

Vector-Like Leptons in Light of the Cabibbo Angle Anomaly

Claudio Andrea Manzari

based on: <u>Phys.Rev.Lett. 125 (2020) 7, 071802</u> A.Coutinho, A.Crivellin, C.A.Manzari <u>2008.01113</u> A.Crivellin, F.Kirk, C.A.Manzari, M.Montull

The CKM matrix

The unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix parametrises the misalignment between interaction and mass bases in the quark sector.

University of Zurich[™]

University of Zurich^{uz#}

The Anomaly

The Anomaly

There is a tension between the different determinations of $V_{\mu s}$

LFUV

University of Zurich^{UZH}

Minimal Approach

Consider operators which modify only the couplings of W and Z to leptons

$$\dim = 6 \qquad \qquad \mathscr{L} = \mathscr{L}_{\rm SM} + \frac{1}{\Lambda^2} \left(C^{(1)}_{\phi\ell} Q^{(1)}_{\phi\ell} + C^{(3)}_{\phi\ell} Q^{(3)}_{\phi\ell} + C_{\phi e} Q_{\phi e} \right)$$

$$Q_{\phi\ell}^{(1)} = \phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi \bar{\ell}_{L} \gamma^{\mu} \ell_{L} \qquad Q_{\phi\ell}^{(3)} = \phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \phi \bar{\ell}_{L} \tau^{I} \gamma^{\mu} \ell_{L} \qquad Q_{\phi e} = \phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi \bar{e}_{R} \gamma^{\mu} e_{R}$$

Modifications of the Gauge Bosons Couplings

$$Z \to \ell \ell \propto C_{\phi \ell}^{(1)} + C_{\phi \ell}^{(3)} \qquad \qquad Z \to ee \propto C_{\phi e}$$

$$Z \to \nu\nu \propto C^{(3)}_{\phi\ell} - C^{(1)}_{\phi\ell} \qquad \qquad W \to \ell\nu \propto C^{(3)}_{\phi\ell}$$

University of

Modified Neutrino Couplings

Minimal impact: we modify only the couplings of W and Z with neutrinos

- EW observables
- Low energy observables (K, π , τ , W decays)

$$\frac{v^2}{\Lambda^2} C^{(3)}_{\phi\ell} = -\frac{v^2}{\Lambda^2} C^{(1)}_{\phi\ell} = \varepsilon \quad \text{and} \quad C_{\phi e} = 0;$$

$$\frac{-ig_2}{\sqrt{2}} \Rightarrow \frac{-ig_2}{\sqrt{2}} \left(\delta_{ij} + \frac{1}{2}\varepsilon_{ij}\right)$$

 $\frac{-\iota g_2}{2c_W} \Rightarrow \frac{-\iota g_2}{2c_W} \left(\delta_{ij} + \varepsilon_{ij}\right)$

LFV Parameters

Non-diagonal elements of ϵ_{ij} lead to charged lepton flavour violation

$$Br[\mu \to e\gamma] \to |\epsilon_{e\mu}| \le 10^{-5}$$

$$Br[\tau \to \mu \gamma] \to |\epsilon_{\tau \mu}| \le 10^{-2}$$

$$\operatorname{Br}[\tau \to e\gamma] \to |\epsilon_{\tau e}| \le 10^{-2}$$

In flavour conserving processes do not interfere with the SM contributions, and enter only quadratically, therefore they are further suppressed.

Assume in the following diagonal ε_{ij}

Parameters and Observables

NP Parameters :

$$\epsilon_{ee}, \quad \epsilon_{\mu\mu}, \quad \epsilon_{\tau\tau}$$

EW Parameters

$$G_F, \ \alpha, \ M_Z$$

 $G_F^{exp} = G_F^{\mathscr{L}} \left(1 + \frac{1}{2} \varepsilon_{ee} + \frac{1}{2} \varepsilon_{\mu\mu} \right)$

Not affected

$$|V_{us}^{K/\pi}|$$
$$|V_{us}^{\tau \to K/\pi}|$$
$$|V_{us}^{\tau \to X\nu}|$$

Parameters and Observables

Test of LFU in the charged current

These measurements together with the EW precision tests constraint the size of our parameters

$$\frac{\pi \to \mu\nu}{\pi \to e\nu} \sim \frac{\pi \to \mu\nu}{\pi \to e\nu} \bigg|_{\text{SM}} (1 + \frac{1}{2}\epsilon_{\mu\mu} - \frac{1}{2}\epsilon_{ee}) \qquad \begin{cases} \frac{K \to \mu\nu}{K \to e\nu} & \frac{\tau \to \mu\nu\nu}{\tau \to e\nu\nu} \\ \frac{K \to \pi\mu\nu}{W \to e\nu\nu} & \frac{W \to \mu\nu}{W \to e\nu} \\ \frac{\pi \to e\nu\nu}{\mu \to e\nu\nu} \sim \frac{\tau \to e\nu\nu}{\mu \to e\nu\nu} \bigg|_{\text{SM}} (1 + \frac{1}{2}\epsilon_{\tau\tau} - \frac{1}{2}\epsilon_{\mu\mu}) & \begin{cases} \frac{\tau \to \pi\nu}{\pi \to \mu\nu} & \frac{\tau \to K\nu}{K \to \mu\nu} \\ \frac{W \to \tau\nu}{W \to \mu\nu} \\ \frac{W \to \tau\nu}{W \to \mu\nu} \\ \frac{W \to \tau\nu}{W \to e\nu} \\ \frac{W \to \tau\nu}{W \to e\nu} \\ \end{cases}$$

A global fit to all the data is necessary!

Global Fit

Anomaly in the SM

Anomaly in the NP Scenario

VLLs are fermions whose left and right-handed components have the same representations of $SU(2)_L \times U(1)_Y$, are singlets under QCD and can couple to the SM Higgs and SM leptons via Yukawa-like couplings.

Prime Candidates since they modify $W \rightarrow \ell \nu$ at tree-level

	SU(3)	$SU(2)_L$	$U(1)_Y$
l	1	2	-1/2
e	1	1	-1
ϕ	1	2	1/2
Ν	1	1	0
\mathbf{E}	1	1	-1
$\Delta_1 = (\Delta_1^0, \Delta_1^-)$	1	2	-1/2
$\Delta_3 = (\Delta_3^-, \Delta_3^{})$	1	2	-3/2
$\Sigma_0 = (\Sigma_0^+, \Sigma_0^0, \Sigma_0^-)$	1	3	0
$\Sigma_1 = (\Sigma_1^0, \Sigma_1^-, \Sigma_1^{})$	1	3	-1

University of

Vector-Like Leptons

Prime Candidates since they modify $W \rightarrow \ell \nu$ at tree-level

$$\frac{C_{\phi\ell}^{(1)}}{\Lambda^2} = \alpha \frac{|\lambda_X|^2}{M_X^2}$$

$$\frac{C_{\phi\ell}^{(3)}}{\Lambda^2} = \beta \frac{|\lambda_X|^2}{M_X^2}$$

$$\frac{C_{\phi e}}{\Lambda^2} = \gamma \frac{|\lambda_{\Delta_1}|^2}{M_{\Delta_1}^2}$$

	N	E	Δ_1	Δ_3	Σ_0	Σ_1
α	1/4	-1/4	-	-	3/16	-3/16
β	-1/4	-1/4	-	-	1/16	1/16
γ	-	-	1/2	-1/2	-	-

PAUL SCHERRER INSTITUT

University of Zurich[™]

Flavour Violating Processes

VLL can contribute to $\ell \to \ell' \gamma$, $\ell \to 3\ell$ and $\mu \to e$ conversion

Note that this bounds can always be avoided requiring multiple VLL generations

Global Fit to VLL

• Each representation alone describes data similarly to the SM. $IC_{SM} \simeq 93$

PAUL SCHERRER INSTITUT

University of Zurich^{uz#}

VLL Minimal Model

• We found a minimal scenario strongly improving the agreement with data:

 $N\,$ coupling with electrons and $\Sigma_1\,$ coupling with muons

PAUL SCHERRER INSTITUT

Conclusions (I)

- There is a tension in the determination of V_{us} from different processes
- It can be interpreted as an evidence of LFUV completing an already interesting picture
- The CAA points towards $\underline{W\ell\nu}$ modified couplings. Therefore we performed a global fit to all the observables affected by those modifications.
- The global fit to EW, LFU and V_{us} prefers LFUV NP at more than 99% C.L.

Conclusions (II)

- VLLs are very interesting candidates to solve this anomaly.
- For each representation we extracted the bounds from EW, LFU and V_{us} obs.
- We found a minimal model strongly improving the agreement with data:

<u>N coupling with electrons and Σ_1 coupling with muons</u>

Observable	Measurement	SM Posterior	NP Posterior	Pull
$M_W[{\rm GeV}]$	80.379(12)	80.363(4)	80.369(6)	0.56
$R\left[rac{K ightarrow \mu u}{K ightarrow e u} ight]$	0.9978 ± 0.0020	1	1.00168(39)	-0.80
$R\left[rac{\pi ightarrow\mu u}{\pi ightarrow e u} ight]$	1.0010 ± 0.0009	1	1.00168(39)	0.42
$R\left[rac{ au ightarrow \mu uar{ u}}{ au ightarrow e uar{ u}} ight]$	1.0018 ± 0.0014	1	1.00168(39)	1.2
$ V_{us}^{K_{\mu3}} $	0.22345(67)	0.22573(35)	0.22519(39)	0.77
$ V_{ud}^{eta} $	0.97365(15)	0.97419(8)	0.97378(13)	2.52

Best and worst pulls of our minimal model with respect to the SM

niversity of

Backup

University of Zurich^{uz#}

The Anomaly with NP

Parameters of the Fit

Parameters of the Model Independent global fit

Parameter	Prior	SM posterior
$G_F \; [{ m GeV}^{-2}] \; [3]$	$1.1663787(6) \times 10^{-5}$	*
α [3]	$7.2973525664(17) \times 10^{-3}$	*
$\Delta lpha_{ m had}$ [3]	$276.1(11) \times 10^{-4}$	$275.4(10) \times 10^{-4}$
$\alpha_s(M_Z)$ [3]	0.1181(11)	*
$m_Z \; [\text{GeV}] \; [7]$	91.1875 ± 0.0021	91.1883 ± 0.0020
$m_H \; [\text{GeV}] \; [9, 10]$	125.16 ± 0.13	*
$m_t [{ m GeV}] [11-13]$	172.80 ± 0.40	172.96 ± 0.39

	Prior	NP-II posterior
$V_{us}^{\mathcal{L}}$	0.225 ± 0.010	0.2248 ± 0.0004
ε_{ee}	0.00 ± 0.05	-0.0022 ± 0.0007
$arepsilon_{\mu\mu}$	0.00 ± 0.05	0.0012 ± 0.0003
$\varepsilon_{ au au}$	0.00 ± 0.05	-0.0003 ± 0.0020

 $NP - II \equiv NP$ scenario without NNC

EW Observables

Observables included in the Model Independent global fit

Observable	Ref.	Measurement	SM Posterior	NP-II posterior	Pull II
M_W [GeV]	[3]	80.379(12)	80.363(4)	80.370(6)	0.59
$\Gamma_W [{ m GeV}]$	[3]	2.085(42)	2.089(1)	2.090(1)	-0.02
$BR(W \rightarrow had)$	[3]	0.6741(27)	0.6749(1)	0.6749(1)	0
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	3	0.2324(12)	0.2316(4)	0.2315(1)	-0.1
${ m sin}^2 heta_{ m eff(Tev)}^{ m lept}$	3	0.23148(33)	0.2316(4)	0.2315(1)	0.17
$\sin^2 heta_{ m eff(LHC)}^{ m lept}$	3	0.23104(49)	0.2316(4)	0.2315(1)	-0.03
$P_{ au}^{ m pol}$	[7]	0.1465(33)	0.1461(3)	0.1472(8)	-0.09
A_ℓ	[7]	0.1513(21)	0.1461(3)	0.1472(8)	0.60
$\Gamma_Z [{ m GeV}]$	[7]	2.4952(23)	2.4947(6)	2.496(1)	-0.11
σ_h^0 [nb]	[7]	41.541(37)	41.485(6)	41.493(24)	0.42
R^0_ℓ	[7]	20.767(35)	20.747(7)	20.749(7)	0.06
$A_{ m FB}^{0,\ell}$	$\overline{7}$	0.0171(10)	0.0160(7)	0.0163(2)	0.12
$R_b^{\tilde{0}}$	[7]	0.21629(66)	0.21582(1)	0.21582(1)	0
R_c^{0}	7	0.1721(30)	0.17219(2)	0.17220(2)	0
$A_{ m FB}^{0,b}$	[7]	0.0992(16)	0.1024(2)	0.1032(6)	-0.36
$A_{ m FB}^{ar 0, c}$	$\overline{7}$	0.0707(35)	0.0731(2)	0.0738(4)	-0.20
$A_b^{}$	[7]	0.923(20)	0.93456(2)	0.9347(1)	-0.01
A_c	[7]	0.670(27)	0.6675(1)	0.6680(3)	0

$$P(O_i) = \left| \frac{O_i^{\text{exp}} - O_i^{\text{SM}}}{\sqrt{(\sigma_i^{\text{exp}})^2 + (\sigma_i^{\text{SM}})^2}} \right| - \left| \frac{O_i^{\text{exp}} - O_i^{\text{NP}}}{\sqrt{(\sigma_i^{\text{exp}})^2 + (\sigma_i^{\text{NP}})^2}} \right|$$

 $NP - II \equiv NP$ scenario without NNC

LFU & V_{us} Observables

Observables included in the Model Independent global fit

Observable	Ref.	Measurement	SM Posterior	NP-II posterior	Pull II
$\frac{K \rightarrow \mu \nu}{K \rightarrow e \nu}$	[1, 14-16]	0.9978 ± 0.0020	1	1.00173 ± 0.00043	-0.82
$\frac{\pi \rightarrow \mu \nu}{\pi \rightarrow e \nu}$	[2, 3, 16-19]	1.0010 ± 0.0009	1	1.00173 ± 0.00043	0.38
$\frac{\hat{\tau} \rightarrow \tilde{\mu} \tilde{\nu} \bar{\nu}}{\tau \rightarrow e \nu \bar{\nu}}$	[3, 4]	1.0018 ± 0.0014	1	1.00173 ± 0.00043	1.24
$\frac{K \to \pi \mu \bar{\nu}}{K \to \pi e \bar{\nu}}$	[1, 20, 21]	1.0010 ± 0.0025	1	1.00173 ± 0.00043	0.11
$\frac{W \to \mu \bar{\nu}}{W \to e \bar{\nu}}$	[1, 5]	0.996 ± 0.010	1	1.00173 ± 0.00043	-0.17
$\frac{B \to D^{(*)} \mu \nu}{B \to D^{(*)} \sigma \tau}$	6	0.989 ± 0.012	1	1.00173 ± 0.00043	-0.14
$\frac{B \rightarrow D(\tau) e\nu}{\tau \rightarrow e\nu\bar{\nu}}$	[3, 4]	1.0010 ± 0.0014	1	0.9995 ± 0.0010	-0.15
$\frac{\tau \to \pi \nu}{\pi \to \mu \bar{\nu}}$	[4]	0.9961 ± 0.0027	1	0.9995 ± 0.0010	0.26
$\frac{\tau \to K\nu}{K \to \mu\bar{\nu}}$	[4]	0.9860 ± 0.0070	1	0.9995 ± 0.0010	0.09
$\frac{\overline{W} \to \tau \overline{\nu}}{W \to \mu \overline{\nu}}$	[1, 5]	1.034 ± 0.013	1	0.9995 ± 0.0010	-0.03
$\frac{\tau \to \mu \bar{\nu} \bar{\nu}}{\mu \to e \nu \bar{\nu}}$	[3, 4]	1.0029 ± 0.0014	1	1.0013 ± 0.0011	1.17
$\frac{\overline{W \to \tau \bar{\nu}}}{W \to e \bar{\nu}}$	[1, 5]	1.031 ± 0.013	1	1.0013 ± 0.0011	0.11
$ V_{us}^{K_{\mu3}} $	[3, 22]	0.2234 ± 0.0008	0.2257(3)	0.22516 ± 0.00040	0.74
$ V_{us}/V_{ud} ^{K/\pi}$	[22, 23]	0.2313 ± 0.0005	0.2317(4)	0.23082 ± 0.00044	-0.10
$ V_{us}^{\tau} _{\text{incl.}}$	[24, 25]	0.2195 ± 0.0019	0.2257(3)	0.22491 ± 0.00041	0.45
$ V_{ud}^{\beta} _{\mathrm{CMS}}$	[24, 25]	0.97389 ± 0.00018	0.974185(79)	-	-
$ V_{ud}^{\beta} _{ m SGPR}$	[24, 26]	0.97370 ± 0.00014	0.974185(79)	0.97379 ± 0.00013	2.57

$$P(O_i) = \left| \frac{O_i^{\text{exp}} - O_i^{\text{SM}}}{\sqrt{(\sigma_i^{\text{exp}})^2 + (\sigma_i^{\text{SM}})^2}} \right| - \left| \frac{O_i^{\text{exp}} - O_i^{\text{NP}}}{\sqrt{(\sigma_i^{\text{exp}})^2 + (\sigma_i^{\text{NP}})^2}} \right|$$

 $NP - II \equiv NP$ scenario without NNC

Contributions to the Fit

Contributions to the global fit from each class of observables. 1σ and 2σ regions are shown in the ϵ_{ee} vs $\epsilon_{\mu\mu}$ plane, marginalising over $\epsilon_{\tau\tau}$.

University of

-

 $\phi\ell$ - **4D** plot VS

N and E bounds

LHC bounds for the Vector-Like Leptons

N

PAUL SCHERRER INSTITUT

LHC bounds for the Vector-Like Leptons

PAUL SCHERRER INSTITUT

Information Criterion

In a bayesian approach, the *Information Criterion* allows for a comparison between different models

The second term takes into account the effective numbers of parameters in the model, allowing for a meaningful comparison of models with different number of parameters. Preferred models are expected to give smaller *IC* values

