Event shapes in Deep Inelastic Scattering

Jonathan Mo

University of Zürich

September 8, 2020

[T. Gehrmann, A. Huss, JM, J. Niehues, 1909.02760]

DIS event shapes

Event shapes

- Observables depending on final state hadrons momenta
- Describe structure of hadronic events
- Canonical example: thrust

- Interesting for:
 - Studying hadronisation models
 - α_s extraction
 - Tuning of Monte Carlo event generators

DIS event shapes

Event shapes in DIS

Originally defined for e⁺e⁻ collisions, here we consider *ep* DIS
DIS variables

 $s = (P+k)^2, \qquad Q^2 = -q^2$ $x = \frac{Q^2}{2q \cdot P}, \qquad y = \frac{q \cdot P}{k \cdot P} = \frac{Q^2}{xs}$

- Breit frame: $2x\vec{P} + \vec{q} = 0$
 - Remnant hemisphere H_R
 - Current hemisphere H_C

DIS event shapes

Definitions DIS event shapes

Thrust

$$au_{\gamma,T} = 1 - T_{\gamma,T}, \quad \text{with} \quad T_{\gamma,T} = \max_{\vec{n}_T} \frac{\sum_h |\vec{p}_h \cdot \vec{n}_{\gamma,T}|}{\sum_h |\vec{p}_h|}$$

Jet mass

$$\rho = \frac{\left(\sum_{h} p_{h}\right)^{2}}{\left(2\sum_{h} E_{h}\right)^{2}}$$

• Jet broadening

$$B_{\gamma,T} = \frac{\sum_{h} |\vec{p}_{h} \times \vec{n}_{\gamma,T}|}{2\sum_{h} |\vec{p}_{h}|}$$

• C-parameter

$$C = \frac{3}{2} \frac{\sum_{h,h'} |\vec{p}_h| |\vec{p}_{h'}| \sin^2 \theta_{hh'}}{(\sum_h |\vec{p}_h|)^2}$$

DIS event shapes

Observables

- IRC-safe
- $F \in [0, 1]$ $F \to 0 \Rightarrow$ Born limit $F \to 1 \Rightarrow$ Multi-jet limit
- Distribution of the event shapes $\frac{1}{\sigma_{H}} \frac{d\sigma}{dF}$

Moments

$$\langle F^n \rangle = \frac{1}{\sigma_H} \int_0^{F_{\max}} F^n \frac{d\sigma}{dF} dF$$

• First moment is mean value

H1 and ZEUS analyses

 Follow study of H1 [A. Aktas et al., 0512014] and ZEUS [S. Chekanov et al., 0604032] measurements at HERA
 H1 kinematic ranges:

$$\sqrt{s} = 319 \, {
m GeV}$$

 $0.1 < y < 0.7$
 $196 \, {
m GeV}^2 < Q^2 < 40000 \, {
m GeV}^2$

ZEUS kinematic ranges:

$$\sqrt{s} = 319 \, {
m GeV}$$

 $0.0024 < x < 0.6$
 $0.04 < y < 0.9$
 $80 \, {
m GeV}^2 < Q^2 < 20480 \, {
m GeV}^2$

FO calculation with NNLOJET

- LO, NLO and NNLO FO QCD corrections calculated with NNLOJET
- DIS matrix elements producing 4 partons, 3 partons 1-loop, 2 partons 2-loop
- Antenna subtraction for isolation and recombining IR singular terms
- Integration over phase space
- Calculation details

$$\begin{array}{rcl} \sqrt{s} & = & 319\,\mathrm{GeV}, & \alpha_s(M_Z) = 0.118, & N_F = 5\,\mathrm{(massless)} \\ \mu_F & = & \mu_R = Q, & 7-\mathrm{pt.} & \mathrm{PDF}:\mathrm{NNPDF3.1} \end{array}$$

FO distribution shape

• Typical FO shape of event shape distribution

- FO at left end diverges due to log(F) terms
- Would need resummation here
- Applied cuts $F_{\rm cut}$ on minimum value allowed
- First moment is regulated by F

Non-smoothness

- Some subtle differences between e^+e^- and DIS shapes
- Non-smooth features in distribution

FO vs data

Large discrepancy between FO calculation and experimental data

Experimental data is considerably above the FO predictions

DIS event shapes

FO vs data

Same for the differential distributions

Need to include correction to hadron level

Hadronisation effects

- \bullet Need to account for parton \rightarrow hadron
- Non-perturbative process
- Effects are power suppressed $\frac{1}{Q}$
- Dispersive model
 - IR finite effective coupling
 - Single parameter $\alpha_0 = 0.5$
 - $P(\alpha_0) = \alpha_s(\dots) + \alpha_s^2(\dots) + \dots$
- Effect on mean

$$\langle F \rangle = \langle F \rangle^{\text{pert.}} + a_F P$$

• Effect on distribution

$$\frac{\mathrm{d}\sigma^{\mathrm{hadron}}(F)}{\mathrm{d}F} = \frac{\mathrm{d}\sigma^{\mathrm{parton}}(F - a_F P)}{\mathrm{d}F}$$

DIS event shapes

FO+PC vs data

Fixed Order + Power Corrections

Very good agreement now

DIS event shapes

FO+PC vs data

Fixed Order + Power Corrections

Flat shifted distribution

FO+PC vs data

In general, shift can also depend on the value of F

Conclusion

- The NNLO QCD corrections improve the theory description
- Smaller uncertainties
- Better overlap with previous order uncertainty bands
- Very good agreement for the mean values at NNLO
- Differential distributions has moderate agreement
 - Flat shift is too simplistic