

Thin-Disk Laser for the Measurement of the Hyperfine-Splitting in Muonic Hydrogen

Manuel Zeyen

Precision Physics at Low Energy, IPA, ETH Zürich

09. September 2020, PhD Seminar, Zürich

Introduction

We do spectroscopy of muonic hydrogen to probe the proton

Introduction

- We aim to measure the groundstate hyperfine transition in muonic hydrogen to extract the Zemach Radius (≈ magnetic radius) of the proton
- We have to develop a challenging laser system in the near infrared

Requirements for the laser in our experiment

Requirement	Reason	
Fast response to trigger	Muons decay in 2.2 µs	
→ 1 µs from trigger to pulse delivery		
Frequency tuneable & single mode	We have to find the	
\rightarrow ± 100 nm	resonance	
 High power → 5 mJ pulse energy @ 6.8 µm & 50 MHz bandwidth 	To efficently drive the transition (dipole forbidden transition)	

No commercial laser source meets this combination of requirements!

 \rightarrow This experiment is interesting from a laser physics point of view

The planned laser system – thin-disk laser

The planned laser system – OPO/OPA 1

The planned laser system – OPO/OPA 2

The planned laser system – DFG

Concept of the thin-disk laser

Efficient and clever cooling

→ Power scalable

We don't know when the μ^- comes \rightarrow Have a lot of energy ready

→ Thin-Disk Laser!

The thin-disk laser system

A. Antognini et al., «Thin-disk Yb: YAG oscillator-amplifier laser, ASE, and effective Yb: YAG lifetime,» *IEEE Journal of Quantum Electronics*, **45**(8), 993-1005.

The thin-disk laser system

The thin-disk laser system

How to achieve a stable laser beam?

The problem of thermal lensing

Problem:

Thermal lensing (deformation of the disk)

Solution:

Optical Fourier Transform Propagation

The optical Fourier transformation

Concatenation of stable Fourier segments

K. Schuhmann et al., "Multipass amplifiers with self-compensation of the thermal lens," Appl. Opt. **57**, 10323-10333 (2018)

Fourier propagation vs. 4f-propagation

4f-concatenation:

Output beam divergence sensitive to thermal lens

Fourier transform concatenation:

Output beam divergence in-sensitive to thermal lens

Our 20-pass Fourier transform amplifier

Preliminary results

M. Zeyen et al. "Compact 20-pass thin-disk amplifier insensitive to thermal lensing." LASE (2019).

How to achieve a stable laser frequency?

Injection seeding the oscillator: the concept

Injection seeding the oscillator: the concept

Injection seeding:

Populating the oscillator cavity with light from a single frequency laser before the pulse

Injection seeding the oscillator: the concept

Injection seeding the oscillator: the problem

After successfully seeding lock the cavity length to fix the oscillator frequency

Injection seeding the oscillator: the problem

The cavity mode we want to lock on gets sharper with laser gain (i.e. laser power)!

Injection seeding the oscillator: the problem gets worse

- → «Useful linewidth» reduces further! (< 1 MHz)</p>
- → Relative length control $\approx 10^{-8}$
- \rightarrow Lock needs to be really tight...

For comparison: Measure Zürich ↔ Paris to less than 1 mm

Conclusion

Established by the European Commission

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

- We demonstrated a thin-disk multi-pass amplifier compensating thermal lens effects
 - 20 passes
 - Small signal gain 30
 - Footprint 400 mm x 1000 mm
- Future work
 - Pulsed operation of amplifier
 - Injection seeding of the oscillator
 - Integration into the laser system for spectroscopy of muonic hydrogen at PSI, Switzerland R. Pohl, et al. "The size

R. Pohl, et al. "The size of the proton." *Nature* 466.7303 (2010): 213.