

NA64 SEARCHING FOR HIDDEN SECTORS AT THE CERN SPS

Emilio Depero

This work is supported by SNSF under the grants 169133 and 186181 (PI: Paolo Crivelli)

Dark photon - motivation

Standard Model Lagrangian

Additional U(1) symmetry describing the new force carried by a massive vector boson, **the Dark photon A'** Kinetic mixing term with the *standard photon y*

 $\epsilon \sim 10^{-8} - 10^{-2}$

Dark photons - signature at fixed target experiment

• The electron collides with heavy nuclei irradiating A' (dark-bremstrahlung) which can decay to:

The NA64 working principle to search for A' \rightarrow invisible

The NA64 working principle to search for A' \rightarrow invisible

E *H* zürich

The NA64 working principle to search for A' \rightarrow invisible

The NA64 collaboration

E. Depero¹, Yu. M. Andreev², D. Banerjee^{3,4}, J. Bernhard³, V. E. Burtsev⁵, N. Charitonidis³, A. G. Chumakov⁶, D. Cooke⁷, P. Crivelli^{1,a} A. V. Dermenev², S. V. Donskov⁸, R. R. Dusaev⁹, T. Enik⁵, A. Feshchenko⁵, V. N. Frolov⁵, A. Gardikiotis¹⁰, S. G. Gerassimov^{11,12}, S. Girod³, S. N. Gninenko², M. Hösgen¹³, V. A. Kachanov⁸, A. E. Karneyeu², G. Kekelidze⁵, B. Ketzer¹³, D. V. Kirpichnikov², M. M. Kirsanov², V. N. Kolosov⁸, I. V. Konorov^{11,12}, S. G. Kovalenko¹⁴, V. A. Kramarenko^{5,15}, L. V. Kravchuk², N. V. Krasnikov^{5,2}, S. V. Kuleshov¹⁴, V. E. Lyubovitskij^{6,16}, V. Lysan⁵, V. A. Matveev⁵, Yu. V. Mikhailov⁸, L. Molina Bueno¹, D. V. Peshekhonov⁵, V. A. Polyakov⁸, B. Radics¹, R. Rojas¹⁶, A. Rubbia¹, V. D. Samoylenko⁸, D. Shchukin¹², H. Sieber¹, V. O. Tikhomirov¹², vI. Tlisova², D. A. Tlisov^{5,2}, A. N. Toropin², A. Yu. Trifonov⁶, B. I. Vasilishin⁹, G. Vasquez Arenas¹⁶, P. V. Volkov^{5,15}, V. Yu. Volkov¹⁵, P. Ulloa¹⁴

¹ ETH Zürich Institute for Particle Physics and Astrophysics, CH-8093 Zürich, Switzerland ²Institute for Nuclear Research, 117312 Moscow, Russia ³CERN, EN-EA, 1211 Geneva 23, Switzerland ⁴University of Illinois at Urbana Champaign, Urbana, 61801-3080 Illinois, USA ⁵ Joint Institute for Nuclear Research, 141980 Dubna, Russia ⁶Tomsk State Pedagogical University, 634061 Tomsk, Russia ⁷UCL Departement of Physics and Astronomy, University College London, Gower St. London WC1E 6BT, United Kingdom ⁸State Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia ⁹Tomsk Polytechnic University, 634050 Tomsk, Russia ¹⁰Physics Department, University of Patras, 265 04 Patras, Greece ¹¹Technische Universität München, Physik Department, 85748 Garching, Germany ¹²P.N. Lebedev Physical Institute, 119 991 Moscow, Russia ¹³Universität Bonn, Helmholtz-Institut für Strahlen-und Kernphysik, 53115 Bonn, Germany ¹⁴Departamento de Ciencias Físicas, Universidad Andres Bello, Sazié 2212, Piso 7, Santiago, Chile ¹⁵Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia ¹⁶Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile

50 Researchers (6 from ETH) From 16 institutions!

> Sergei Gninenko spokesperson

> > Paolo Crivelli Deputy

(IPA-

The NA64 setup – A' \rightarrow invisible search – the beam

The NA64 setup – A' \rightarrow invisible search – the particle selection

Energy of electron is selected using a tracking system. Impurities of the beam are rejected using a synchrotron radiation detector

ETHZ- IPA

MU4

HCAL4

MU3

E *zürich*

Vacuum vessel

ECAL Characteristic

Magnet2

High hermeticity $(40X_0)$

\$1^{V1^{T1}}

T2

- Energy resolution $\sim 9\%/\sqrt{(E[GeV])}$ Longitudinal and lateral segmentation \rightarrow shower profile (hadron rejection)
- WLS fiber inserted in spiral \rightarrow suppress energy leak

Magnet1

e⁻, 100 GeV

Emilio Depero | 09.09.2019 | PhD seminar

471 mm

38.2 m

HCAL2

V2

ECA

S2 S3

229.2 mm

Τ4

Т3

SRD

HCAL1

229.2 mn

MU4

 $\left[1.5 \text{ mm Pb} \\ 1.5 \text{ mm Sc} \right] = 1 \text{ layer} \\ + 0.14 \text{ mm paper}$

HCAL4

The NA64 setup – A' \rightarrow invisible search – the HCAL

- MU4 > HCAL: Iron scintillator sandwich calorimeter to measure MU3 hadrons and complete detector hermeticity HCAL4 MU2 > VETO: 5 cm thick scintillator counter to measure efficiently HCAL3 MU1 HCAL2 V2 MIP punchtrough HCAL1 S2 S3 Τ4 тз ECAL Vacuum vessel SRD Magnet2 Magnet1 T2 \$1^{V1^{T1}} e⁻, 100 GeV **HCAL Characteristic** High hermeticity 4λ /module Energy resolution ~50%/ $\sqrt{(E[GeV])}$
 - Lateral segmentation: 3x3 matrix, cells 19.4 x 19.2 x 150 cm³

The NA64 setup – A' \rightarrow invisible search – in real life

Emilio Depero | 09.09.2019 | PhD seminar

E *zürich*

Invisible search – event selection and results

Control area:

- > **AREA I**: dimuon pair produced in ECAL shower (more on next slide)
- > **AREA II**: Electron-hadron production

Event Selection:

- Timing information
 - pileup suppression
 - Noise suppression
- > Clean incoming track:
 - Good incoming angle

 - No multiple hits
 Momentum ~ 100 GeV
- Electron selected:
 - > SRD detected
 - Shower profile compatible
- No punchtrough:
 - No activity in VETO
 No activity in HCAL

IPA 🙀

Invisible search – constraint on light thermal matter

For the first time results better than previous beam dump experiments!

ETHZ- IPA

Emilio Depero | 09.09.2019 | PhD seminar

Search for Axionlike and Scalar particles

Visible search – Light trough a wall experiment

E *zürich*

Visible search – Light trough a wall experiment

E *zürich*

Visible search – Results for 2016-2018 statistics

Event Selection:

- > Neutral exiting WCAL \rightarrow No activity in V2
- > Leaking in decay volume \rightarrow single e-m shower in ECAL
- Charged particle in decay volume \rightarrow signal in S4
- > No hadron/large scattering \rightarrow no activity in HCAL/VETO

Visible search – Improve limits

Limit improves only logarithmically By adding statistics $\epsilon_{up} \sim \frac{E_{beam}}{L_{dump}} \times \ln \overset{\bullet}{N}_{EOT}$

Remaining region of parameter space

 $6.8 \times 10^{-4} \leq \epsilon \leq 1.4 \times 10^{-3}$

Visible search – New setup 2021

Decreasing the length of the WCAL to increase signal yield

- Reshuffling WCAL converter tiles.
- W > WCAL is ~4 cm shorter, large improvement in signal yield
 - Worse energy resolution, but less relevant for X17
 - Invariant mass reconstruction of X17 decay
 - > Long vacuum tube of 18 m with two trackers at the end
 - Angle reconstructed from distance between decay products
 - Second magnetic spectrometer to reconstruct momentum
 - Momentum reconstructed at ~1%

Anomaly can be completely covered with 8x10¹¹ EOT

Depero et al. arXiv:2009.02756 (2020)

Emilio Depero | 09.09.2019 | PhD seminar

Future prospects Dark sector physics interesting framework to explain dark matter NA64 ideal experiment to probe or rule out many candidates

Process	New Physics		
e^- beam			
$A' \to e^+e^-$, and	Dark photon		
$A' \rightarrow invisible$			
$A' \to \chi \overline{\chi}$	sub-GeV Dark Matter (χ)		
$X \rightarrow e^+ e^-$	new gauge X - boson		
milliQ particles	Dark Sector, charge quantisation		
$a \rightarrow \gamma \gamma, invisible$	Axion-like particles		
μ^- beam			
$Z_{\mu} \rightarrow \nu \nu$	gauge Z_{μ} -boson of $L_{\mu} - L_{\tau}, < 2m_{\mu}$		
$Z_{\mu} \to \chi \overline{\chi}$	$L_{\mu} - L_{\tau}$ charged Dark Matter (χ)		
milliQ	Dark Sector, charge quantisation		
$a_{\mu} \rightarrow invisible$	non-universal ALP coupling		
$\mu - \tau$ conversion	Lepton Flavour Violation		
π^-, K^- beams	Current limits, PDG'2018		
$\pi^0 \rightarrow invisible$	$Br(\pi^0 \rightarrow invisible) < 2.7 \times 10^{-4}$		
$\eta \rightarrow invisible$	$Br(\eta \rightarrow invisible) < 1.0 \times 10^{-4}$		
$\eta' \rightarrow invisible$	$Br(\eta' \rightarrow invisible) < 5 \times 10^{-4}$		
$K_S^0 \rightarrow invisible$	no limits		
$K_L^{0} \to invisible$	no limits		

After long shutdown 2 in 2021:

- Continue electron program, reach 5x10¹² EOT for A'→ invisible to cover completely LDM Majorana and Pseudo-Dirac
- → explore remaining parameter space for $X \rightarrow e^+ e^-$
- Proposed searches of dark sector in NA64 leptonic and hadronic beams with unique sensitivites:
 - Search for Z' coupled to muon with M2 beamline at CERN (160 GeV/c muon)

Acknowledgments

NA64 collaboration and in particular **P.Crivelli** and **S. Gninenko**

ERN

ETH Zurich group:

Prof. André Rubbia

Post docs: B. Radics, L. Molina Bueno **Past members**: D. Banerjee, D. Cooke **PhD Students**: E. Depero, H. Sieber

64

Undergraduate Students:C. Cazzaniga, P. Degen, B. Banto Oberhauser Z. Xingyu, S. Emmenegger, M. Bachmayer, U. Molinatti

Funding: ETH Zurich and SNSF Grant No. 169133 (Switzerland),PI: **P. Crivelli** + SNSF Grant No. 186158 (Switzerland),PI: **L. Molina Bueno**

SWISS NATIONAL SCIENCE FOUNDATION

Signature of dark photons at fixed target experiment

Pseudo-Dirac and Majorana Thermal Dark Matter

For the first time results better than previous beam dump experiments!

Emilio Depero | 09.09.2019 | PhD seminar

E *zürich*

Invisible search – dimuon events

E *zürich*

IPA

Invisible search – exclusion plot

Emilio Depero | 09.09.2019 | PhD seminar

New invisible mode 2018 - background

Background source	Background, n_b
(i) Dimuons	0.024 ± 0.007
(ii) $\pi, K \to e\nu, K_{e3}$ decays	0.02 ± 0.01
(iii) e^{-} hadron interactions in the beam line	0.43 ± 0.16
(iv) e^- hadron interactions in the target	< 0.044
(v) Punch-through γ 's, cracks, holes	< 0.01
Total n_b (conservatively)	0.53 ± 0.17

New visible mode 2018 - background

Background source	n _b (2017)	n _b (2018)	n_b (2018, new analysis)
π^- punch-through	$0.0015 {\pm} 0.0008$	0.0007 ± 0.0004	$0.0007 {\pm} 0.0004$
$K^0_S ightarrow \pi^0 \pi^0$	$0.06 {\pm} 0.034$	$0.005 {\pm} 0.003$	< 0.001
e^{-} /hadron nuclear interaction	$0.01 {\pm} 0.004$	$0.01 {\pm} 0.004$	$0.01 {\pm} 0.004$
μ^- punch-through	< 0.001	< 0.001	< 0.001
$\pi^-, K^- ightarrow e u \; K_{4e}$	< 0.001	< 0.001	< 0.001
$eZ ightarrow eZ \mu^+ \mu^-$; $\mu^\pm ightarrow e^\pm u ar{ u}$	< 0.001	< 0.001	< 0.001
punch-through γ	< 0.001	< 0.0005	< 0.001
Total (conservatively)	0.07 ± 0.035	0.006 ± 0.003	0.006 ± 0.003

New visible mode setup 2021

New visible mode setup 2021 – invariant mass reconstruction

ALPS search

