Towards establishing NP in the amplitude analysis of $B^0 o K^{*0} \ell^+ \ell^-$

M. Atzeni, R. Silva Coutinho, A. Mauri, A. Puig, N. Serra, Z. Wang

Anomalies in rare B decays

- Recent measurements confirmed some of the anomalies already observed in $B^0 o K^{0*}\ell\ell$ and $B^+ o K^+\ell\ell$ decays
- FCNC can only occur at loop-level, therefore could be sensitive to NP at higher energy scales

[1] https://doi.org/10.1103/PhysRevLett.125.011802

The $B^0 ightarrow K^{*0} \ell^+ \ell^-$ amplitude

The $B^0 o K^{*0} \ell^+ \ell^-$ amplitude

The $B^0 o K^{*0} \ell^+ \ell^-$ amplitude

The measured Wilson's coefficients can be shifted from SM due to:

- 1. NP contributions
- 2. NLH matrix element pollution

$$C_i
ightarrow ilde{C}_i = C_i^{SM} + C_i^{(\ell)NP} + C_i^{\mathcal{H}}$$

Isolating NP through LFU

$$C_i
ightarrow ilde{C}_i = C_i^{SM}
otin ilde{C}_i^{(\ell)NP} + C_i^{\mathcal{H}}$$

Need to break the degeneracy to access NP

Retrive the "clean" NP contributions in the Wilson coefficients measuring the LFU test:

$$\left[\Delta C_i = { ilde C}_i^{(\mu)} - { ilde C}_i^{(e)} = C_i^{(\mu)NP} - C_i^{(e)NP}
ight]$$

Isolating NP through LFU

Our analysis aims to:

provide a direct fit to the ΔC_i by including BR and angular information

 remove the NLH contribution by focussing on LFU quantities

 $\Delta C_i = \widetilde{C}_i^{(\mu)} - \widetilde{C}_i^{(e)} = C_i^{(\mu)NP} -$

Retrive the coefficients

Need to brea

degeneracy

M. Atzeni, Universität Zürich

e)NP

Analysis strategy

Perform an **unbinned extended** ML fit to the decay channels $B^0 o K^{*0} \mu^+ \mu^-$ and $B^0 o K^{*0} e^+ e^-$.

- Extract $C_9, C_{10}, \Delta C_9, \Delta C_{10}$ from electrons and muons
- Amplitude and all the remaining parameters are treated as nuisance and shared between electrons and muons
- NLH matrix element parametrized as

$$\mathcal{H}_{\lambda} = rac{1-zz^*_{J/\psi}}{z-z_{\psi(2S)}} \cdot rac{1-zz^*_{J/\psi}}{z-z_{\psi(2S)}} \cdot \left[\sum_{k=0}^K lpha_k^{(\lambda)} z^k
ight] \mathcal{F}_{\lambda}$$

Data samples

- Dataset collected at LHCb experiment
 @ CERN
- Forward single-arm spectrometer specialized in the physics of B mesons thanks to:
 - vertex resolution
 - tracking and momentum resolution
 - particle identification
- 3 fb⁻¹ pp collisions at $\sqrt{s} = 7,8~{
 m TeV}$ between 2011-12
- 2 fb⁻¹ at $\sqrt{s} = 13~{
 m TeV}\,$ between 2015-16

Selection and main differences

Channels are selected similarly by requiring:

- four tracks in the final state of good quality coming from displaced vertex
- information from PID compatible with decay hypothesis
- mass from K and π within 100 MeV from K^{*0} mass

Two main differences:

• <u>Bremsstrahlung</u>: electrons lose more energy than muons

very different momentum resolution

• <u>Trigger efficiency</u>: muons are triggered more efficiently than electrons

roughly x5 more muons than electrons

Describing the effect of the detector

The distortion introduced by the reconstruction and the selection of our dataset can be studied with the help of simulation.

It can be described as a function of the variables of interest and used in the fit together with the signal pdf.

Toy studies - sensitivity

A simplified sensitivity study of the measurement has been performed with 200 toys:

- **Signal** for muons and electrons:
 - $\circ \quad C_9, C_{10}, \Delta C_9, \Delta C_{10}$
 - Form factors K*(892) and <u>CKM parameters</u> (gaussian constraint)
 - <u>charm-loop</u> parametrization
 - \circ generated in $\Delta C_9 = -1.4$ scenario
- **Combinatorial** in electrons: <u>slope</u> of exponential, <u>angular parameters</u> and <u>yield</u>
- **DSL background** in electrons: <u>vield only</u>
- **Partially reconstructed** background in electrons: <u>vield only</u>

The **statistic** considered is the one corresponding to **Run1+2015+2016** and **no S-wave** contribution in either muons or electrons has been considered here.

12

Fit to $\,B^0 ightarrow K^{*0} \mu^+ \mu^-\,$ data

- The fit is in its final form and is currently already used for an amplitude analysis performed only in the muon channel
- Signal PDF includes a P and S-wave component to account for non-resonant $K\pi$ contribution

Fit to $\,B^0 ightarrow K^{*0} e^+ e^-$ data

- Most of the machinery is common to the muon mode
- Main difference is in reduced statistics and additional backgrounds
- A full blind fit to data has not yet been performed but a simplified version is available for production of realistic toys

An important cross-check

BR is used as constraint on number of expected signal events for muons and electrons

close relationship with $R_{K^{*0}}$ measurement.

depends on Wilso coefficients

A standard cross-check is to verify that:

$$r_{J/\Psi} = rac{N_{B^0
ightarrow K^* J/\Psi(
ightarrow \mu \mu)}}{\epsilon_{B^0
ightarrow K^* J/\Psi(
ightarrow \mu \mu)}} \cdot rac{\epsilon_{B^0
ightarrow K^* J/\Psi(
ightarrow \mu \mu)}}{N_{B^0
ightarrow K^* J/\Psi(
ightarrow \mu \mu)}} = 1$$

Cross-check requires detailed correction of different aspects of the simulation and is currently on-going. Feasibility has been already shown by previous analysis.

Summary

An unbinned amplitude analysis of $B^0 \rightarrow K^{*0}\ell^-\ell^+$, as proposed here, tests the *non-LFU* nature of NP in this class of decays, regardless of the "charm-loop" contribution.

This is possible due to the full sharing of the amplitude by the two, except for the Wilson coefficients!

Final remarks

• The analysis is in an advanced state, with few but important cross-checks to be done

• Next work focus on validation and pre-unblinding procedure, together with the estimation of the most important systematics

