updated sensitivity studies
- First systematics studies

Angular observables to be extracted via unbinned maximum likelihood fit to mass + angles

Double semi-leptonic background

- Double semi-leptonic background e.g. $B^0 \to D^-(\to K^{*0}e^-\bar{\nu}_e) e^+\nu_e$ as signal
- Decay has large branching fraction compared to signal ($\mathcal{O}10^{-4}$)
- Due to energy loss from undetected neutrinos these events will resemble combinatorial background in the mass distribution
- However they distort the shapes of angular distributions, in particular that of $\cos\theta_{\ell}$

- Original strategy: apply $|\cos \theta_{\ell}| < 0.8$ cut

Double semi-leptonic background — revised strategy

- Model using $K\pi e\mu$ data (LFV no signal, mostly combinatorial and DSL events e.g. $B^0 \to D^-(\to K^{*0}e^-\bar{\nu}_e)\mu^+\nu_\mu)$
- Obtain angular shape of DSL and combinatorial together in a two-step procedure:

Step 1: fit 'pure' DSL sample (MVA>0.9985 (tight!), $4500 < m_{B^0} < 5200 \text{ MeV/c}^2$)

Step 2: fixing DSL angular shape, obtain slope and combinatorial shape + slope from fit to independent sample (0.99 < MVA < 0.9985, $4900 < m_{B^0} < 5700 \text{ MeV/c}^2$)

Preliminary toy studies — set up

- Toy studies: obtain expected sensitivities; determine if the combinatorial angular parameters should be allowed to vary ('float')
- ~ 2000 toys generated with realistic studies from data fits, using updated model

Component	Mass	Vary in fit	Angles	Vary in fit
Signal	Crystal Ball	Ν	Angular PDF	Y
Combinatorial	Exponential	Y	Chebyshev	??
Partially reconstructed	Non-parametric	Ν	Chebyshev	Ν
DSL	Exponential	Ν	Chebyshev + non-parametric	Ν

Zhenzi Wang

Zurich PhD seminar

Toy studies – results

Estimations of convergence rate

- Folded, floating (combinatorial angular parameters) around 50-60%
- Folded, fixed $\Rightarrow \sim 98\%$
- Unfolded, fixed $\Rightarrow \sim 98\%$

Summary of pulls

Sensitivity to observables (width of parameter distributions)

Observable	Unfolded, fixed	Folded, floating	Folded, fixed
F_L *	0.051+/-0.001	0.062+/-0.001	0.052+/-0.001
$P_1 *$	0.533+/-0.008	0.58+/-0.01	0.503+/-0.009
P_2	0.131+/-0.002	0.169+/-0.004	0.135+/-0.002
P_3	0.274+/-0.004	0.289+/-0.006	0.261+/-0.004
P_4'	0.196+/-0.003	0.221+/-0.005	0.204+/-0.004
P_5'	0.181+/-0.003	0.198+/-0.004	0.180+/-0.003
P_6'	0.177+/-0.003	0.196+/-0.004	0.182+/-0.003
P'_8	0.193+/-0.003	0.209+/-0.005	0.194+/-0.004

- When most backgrounds parameters are fixed, the advantage of folding is reduced...
- Current nominal choice: no folding, fixed combinatorial

*present in multiple folds — lowest value displayed

Zhenzi	Wang
--------	------

Acceptance parametrisation

Acceptance — a function that encodes the effects of reconstruction and selection (+resolution)

– Parametrise in 4d ($\cos \theta_K$, $\cos \theta_\ell$, ϕ , q^2) using Legendre polynomials

Basic check: retrieval of generator level angular observable values from acceptance corrected (weighted) post selection sample

Order of Legendre polynomials still under consideration, but in general performance is good

Acceptance parametrisation — control mode check

Control mode $B^0 \to K^{*0} J/\psi (\to e^+ e^-)$ can be used to further check acceptance strategy - Tree-level decay (not $b \to s\ell^+\ell^-$), large statistics (~400 × signal yield!)

- Backgrounds components: combinatorial, DSL, $\Lambda_b^0 \to pKJ/\psi(\to e^+e^-)$ with $p \to \pi$ misidentification
- Dip at the edge of $\cos\theta_K$ is related to difficulties in modelling $\cos\theta_K$ acceptance near +1

Acceptance parametrisation — control mode check

Control mode $B^0 \to K^{*0} J/\psi (\to e^+ e^-)$ fit results (centred around values obtained for $B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-)$ as part of the $B^0 \to K^{*0} \mu^+ \mu^-$ cross-check)

- Compare with independent external data fit results from the $B^0 \rightarrow K^{*0}\mu^+\mu^-$ analysis (different acceptance, fit model etc.)
- Agreement good for key observables of interest
- Still work in progress (e.g. background fractions need updating)

- Analysis strategy has been updated since last year:
 - Model (instead of cut) contribution from double semi-leptonic background
 - Use full $\cos \theta_{\ell}$ region (enabled by above)
 - Fix all background angular shapes and use unfolded signal pdf
- Now the focus is on:
 - Finalising details/decisions
 - Assessing systematics (lots of toys!)
 - Completing cross-checks and additional measurements (control mode, folded fits, $q^2 \in [1.1, 6.0] \text{ GeV}^2/c^4$, reduced $\cos\theta_{\ell}$ region...)
- Internal note writing is in progress
- Hopefully will start the LHCb review process soon

References

[1] $B^0 \to K^{*0}\mu^+\mu^- 1$ fb⁻¹ analysis: the LHCb collaboration, R. Aaij et al. Measurement of Form-Factor-Independent Observables in the Decay $B^0 \to K^{*0}\mu^+\mu^-$. Phys. Rev. Lett., 111:191801, 2013.

[2] $B^0 \rightarrow K^{*0}\mu^+\mu^- 3 \text{ fb}^{-1}$ analysis: the LHCb collaboration, Aaij, R., Abellán Beteta, C. et al. J. High Energ. Phys. (2016) 2016: 104. <u>https://doi.org/10.1007/JHEP02(2016)104</u>

[3] $B^0 \to K^{*0}\mu^+\mu^- 4.7 \text{ fb}^{-1}$ analysis: the LHCb collaboration, R. Aaij and et al. Measurement of CP-Averaged Observables in the $B^0 \to K^{*0}\mu^+\mu^-$ Decay. Physical Review Letters, 125(1), Jul 2020.

[4] R_{K^*} 3 fb⁻¹ analysis: The LHCb collaboration, Aaij, R., Adeva, B. et al. J. High Energ. Phys. (2017) 2017: 55. <u>https://doi.org/10.1007/JHEP08(2017)055</u>

[5] Belle muon/electron P'_5 : S. Wehle *et al.* (Belle Collaboration), Phys. Rev. Lett. 118, 111801 – Published 13 March 2017

Backup

$B^0 \to K^{*0} \ell^+ \ell^-$ angular analysis

Electron strategy: folding

- For electron channel 'fold' signal PDF to reduce impact of low statistics, e.g. for P'_5

Acceptance parametrisation

Acceptance is parametrised in 4d ($\cos \theta_K$, $\cos \theta_\ell$, ϕ , q^2) using Legendre polynomials, the coefficients of which are obtained via method of moments

$$\epsilon(\cos\theta_{\ell},\cos\theta_{K}\phi,q^{2}) = \sum_{klmn} c_{k,l,m,n} L_{k}(\cos\theta_{\ell}) L_{l}(\cos\theta_{K}) L_{m}(\phi) L_{n}(q^{2})$$

 L_i — Legendre polynomials of order i

 $c_{k,l,m,n}$ — coefficients from moments analysis

Obtain $c_{k,l,m,n}$ through a calculation:

$$c_{k,l,m,n} = \left(\frac{2k+1}{2}\right)\left(\frac{2l+1}{2}\right)\left(\frac{2m+1}{2}\right)\left(\frac{2m+1}{2}\right)\left(\frac{2m+1}{2}\right)\frac{1}{N}\sum_{i=1}^{N}L_{k}(\cos\theta_{\ell i})L_{l}(\cos\theta_{K i})L_{m}(\phi_{i})L_{n}(q_{i}^{2})$$

N — Number of events (sum is over all events in sample used for parametrisation)

Samples used: $B^0 \to K^{*0}e^+e^-$ generator level, and post selection simulation (two parameterisations)

Zhenzi Wang

Zurich PhD seminar

Acceptance parametrisation — control mode check

- Control mode $B^0 \to K^{*0} J/\psi (\to e^+ e^-)$ can be used to further check acceptance strategy
- Tree-level decay (not $b \rightarrow s\ell^+\ell^-$), large statistics (~400 × signal yield!)
- Measure angular observables in the same way... with a Ss-small twist

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 \bar{\Omega}} \Big|_{\mathbf{S} + \mathbf{P}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K - F_L \cos^2 \theta_K \cos 2\theta_\ell \\ + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi \\ + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{FB} \sin^2 \theta_K \cos \theta_\ell \\ + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi \\ + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin^2 \theta_\ell \sin 2\phi \Big]$$

- 'P-wave' => $K^+\pi^-$ from $K^{*0}(892)$ (spin-1)
- 'S-wave' => nonresonant $K^+\pi^-$, $K^+\pi^$ from spin-0 K^{*0} ...
- S-wave is a kind of 'inseparable' background
- Contribution neglected in rare mode fit (lack of sensitivity)

$+\frac{3}{16\pi} \left[F_{S} \sin^{2} \theta_{l} \right]$	➤ S-wave fraction
$+S_{S1}\sin^2\theta_l\cos\theta_K$	T
$+S_{S2}\sin 2\theta_l\sin\theta_K\cos\phi$	
$+S_{S3}\sin\theta_l\sin\theta_K\cos\phi$	S-P interference
$+S_{S4}\sin\theta_l\sin\theta_K\sin\phi$	terms
$+S_{S5}\sin 2\theta_l\sin\theta_K\sin\phi$	

Zhenzi Wang

Zurich PhD seminar