

Zürich Physics PhD Student Seminar · 08 - 09.09.2020

Detection System

for the hyperfine-splitting in muonic hydrogen

Laura Šinkūnaitė

Paul Scherrer Institute

Outline

- 1. Introduction
- 2. HyperMu experiment
- 3. Detection system
- 4. Preliminary results from Nov' 19
- 5. Status
- 6. Summary

1.1 Proton-Radius Puzzle

3

 $< r_p^2 > = -6\hbar^2 \frac{dG_E(Q^2)}{dQ^2}|_{Q^2=0}$

1.1 Proton-Radius Puzzle (II)

1.2 Zemach radius

- * Hyperfine splitting:
- * Two-photon exchange (TPE):

$$\Delta E_{theor}^{HFS} = E^F (1 + \Delta_{QED} + \Delta_{TPE} + \Delta_{Weak+HVP})$$

$$\Delta_{TPE} \underbrace{\leftarrow} \Delta_{Z} \underbrace{+} \Delta_{recoil} + \Delta_{pol}$$

- Zemach contribution (elastic):
- $\Delta_Z = \frac{8Z\alpha m_r}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left(G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa_p} 1 \right) = -2(Z\alpha)m_r R_Z$

* Zemach radius:

 $(R_Z) = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left(G_E(Q^2) \frac{G_M(Q^2)}{1 + \kappa_P} - 1 \right)$

 $R_{Z} = d^{3}\mathbf{r} |\mathbf{r}| d^{3}\mathbf{r}' \rho_{E}(\mathbf{r} - \mathbf{r}') \rho_{M}(\mathbf{r}')$

Zemach radius (non-relativistic): 5

1.3 Motivation

- Increased understanding of the low-energy structure of the proton.
- Benchmark for chiral perturbation theory, dispersion-based approaches, and lattice QCD.
- * Test of lepton universality.

2.1 HyperMu Goal

Measurement of the ground-state hyperfine-splitting in muonic hydrogen (µp) with about 1 ppm accuracy by means of laser spectroscopy.

$$|\Psi(r=0)|^2 \propto m_r^3$$

2. De-excitation

4. Collisional de-excitation

2.3 HyperMu Apparatus

2.3 HyperMu Apparatus

3.1 Signal and Background

- Signal: MeV X-rays detected within a time window ∆t.
- * Background:
 - Intrinsic (from μp diffusion)
 - * Erroneous (bremsstrahlung): electrons produced when the muon decays, $\mu^- \rightarrow e^- \nu_{\mu} \overline{\nu_e}$.
 - Muon-uncorrelated

3.1 Signal and Background (II)

3.2 The Principle

- * Use thick scintillators to detect X-rays.
- * Use thin scintillators to discriminate electrons from X-rays.
- * Muon decay: , muonic-gold X-ray cascade:

3.3 Detection System Nov' 19

3.3 Detection System Nov'19 (II)

Calorimeter

Back BGOs

Front BGOs

14

3.4 Plastic Scintillators with GAPDs

3.5 Plastic Scintillators with WLSFs

3.6 BGO Crystals

3.7 Calorimeter

4.1 Test Variables

- * P_{XX} = muonic gold (μ Au) cascade detection efficiency
 - * Target: gold
- * P_{eX} = probability to misidentify electron as an X-ray
 - * Target: plastic (hydrogen)

Fake Cu Cavity

Front BGOs

4.2 Preliminary Results

20

4.2 Preliminary Results

Energy range	0.20-7.5	0.65-7.5	2.0-7.5
	[MeV]	[MeV]	[MeV]
$P_{\rm XX}$	0.92	0.76	0.46
$P_{ m eX}$	0.121	0.062	0.022

5. Current Status

- Initial simulations for detector development -
- ✤ Realisation of the setup ✓
- ✤ Tests of the full setup ✓
- * Analysis 就
- Advanced simulations for the optimisation -

6. Summary

- * The motivation for studying the proton radius
- * Working principle of the HyperMu experiment
- * The idea of the HyperMu detection system
- * Preliminary results from the Nov'19 beam-time at PSI
- Status update

Backup Slides

Muonic X-ray Transitions in Gold

transition $n \rightarrow n'$	relative probability / %	energy / MeV
$2 \rightarrow 1$	90	5.65
$3 \rightarrow 1$	4.5	8.1
$4 \rightarrow 1$	0.3	9.0
$5 \rightarrow 1$	0.1	9.4
$>6 \rightarrow 1$	1.0	9.6
$3 \rightarrow 2$	84	2.4
$4 \rightarrow 2$	6.0	3.3
$5 \rightarrow 2$	1.12	3.7
$6 \rightarrow 2$	0.4	3.9
$>7 \rightarrow 2$	0.5	4.2
$4 \rightarrow 3$	76	0.9
$5 \rightarrow 3$	8.0	1.3
$6 \rightarrow 3$	2.0	1.5
$7 \rightarrow 3$	0.8	1.7
$> 8 \rightarrow 3$	2.5	1.8
$5 \rightarrow 4$	66	0.4
$6 \rightarrow 4$	9.0	0.6
$7 \rightarrow 4$	3.0	0.5
$8 \rightarrow 4$	1.0	0.85
$>9 \rightarrow 4$	4.0	0.9
$6 \rightarrow 5$	66	0.22
$7 \rightarrow 5$	9.0	0.36
$8 \rightarrow 5$	3.0	0.45
$9 \rightarrow 5$	1.0	0.52
$>10 \rightarrow 5$	4.0	0.55
$7 \rightarrow 6$	62	0.19
$8 \rightarrow 6$	12.0	0.22
$9 \rightarrow 6$	4.0	0.29
$10 \rightarrow 6$	2.0	0.33
$>11 \rightarrow 6$	6.0	0.26

Table 1: Energies and probabilities used in the simulations of muonic X-ray transition of gold. Data reproduced from [5,6]

Thin Plastic Scintillator

Ideal detector, no resolution

1000

0

2000

3000

Energy (adc)

Lead Shielding

- * When the beam is ON:
 - Four times less background counts with the Pb shield when compared to no-shield.

 \rightarrow Lead shield is useful

Experimental Rates

Energy range	0.20-7.5	0.65-7.5	2.0-7.5
	[MeV]	[MeV]	[MeV]
$P_{\rm XX}$	0.92	0.76	0.46
$P_{ m eX}$	0.121	0.062	0.022

$R_{ m signal}$	$172 \; [events/h]$
$R_{ m BG}^{ m diff}$	1512 [events/h]
$R_{ m BG}^{ m electron}$	1010 [events/h]
$R_{ m BG}^{ m unc}$	504 [events/h]